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Abstract

Thought experiments are widely used in informal explanations of Rel-
ativity Theories; however, they are not present explicitly in formalized
versions of Relativity Theory. In this paper, we present an axiom system
of Special Relativity which is able to express thought experiments formally
and explicitly. Moreover, using these thought experiments, we can pro-
vide an explicit definition of relativistic mass based merely on kinematical
concepts and thought experiments on collisions. Using this definition, we
can geometrically prove the Mass Increase Formula m0 = m ·

√
1− v2 in

a natural way, without postulates of conservation of mass and momentum.

Keywords: First-order Modal Logic; Relativistic Dynamics; Thought Ex-

periments; Definition of Mass

1 Introduction

David Hilbert’s still open 6th problem is about to provide a foundation of physics
similar to that of mathematics. The search for this foundation means to find
suitable formal axiomatic systems in which we can prove the formal counterparts
of predictions in physics.

Why is Hilbert’s 6th problem still important? The role of basic assumptions
and basic concepts in physics is at least as fundamental as in Mathematics.
Therefore, it is essential to have a clear and well-structured understanding of
these concepts and assumptions.

As part of this project, we would like to support predictions of physics with
precise proofs. This fact also motivates us to use mathematical logic because it
is currently the best framework in which we can provide the most precise proofs
– since mathematical logic is exactly the discipline where it is clear what a proof
is.
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Using the formal language of mathematical logic, we can clarify the tacit
assumptions and opaque notions, as well as provide precise proofs for the pre-
dictions of physics.

Another advantage of using mathematical logic is the powerful device of
model theory: using these tools we are not only able to decide whether an
argument is correct or not, but to discover the exact boundaries of our theories.
For example, we can prove that if a statement is unprovable.

Here come the methods of reverse mathematics into the picture. Using model
theoretical tools we are able to examine the exact dependencies of the axioms,
what is more: we can find more and more fundamental, sufficient conditions to
prove an important statement. For example, [4] showed that the Mass Increase
Theorem can be proved from conservation of the centerline of mass without
using the conservation of mass and linear momentum.1 This means also that
the Mass Increase Theorem is true even in those models where the conservation
of mass or linear momentum fails (but the conservation of centerline of mass is
still valid).

This reverse mathematical perspective will also be important in the present
paper: we base our dynamics on an even more general foundation than what
was used in [4].

At the very beginning of such a foundation, we have to choose a math-
ematical logic. And we have to choose wisely: not all of them are suitable
for axiomatization. We have to choose one which is rich enough to formulate
physics, but not too rich to obscure some basic assumptions by making them
“unknowable” because it decides them at the meta level, see [1, §Why FOL?],
[31, §11]. The standard choice is classical first-order logic. For example, all of
[2], [3], [7], [8], [15], [22], [28] choose first-order logic to axiomatize relativity
theories.

However, thought experiments, which are standard and commonly used tools
in the everyday practice of physics, do not fit very well in these classical frame-
work since they seem to be based on more than one model. In section 2, we
show that transformations between classical models are good candidates to rep-
resent thought experiments. One could say, that this is not surprising at all:
as real experiments change the reality, thought experiments change the models
of reality. The need for this research was already articulated in [4, §6] and [5,
pp.6-7].

Anyhow, there is a logic capable of expressing thought experiments, and is
rich and safe enough to provide axiomatic bases for relativity theories. This is
the first-order logic of ‘possible worlds’: the first-order modal logic. This paper
is not the first one connecting modal logic and relativity theories. [14], [30], [29]
use modalities locally to axiomatize the causal ordering of events in Minkowski
spacetimes, and [18] uses first-order modal logic to eliminate the explicit use of
reference frames. We use modalities to express thought experimentation, i.e.,
transformations between classical models of Special Relativity, more explicitly to
distinguish between axioms referring to fundamental physical laws and axioms
postulating fundamental properties of thought experiments.

1Another good example is that faster than light motion of particles per se is logically
independent from both relativistic kinematics [32] and relativistic dynamics [25]. For an
axiomatic approach defining coordinate systems moving faster than light, see [20].
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1.1 Contents and Main Results

The main results of this paper can be summarized as follows:

• We prove standard predictions of special relativity by formal thought ex-
periments in a natural way, very close to the informal explanation. The
motivation of formal thought experiments will be presented in section 2.

• We develop a first-order modal logic axiomatization of relativistic kine-
matics and dynamics in which it is possible to distinguish between actual
and potential objects. This will be done in section 3 and 4.

• We define mass explicitly using thought experiments in subsection 4.1.

• We prove the relativistic Mass Increase Formula

m0(b) = mk(b) ·
√

1− vk(b)2. (1)

in subsection 4.3 (Thm. 11, p.29) using thought experimentation.

2 On the Formalization of Thought Experiments

To explore the nature of the thought experiments present in the discourse of
relativity physics, we show a typical argument about that the simultaneity of
events is not absolute (i.e., observer dependent): the train and platform thought
experiment.

Our main assumption about the physical reality is a simple consequence of
Einstein’s two original postulates [12]:

The speed of light is constant for each observer. (AxPhObs)

“Theorem” 1. Simultaneity is not absolute.

“Proof” 1. Consider a train and a train station such that the train is passing
by the station with constant speed. Suppose that Alice is on the train, while
Bob is standing on the station. We assume that Alice is sitting in the middle
of the train according to Bob. Now we show that there could be two events
simultaneous according to Bob, which are not simultaneous for Alice.

To do so, let us make a thought experiment: Imagine that two lightnings
strike the two ends of the train simultaneously for Bob.

By the fact that the speed of light is constant for Bob (AxPhObs), the light of
the flash in front of Alice reaches her first, and (if the train is slower than light2)
the light from her back reaches Alice second. The physical reality is the same for
both Alice and Bob; therefore, Alice also observes the light signals in different
events. We can assume that Alice is sitting in the middle of the train according
to her as well.3 Since the speed of light is constant also for Alice according
to (AxPhObs), and the two flashes occur equidistantly with respect to her, the
flash in front of her occur at a different time than the one behind according to
Alice, see Fig. 1. So we proved that there could be two events simultaneous for
Bob but not for Alice, so the simultaneity of events is not absolute. “Q.E.D.”

2The statement “no inertial observer can go faster than light” follows from the basic as-
sumptions we use in this proof, so we can use it. For a precise proof, see [6].

3This basic statement can be proved using the very same assumptions as we use in this
proof.
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Figure 1: Illustration of the thought experiment showing the observer-
dependence of simultaneity

Thought experiment
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Bob Alice

BobAlice
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In the previous informal proof, we used a lot of natural but tacit assumptions,
concerning

observations: the physical reality is the same for each observer (AxEv)4, and
observers coordinatize themselves in the origin (AxSelf), and

mathematics: since we used notions such as distance and speed, we relied on
some axioms of the real numbers.

However, this proof does not work for Alice and Bob if the two flashes are
not possible in the very special spacetime locations as we used in the proof:
they occurred simultaneously for Bob, they were equidistant with respect to
Alice, and they were oriented in the direction of the movement of Alice. This
introduction of photons is a very good example for what we usually call a thought
experiment. In this sense we relied on a thought experimentation axiom:

4Later we will introduce a modal version of this assumption, see AxMEv on p.15.
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Light Signal Sending Thought Experiments: In every spacetime location,
in every direction, it is possible to send out a light signal. (AxPhExp)

Why postulating the existence of “possible” photons are legitimate? For
example, because the notion of simultaneity should be independent from the
actual existence of some photons, i.e., the simultaneity should be understood in
terms of possible events.

But in what sense are the two flashes in the example “possible”? Logical
consistency is a good starting point: the two flashes are possible because their
existence does not violate the other axioms we use (e.g., AxPhObs or Einstein’s
more general postulates). Then the step of introduction of the two photons can
be interpreted as a transformation of a model of the (classical) axioms into a very
similar model of the same axioms: this model is more only in the aspect that it
has two extra photons in the locations where we need them to be. So a model
transformation which expands the model with two photons obeying AxPhObs is
a good candidate for a formal counterpart of the light signal sending thought
experiment AxPhExp. This gives the idea that physical thought experiments
should be formalized as transformations of classical models.

Logic for thought experiments. Non-trivial transformations of models are
always understood between different models: models before and after the trans-
formation. However, according to classical logical semantics, the truth of a
classical formula is always decided by a single model. Therefore, if we want
to axiomatize at least some of these transformations, i.e., if we want to find a
formula in the object language whose truth corresponds to a non-trivial model-
transformation, then such a formula (and its semantics) cannot be classical,
since its truth is based on more than one model.

The solution comes from modal logic. A modal model is a set of classical
models connected with a relation. This relation can represent thought exper-
imentations, i.e., model transformations. While the thought experimentation-
free (classical) formulas are evaluated in the usual way, we introduce the (modal)
formulas ♦ϕ with the intended meaning of “there is a transformed model in
which ϕ is true” or “there is a thought experiment such that ϕ.”

Formally: In the classical model w of the modal model M, the formula ♦ϕ
is true iff there is a (“transformed”) model v such that wRv and ϕ is true in v.5
6

We will treat thought experiments very generously: any model transforma-
tion will count as a representation of some thought experiment. We can afford
this liberty, since we will never have to use all of the model transformations
or thought experiments; a selected group of model transformations is enough.

5Note that the starting idea, that thought experiments should be understood as tests for
logical consistency, is fulfilled. The truth of ♦ϕ involves also classical logical consistency with
the classical axioms. If ♦ϕ is true, then there is a (transformed) classical model in which ϕ is
true. Since the classical axioms must be true in each world of the modal model, they are also
true in the transformed model. This means that ϕ is consistent.

6The modal operator ♦ is designed to handle a restricted quantification over possible worlds
in the metalanguage. Even though all the notions, such as interpretations and models are
already present in classical semantics, using modal logic is not superfluous because the purpose
of modalities is not only to quantify over models, but to do this from the object language. This
fact makes it possible to axiomatize thought experiments or model transformations, which is
a central goal of this paper.
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Therefore, our aim is not to find or draw the borders of conceivability, only to
find a small group of model transformations such that

(1) they deserved to be called thought experiments, and

(2) they are sufficient for a natural axiomatization of relativistic dynamics.

The job of our modal axioms is exactly to define implicitly this group. For
example, if we call the members of this group relativistic dynamics thought
experiments, or RDTE-s, then AxPhExp says that for all observers and all of
their light-like separated coordinate points there are RDTEs such that a photon
crosses the light-like separated coordinate points of the observer in the trans-
formed model.7

3 Kinematics

3.1 Language

Since we will reduce the notion of mass to kinematical notions, the language and
models of Dynamics will be very similar to that of Kinematics’. The only differ-
ence will be the presence of an individual constant naming the mass-standard
body to determine the standard unit of mass. Therefore, we discuss the language
and models of Dynamics now.

Our main predicate is about coordinatization:

W(k, b, t, x, y, z): “Observer k coordinatizes body b
at the spacetime location (t, x, y, z).”

We will use mathematical variables x, y, z, t, x1, . . . to denote numbers, e.g.,
coordinates, and physical variables b, c, d, k, l, h,m, . . . to denote bodies and
observers. We will assume that every observer is a body but not the other way
around. For this differentiation, we introduce a predicate for inertial observers:

IOb(k): “k is an inertial observer,” where k is a physical term.

Since we stay in Special Relativity, in the rest of this paper we omit the expres-
sion “inertial.”

Light signals play an important role in Relativity Theories; so we introduce
a primitive predicate for them as well:

Ph(k): “k is a light signal,” where k is a physical term.

Our only non-variable primitive physical term is the individual constant ε which
represents the mass-standard, and as such will play a central role in Dynamics
in section 4.

In the case of mathematics, we use the usual basic operations +, · and the
ordering ≤.

7Maybe it would be more accurate at the introduction of modal axioms to include the
precise metalinguistic characterization of the expressed model transformations, but we will set
aside from this. Besides of its technical nature, it does not affect the success of axiomatization
of special relativistic dynamics.
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To form complex formulas, we use the usual classical connectives ¬, ∧, ∨,
→, ∀, ∃ to express “not”, “and”, “or”, “if-then”, “for all”, “there exists”, re-
spectively. We use the following abbreviations to simplify our formulas:

(∃b ∈ ϕ)ψ
def.⇐⇒ ∃b(ϕ(b) ∧ ψ), (∀b ∈ ϕ)ψ

def.⇐⇒ ∀b(ϕ(b)→ ψ),

(∃x < τ)ψ
def.⇐⇒ ∃x(x < τ ∧ ψ), (∀x < τ)ψ

def.⇐⇒ ∀x(x < τ → ψ).

For the same reason, we refer to n-tuples using the vector notation:

∀x̄ϕ(x̄)
def.⇐⇒ ∀x1, . . . , xn ϕ(x1, . . . , xn).

Our only non-classical connective is the modal operator ♦ with the intended
meaning that “there is a thought experiment according to which. . . ” or “the
actual model can be transformed in a way such that. . . ”. We define the dual

operator �ϕ
def.
= ¬♦¬ϕ; hence �ϕ is true iff “ϕ is invariant under model trans-

formations/thought experiments.” Therefore, an axiom of the form �ϕ means
that “we use only those thought experiments according to which ϕ is invariant.”

3.2 Semantics

A model for MSpecRel:

M = 〈Q,P,WM〉 where
Q = 〈Q,+M, ·M,≤M〉,
P = 〈S,R,D, IObM,PhM, εM〉.

Here Q is the mathematical and classical (Tarskian) part of the model:

+M, ·M: Q2 → Q, ≤M⊆ Q2,

and P is the physical and modal part of the model. The set S is the set of possible
worlds, which is a nonempty set used for naming the classical first-order models.

R is a reflexive binary relation on S called the alternative-relation. The
purpose of this relation is to select those possible worlds which can be reached
from the actual world by thought experiments. The precise calibration of this
relation will be done by axioms containing modal operators � and ♦.

D is a function assigning to each w ∈ S a (possibly empty) set Dw. These
sets are considered to be the domains of physical quantification, or simply the
set of existing or “actual” physical objects in the world w. The possible objects
are the objects that are “actual-in-some-possible-world”:

U
def.
=
⋃
w∈S

Dw.

IObM and PhM are modal predicates for observers and photons. Since the
sets of observers and photons can vary in different worlds, the modal predicates
are functions assigning subsets of U to each world w:

IObM,PhM : S → P(U).

Function εM assigns a possible object, the one and only (and not necessarily
existing) mass-standard for each w ∈ S in a way that the denotation of ε cannot
vary between R connected worlds (i.e., it is a so-called rigid designator):

εM : S → U and wRv ⇒ εMw = εMv .
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Finally WM is the hybrid modal and classical predicate for coordinatization.
This is also a function, since the worldviews can vary from world to world:

WM
w ⊆ D2

w ×Q4.

Assignments. Let σQ be an assignment of the classical part of the model in
the classical sense, i.e., a function assigning the elements of Q to the mathemat-
ical variables. In the case of the physical and modal parts, let an assignment σU
map possible individuals (i.e., elements of U) to the physical variables. Then a
two-sorted assignment for a model of MSpecRel:

σ(x)
def.
=

{
σQ(x) if x is a mathematical variable,
σU (x) if x is a physical variable.

We define the x-variant assignments in the usual way:

σ
x≡ τ def.⇐⇒ for all y 6= x : σ(y) = τ(y).

Terms. The denotation of terms are defined in the usual way:

tM,w,σ def.
=

{
σ(t) if t is a variable,

fM,w,σ
i (tM,w,σ

1 , . . . , tM,w,σ
n ) if t = fi(t1, . . . , tn).

Truth. To define truth, we introduce the following notation:

M, w |= ϕ[σ].

We read this in the following way: ϕ is true in the world w of the modal model
M according to an assignment σ. The precise definition is given by recursion:
The truth of the atomic sentences made by = and W:

M, w |= W(k, b, x̄)[σ]
def.⇐⇒ 〈kM, bM, x̄M〉 ∈WM

w ,

M, w |= t1 = t2[σ]
def.⇐⇒ tM1 = tM2 .

The truth of the other atomic formulas is defined similarly. The truth of for-
mulas connected by ∧, ∨, → and ↔ are defined in the usual way; however, the
truth of the quantified and modalized formulas are special:

M, w |= ∃xϕ[σ]
def.⇐⇒

{
there exists a τ≡xσ such that
M, w |= ϕ[τ ],

M, w |= ∃bϕ[σ]
def.⇐⇒

{
there exists a τ≡bσ such that
τ(b) ∈ Dw and M, w |= ϕ[τ ],

M, w |= ♦ϕ[σ]
def.⇐⇒

{
there exists a w′ ∈ S such that
wRw′ and M, w′ |= ϕ[σ].

Note that in the case of the physical sort, we quantify over Dw, i.e., over the
actually existing bodies. The possible bodies are only accesible using modalities,
such as ♦∃b, �♦♦∀b, etc.

A formula is said to be true in a model, M |= ϕ iff it is true in all of its
worlds according to any assignment.
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Figure 2: An example for a first-order modal model of our language
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The worlds we use are not ordinary classical models, because the classical
axiom schema of universal instantiation (∀bϕ(b)→ ϕ(t/b)) is false in them. To
show this, we give a simple example: Consider the following model illustrated
on Fig. 2:

〈R, S,R,D, IObM,PhM, εM,WM〉

• R is the field of real numbers.

• There are only two worlds w1 and w2, i.e., S = {w1, w2}, such that w2 is
a transformed version of w1, and both worlds are transformed versions of
themselves:

R = {〈w1, w2〉, 〈w1, w1〉, 〈w2, w2〉}.

• In both worlds, there exist only two entities: Dw1
= {k, p}, Dw2

= {k, e}.
So the possible entities are U = {k, p, e}.

• k is an observer in both worlds, IObw1 = IObw2 = {k}, p is a photon in
w1, Phw1 = {p},Phw2 = ∅, e is the mass-standard of w1 and w2, i.e.,
e = εMw1

= εMw2
(they cannot differ, since w1Rw2).

• k sees itself in the origin in both worlds, k coordinatize p moving from 0
in the direction of its x-axis in the world w1, e is stationary for k in w2.

WM
w1

=

{
〈a, b, t, x, y, z〉 : k = a and

if b = k then x = y = z = 0,
if b = p then t = x, y = z = 0,

}

WM
w2

=

{
〈a, b, t, x, y, z〉 : k = a and

if b = k then x = y = z = 0,
if b = e then x = 2, y = z = 0,

}
Let us now consider formula (∃b) b = ε expressing that ε exists. For express-

ing existence this way, we use the following abbreviation:

E(c)
def.⇐⇒ (∃b) b = c.

Now E(ε) is true in w2 but not in w1, since εMw1
= e /∈ Dw1

. However, the
formula ∀bE(b) is true in w1, since E(b) and E(p) are true, but since for the
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truth of ∀-statements we examine only the elements of Dw1
, the falsity of E(ε)

does not count. This means that in our models the classical axiom schema of
universal instantiation,

∀bϕ(b)→ ϕ(t/b) (UI)

fails. Therefore, we do the standard abstraction present in the first-order modal
literature (see [11], [16]): we replace this by the actual instantiation schema:

E(t)→ (∀bϕ(b)→ ϕ(t/b)). (AI)

3.3 Logical axioms

The logical axioms are

• the usual axioms and derivation rules of classical propositional logic.

• the usual axioms and derivation rules of classical first-order logic for math-
ematics.

• the usual axioms and derivation rules of classical first-order logic for
physics, except the law (UI). We use (AI) instead.

• [13] showed that this system still not proves that the quantifiers of the same
sort commute. We postulate these commutativities and we let commutate
the quantifications of different sorts too:

∀b∀cϕ↔ ∀c∀bϕ ∀b∀xϕ↔ ∀x∀bϕ.

• the usual axioms of identity for both sorts, and a new modal axiom ex-
pressing that non-identity is invariant under thought experiments. Dur-
ing the axiomatization of special relativity we do not use such a radical
thought experiment which could merge two objects into one single object.

t = t, t = s→ (ϕ(t/x)→ ϕ(s/x)), t = s→ (ϕ(t/b)→ ϕ(s/b)),

t 6= s→ �(s 6= t).

• the axiom and the derivation rule of the most general normal modal propo-
sitional logic K:

�(ϕ→ ψ)→ (�ϕ→ �ψ),
ϕ

�ϕ
.

For us, these express that the modal logical tautologies are invariant under
thought experiments, and that invariance under thought experiments is
closed to modus ponens.

• For simplicity, we assume that every world counts as a transformed version
of itself, i.e., R is reflexive.8 The standard way9 to axiomatize reflexivity
is to take the propositional axiom

ϕ→ ♦ϕ.
8However, this assumption can be evaded by replacing �ϕ and ♦ϕ with ϕ∧�ϕ and ϕ∨♦ϕ

in all our axioms.
9For the standard line of thought, see [9, Def. 3.3, Example 3.6].
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This proof system is strongly complete with respect to the semantics we
use, see [11, Thm. 2.9 (i), p. 1502.].10

3.4 Mathematical Axioms

For the mathematical part, we use the theory of Euclidean fields.

Axiom 1 (Axioms of Euclidean Fields).

AxEField The mathematical part of the model is a Euclidean field, i.e., an
ordered field11 in which every positive number has a square root.12

3.5 Axiom for characterizing the Framework

Here we specify some minimal requirements on the thought experimentation we
will use.

Axiom 2 (Axioms of Modal Framework).

AxMFrame Mathematics is invariant under thought experiments, and every
(existing) observer remains an existing observer, i.e., the observers and their
ability to coordinatize cannot vanish after a thought experiment:

(∀k ∈ IOb)�(E(k) ∧ IOb(k)),

(∀x, y, z) x+ y = z ↔ �x+ y = z,
(∀x, y, z) x·y = z ↔ �x·y = z,
(∀x, y) x ≤ y ↔ �x ≤ y,
(∀x, y) x = y ↔ �x = y.

Note that AxMFrame allows an object to be an observer in a world w and
a non-observer in an other world w′. This axiom ensures only that w′ cannot
be a transformed version of w, i.e., the relation R cannot connect them in this
order.

The postulates about atomic statements of the mathematical sort implies
that µ ↔ �µ whenever µ is a “purely” mathematical formula. Practically,
these axioms say that we do not consider thought experimentations according
to which 2 + 2 can be 5.

3.6 Physical axioms

In our first physical axiom, we use the following notations:

x̄ ∈ wlinek(b)
def.⇐⇒ W(k, b, x̄),

10[11] proved strong completeness for only one-sorted modal languages, but our language can
be interpreted into it in the usual way, i.e., we introduce a D and a Q predicate to distinguish
the sorts. To construct one-sorted models for our system, we only have to stipulate that the
mathematical parts of the R-connected worlds are the same, i.e., they are invariant under R.

[16, 5.6] is also a recent source of a strong completeness theorem, which is too general for
our present purpose (it is designed to incorporate even nonrigid designator terms); however,
using that approach would probably be more elegant especially for readers preferring algebraic
approaches.

11For the axioms of ordered fields, see e.g., [10, p.41].
12That is, (∀x > 0)(∃y) x = y2.
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x̄t
def.
= x1, x̄s

def.
= (x2, x3, x4),

Time(x̄, ȳ)
def.
= |x̄t − ȳt|, Space(x̄, ȳ)

def.
= |x̄s − ȳs|.

Axiom 3 (Axiom of Observation of Light Signals.).

AxPhObs Every observer sees the worldlines of photons as of slope 1. See
Fig. 3:

(∀k ∈ IOb)(∀x̄, ȳ)

(
(∃p ∈ Ph)x̄, ȳ ∈ wlinek(p)→ Space(x̄, ȳ)

Time(x̄, ȳ)
= 1

)
.

Figure 3: Axiom of Observation of Light Signals

=⇒

k

x̄s ȳs

x̄t

ȳt
k

x̄s ȳs

x̄t

ȳt p

p

ȳ

x̄

=

Space

=

T
im

e

Axiom 4 (Axiom of Light Signal Sending).

AxPhExp Every observer can send a photon through coordinate points of

slope 1. See Fig. 4:

(∀k ∈ IOb)(∀x̄, ȳ)

(
Space(x̄, ȳ)

Time(x̄, ȳ)
= 1→ ♦(∃p ∈ Ph)x̄, ȳ ∈ wlinek(p)

)
.

This axiom practically says that if there are two spacetime locations where,
according to AxPhObs, there could be a photon, (i.e., their slope is 1) then
there is a thought experiment which transforms the actual world into a world in
which there is a photon crossing through these spacetime locations. That was
the axiom we used in the example in section 2.

The most important message of the special theory of relativity is that rela-
tively moving observers coordinatize the world differently even with respect to
time and simultaneity. So the most interesting relation of this theory must be
the relation which connects the corresponding coordinate points of different ob-
servers, because if we want to say something about relativistic effects, such as
time dilation, length contraction, etc., we have to compare different observers’
corresponding coordinates. The usual way to achieve this is to introduce the
notion of events. Intuitively an event is a meeting, an encountering, a collision
etc. which itself is observer-independent. What is observer-dependent, is the
spacetime location of these events in the observers’ coordinate-systems. We can
introduce an observer-dependent formal counterpart for the notion of event:
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Figure 4: Axiom of the Light Signal-Sending
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Definition 1. An event at a coordinate point x̄ according to k in a world w is
the set of existing (actual) bodies occurring there:13

evk(x̄)
def.
= {b ∈ E : W(k, b, x̄)}.

Let w and w′, respectively, be the worlds before and after the thought ex-
periment in the story of Alice and Bob in section 2. Then the possible values of
evAlice(x̄) and evBob(x̄) are

∅, {Alice}, {Bob}, {Alice, Bob} in w, and
∅, {Alice}, {Bob}, {Alice, Bob}, {p1}, {p2}, {Alice, p1}, {Alice, p2} in w′.

Let us note that Alice and Bob usually coordinatize these events in several
different spacetime locations. However, they coordinatize the same events, i.e.,
there is no event which is available for only one of them.14

This is not the usual concept of events. In the literature, the events are
interpreted as possible events, but in our case, the events are actual events since
they are sets of actual bodies. Of course, there is a good reason behind the use
possible events. Since different possible events correspond to different coordi-
nate points of an observer, and every possible event is coordinatized by every
observer, possible events yield the bridge between the different worldviews of
observers; two coordinate points of different observers correspond to each other
iff they are coordinates of the same possible event. This correspondence yields
the so-called worldview transformation, i.e., the transformation which connects
those points of two coordinate systems, that correspond to each other. Without
the worldview transformation, in this framework, it seems to be hopeless to
articulate even the most basic relativistic effects. So the question is: Can we
build this bridge?

13Note that the expression on the right side of the equivalence comes from the metalanguage.
We can, however, pull this definition back the object language in the following way: b ∈
evk(x̄)

def.⇐⇒ W(k, b, x̄).
14This assumption is axiom AxEv (the axiom of events) in the classical approach, see e.g.,

[6, p.638.]. Here we will use its modal version, see AxMEv on p. 15.
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The answer is yes, but instead of using possible events, we will use actual
events and the act of the differentiating between possible events, since although
the possible events are hardly expressible, the act of differentiating between
them is easily expressible.15 For example, let us assume that Alice and Bob
meet with each other at the coordinate point (0,0,0,0) according to both of
them. In the worldview of Alice, the coordinates (0,3,0,0) and (0,2,0,0) refer to
the same actual event ∅ in the world w. However, we know that they refer to
different possible events, even if we can not express the set of possible bodies
occurring in these coordinates. The reason is that (using AxPhExp) we executed
a thought experiment which produced a photon p2 which occurred in the new
actual event evAlice(0, 3, 0, 0) but not in evAlice(0, 2, 0, 0). What is more, by
AxPhObs, there are no relativistic dynamics thought experiments placing p in
actual events at (0,3,0,0) and (0,2,0,0) in any world. So, however, the possible
events are inexpressible in our framework, we can define the bridge between the
different worldviews of observers.

Definition 2 (Worldview transformation). We say that k sees at x̄ what h sees
at ȳ iff in all transformed worlds the event in x̄ for k is the same as the event
in ȳ for h. In other words, k sees at x̄ what h sees at ȳ iff it is impossible to tell
apart these two events by thought experiments:

wkh(x̄, ȳ)
def.⇐⇒ �∀b

(
W(k, b, x̄)↔W(h, b, ȳ)

)
,

or, using the notation introduced in Def. 1,

wkh(x̄, ȳ)
def.⇐⇒ � evk(x̄) = evh(ȳ).

Prop. 1 shows that AxPhExp provides enough thought experiments to prove
that worldview transformations give a one-to-one correspondence between co-
ordinate points.

Proposition 1. Worldview transformations are injective functions.

{AxEField,AxMFrame,AxPhExp,AxPhObs} `

(∀k, h ∈ IOb)(∀x̄, ȳ, z̄)
(

[(wkh(x̄, ȳ) ∧ wkh(x̄, z̄))→ ȳ = z̄]∧
∧[(wkh(ȳ, x̄) ∧ wkh(z̄, x̄))→ ȳ = z̄]

)
Proof. By the definition of worldview transformation, wkh(x̄, ȳ) = whk(ȳ, x̄).
Therefore, wkh is injective iff whk is a function. So by the symmetry of h and k
in the statement, it is enough to prove that wkh is a function. To do so, let us
assume towards contradiction that wkh(x̄, ȳ), wkh(x̄, z̄), but ȳ 6= z̄ in a world w.
In this case, by AxPhExp and AxPhObs, h could send out a light signal from ȳ
in such a direction that it avoids z̄, i.e., there is a possible world w′, such that
wRw′, and in w′ there is a photon p such that

p ∈ evh(ȳ) but p /∈ evh(z̄). (2)

15The possible events are accessible in the metalanguage in a straightforward way: they
are sets of possible bodies, i.e., sets of elements of U , occurring at a coordinate point of some
observer. In the classical approach of SpecRel, we use this definition, see [6, p.637.]. However,
in the modal approach, we do not have access to U , only to a Dw since we can quantify over
only the elements of Dw, i.e., over actual bodies.
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However, since it is true in w that

wkh(x̄, ȳ) ⇐⇒ �evk(x̄) = evh(ȳ),
wkh(x̄, z̄) ⇐⇒ �evk(x̄) = evh(z̄),

by the definition of �, it is true also in w′ that

evk(x̄) = evh(ȳ) and evk(x̄) = evh(z̄), hence evh(ȳ) = evh(z̄).

This contradicts (2), which proves that wkh is a function.

By Prop. 1, we can use the following notation for worldview transformations:

wkh(x̄) = ȳ
def.⇐⇒ wkh(x̄, ȳ).

So far we have not assumed that there is at least one corresponding coor-
dinate point in the worldviews of observers. That is, in some sense, we have
not assumed that observers coordinatize the same physical reality. This is an
important statement; so we take it as an axiom.

Axiom 5 (Axiom of Events).

AxMEv The possible events are the same for every observer, i.e., there is no
possible world in which there is an actual event for an observer, which is not
observed by every other observers:

(∀k, h ∈ IOb)(∀x̄)(∃ȳ) wkh(x̄) = ȳ.

Proposition 2. If we assume AxMEv, AxPhObs and AxPhExp, then worldview
transformations are bijections from Q4 to Q4.

Now we introduce two more axioms to standardize coordinatizations:

Axiom 6 (Axiom of Self-Coordinatization).

AxSelf Every observer coordinatizes itself stationary in the origin:

(∀k ∈ IOb)(∀x̄ ∈ wlinek(k)) x̄s = 0̄.

Axiom 7 (Axiom of Symmetry).

AxMSym All observers use the same system of measurements:

(∀k, h ∈ IOb)(∀x̄, x̄′, ȳ, ȳ′)(Time(x̄, ȳ) = 0 ∧ Time(x̄′, ȳ′) = 0∧
∧ wkh(x̄) = x̄′ ∧ wkh(ȳ) = ȳ′)→ Space(x̄, ȳ) = Space(x̄′, ȳ′).

Within this axiomatic framework, we are able to introduce the axiomatiza-
tion of modal kinematics of special relativity:

MSpecRel
def.
=

{AxEField,AxMFrame,AxPhExp,AxPhObs,AxMEv,AxSelf,AxMSym}

15



Within this axiom system, we can prove all the kinematical effects of special
relativity, such as time dilation and length contraction. See [3] for a direct
proof for these effects in a classical axiomatic framework. Here, instead of
proving these directly, we prove that worldview transformations are Poincaré
transformations, which imply all kinematical effects of special relativity.

Theorem 3.

MSpecRel ` (∀k, h ∈ IOb)“wkh is a Poincaré transformation.”

The proof is in Appendix 5.1.

4 Dynamics

From now on, we will assume MSpecRel without further mentioning.

4.1 Definition of Mass

In this section, we introduce the special relativistic dynamics based on kine-
matical notions. We base our definition of mass on possible collisions with the
mass-standard. However, we have to give a definition for inertial bodies and
collisions first. Instead of giving a definition generally for all type of collisions,
we restrict ourselves to inelastic collisions involving only two bodies. This does
not mean that our dynamics is applicable only to these types of collisions. The
method can easily be generalized, see [31]. The reason why we choose these
simple collisions is that they give a sufficient basis to define the relativistic mass
explicitly.

Definition 3 (Inertial bodies and their speed). A body is inertial iff its world-
line can be covered by a line:

IB(b)
def.⇐⇒ (∃k ∈ IOb)(∀x̄, ȳ, z̄ ∈ wlinek(b))

(x̄t ≤ ȳt ≤ z̄t → |x̄− ȳ|+ |ȳ − z̄| = |x̄− z̄|).

If a body b is inertial and exists in at least two coordinate points, the following
definition of speed is well-defined:

vk(b) = v
def.⇐⇒ (∃x, y ∈ wlinek(b))

(
x 6= y ∧ v =

Space(x, y)

Time(x, y)

)
.

Two examples for inertial bodies are the inertial observers (by AxSelf), and
the photons (by AxPhObs), so IOb ⊆ IB and Ph ⊆ IB. However, our inten-
tion with the definition of inertial bodies is to introduce the type of bodies to
which we would like to assign mass. So first, inertial observers (i.e., coordinate-
systems) are not such entities. Second, for simplicity, in this paper we will not
consider the mass of photons. Therefore, we introduce the following notion for
other inertial bodies.

Definition 4 (Ordinary body). We call a body ordinary iff it is an inertial
body which is not a photon nor an inertial observer:

OIB(b)
def.⇐⇒ IB(b) ∧ ¬IOb(b) ∧ ¬Ph(b).
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For ordinary bodies other than the mass-standard16, we introduce the following
notation:

OIB−(b)
def.⇐⇒ OIB(b) ∧ b 6= ε.

Definition 5 (Collision). See Fig. 5. We say that b and c collide inelastically
resulting a body d according to an observer k at the spacetime location x̄, in
formula inecollk,x̄(b, c : d), iff b and c are different existing inertial bodies and
their worldlines end in x̄, and the worldline of the existing inertial body d begins
also in x̄ according to k.

ink(x̄)
def.
= {b ∈ IB : b ∈ evk(x̄) ∧ (∀ȳ ∈ wlinek(b)) (ȳt < x̄t ∨ ȳ = x̄)},

outk(x̄)
def.
= {b ∈ IB : b ∈ evk(x̄) ∧ (∀ȳ ∈ wlinek(b)) (ȳt > x̄t ∨ ȳ = x̄)},

inecollk,x̄(b, c : d)
def.⇐⇒ b, c, d ∈ E ∧ b 6= c ∧ ink(x̄) = {b, c} ∧ outk(x̄) = {d}.17

The omitted variables are intended to be quantified over existentially:

inecollk,x̄(b, c)
def.⇐⇒ (∃d ∈ IB)inecollk,x̄(b, c : d),

inecollk(b, c)
def.⇐⇒ (∃x̄)inecollk,x̄(b, c),

inecoll(b, c)
def.⇐⇒ (∃k ∈ IOb)inecollk(b, c).

Figure 5: ink(x̄), outk(x̄) and inelastic collision
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We also introduce a notation for the spacetime location of collisions:

locinecollk(b, c) = x̄
def.⇐⇒ inecollk,x̄(b, c).

Let us note that, by the definition of inecoll, locinecollk(b, c) is well-defined.

Definition 6 (Covering line of inertial bodies). The covering line of inertial
body d according to observer k is the line wlinek(d) which contains the worldline
of d.

z̄ ∈ wlinek(d)
def.⇐⇒ (∀x̄, ȳ ∈ wlinek(d))

 |x̄− ȳ|+ |ȳ − z̄| = |x̄− z̄|∨|x̄− z̄|+ |z̄ − ȳ| = |x̄− ȳ|∨
|z̄ − x̄|+ |x̄− ȳ| = |z̄ − ȳ|


16We do not assume that the mass-standard is inertial in general. However, in thought

experiments which we use to derive our theorems, the mass-standard will always be inertial.
This will follow from axiom AxDir, see Axiom 9.

17These relations can also be defined in the object language using the method of footnote 13
together with ink(x̄) = {b, c} ⇐⇒ a ∈ ink(x̄) ↔ (a = b ∨ a = c) and with a similar
substitution for outk(x̄).
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Figure 6: The Collision Ratio
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For inertial bodies participating in inelastic collisions, we can use the follow-
ing notation since the covering line of these bodies cannot be horizontal:

wlinek(d, t) = s̄
def.⇐⇒ 〈t, s̄〉 ∈ wlinek(d),

wlinek(d, t) = s̄
def.⇐⇒ 〈t, s̄〉 ∈ wlinek(d).

How could we decide which one of two colliding bodies, say b and c, is more
massive? We can observe the resulting body d of the collision: if d is stationary,
then the relativistic masses of b and c are equal; if d moves towards where from
c have arrived, then b is more massive than c. So we can examine the ratio of
the covering lines of the bodies b, c and d intersected with the simultaneity of
an observer k, see Fig. 6. If this ratio is greater than 1, then b is more massive;
and if this ratio is say 2.7, then b is 2.7 times more massive than c.

We will define the ratio of collision only for those collisions in which the
resulting body’s worldline is between the two colliding ordinary bodies, like in
Fig. 6. Formally:

Betweenk(b, d, c)
def.⇐⇒

(∀x̄ ∈ wlinek(b))(∀ȳ ∈ wlinek(c))(∀z̄ ∈ wlinek(d))(∃t)
[0 < t < 1 ∧ z̄ = tx̄+ (1− t)ȳ] ∨ x̄ = ȳ = z̄.

Definition 7 (Ratio of Collision). We say that b is r times more massive than
c according to k, and we denote this by (b : c)k = r, iff the covering line of the
resulting body of the collision produced by b and c divides the simultaneity of
k between the body b and c in the ratio of r:

(b : c)k = r
def.⇐⇒ inecoll(b, c) ∧ Betweenk(b, d, c)∧

∧ (∃t < locinecollk(b, c)) r =
|wlinek(c, t)− wlinek(d, t)|
|wlinek(b, t)− wlinek(d, t)|

.

Having the notion of ratio of collision we are close to define a relativistic
mass function: If c is the mass-standard ε, then (b : ε)k = r should be read as

18



“b is r times more massive than the mass-standard according to k.” And what
else would we like to understand by that “b has the relativistic mass r according
to k” if not this?18

However, such a definition for mass seems to be too narrow. There are three
problems with this definition:

(1) Problem of the Non-interacting. How could we say anything about bod-
ies that do not collide with something? Do they lack mass? Even if we do
not know about the mass of such a body, it should have mass or at least
it should be meaningful to speak about its mass.

(2) Problem of Reusability. If the mass-standard collides with a body, how
could it collide again if we use only inelastic collisions?

(3) Problem of the Stationary. The mass-standard should have the mass
1 only if it is stationary since relativistic mass, similarly to length and
time, depends on speed in relativity theory. What if b is at rest, too?
How could such a stationary b be collided with the mass-standard if the
mass-standard is also stationary?

We solve these problems using possible world semantics and thought ex-
periments. (1) can be solved by speaking about collisions in alternative possible
worlds where it collides with the mass-standard instead of the actual world where
it does not. This also solves (2): the actual world can be counted as the first
use of the mass-standard, and the alternative world can be the second use. And
similarly, every other measurement (collision with the mass-standard) can be
done in another alternative world of the actual one.

So shortly: to define relativistic mass we will use collisions in alternative
possible worlds. We can summarize the answer to the first two problems in a
sketch of a definition of mass for moving bodies:

“Definition” 1 (Mass of the Moving). The relativistic mass of a moving ordi-
nary body b according to an observer k is r, iff it could be r times more massive
than the mass-standard: there is a “very similar” alternative world in which b
collides with the mass-standard with the collision ratio of (b : ε)k = r.

We can also solve (3) using this quasi definition, i.e., we can define rest
mass based on the mass of moving bodies by using a transmitting body between
the stationary mass-standard and the stationary body which is going to be
measured:

“Definition” 2 (Mass of the Stationary). The relativistic mass of a stationary
body b is r1 · r2 according to k iff it could be r1 times more massive than a body
which could be r2 times more massive than the mass-standard: There is a “very

18Practically, the ratio of collision is a formal implementation of Weyl’s definition for ratios
of masses, see [21, (1.4) on p.10.], implemented to special relativity. Suppose that we already
have a mass function m having the usual properties. So mk(b) denotes the relativistic mass of
b according to k. Let b and c be two colliding bodies, and k be the inertial observer according
to which the center of mass of b and c is stationary. Then (b : c)k is the ratio vk(c)/vk(b).
Therefore, the collision ratio (b : c)k corresponds to the ratio mk(b)/mk(c) by the conservation
of linear momentum. And since Poincaré transformations preserve the ratio of points on a
line, the ratio of collision means the ratio of masses even if we choose a different observer than
k.
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similar” alternative possible world in which b collides with a (moving) body c
with the collision ratio (b : c)k = r1 and the relativistic mass of c is r2.

There is only one problem with these two quasi definitions: What does it
mean that the alternative world is “very similar” to the actual one? Not any
kind of world is relevant if we want to collide the mass-standard to a body
b. We are interested only in those worlds where b has the same speed. These
considerations motivate the following two semantical definitions.

Since in modal logic, the predicates can vary in different worlds, when it
is not straightforwardly determined by the context, we label the predicates by
worlds. So here and from now on, superscript w in predicates Pw and terms tw

denotes the worlds from which we took it.

Definition 8 (Collision Thought Experiments and their Relevance). We say
that in world w body c can collide with b according to k iff b is an existing
ordinary body and k is an existing observer in w, and there is an alternative
world w′ where these are still existing, inertial, the observer is still an observer,
and there c is an existing ordinary body colliding with b. Formally, in w a body
c can collide with b according to k iff

(∃w′ ∈ S)wRw′,

b ∈ Dw ∩OIBM,w ∩Dw′ ∩OIBM,w′
,

c ∈ OIBM,w′
∩Dw′ ,

k ∈ IObM,w ∩Dw ∩ IObM,w′
∩Dw′ ,

(∃x̄ ∈ wlinek(b)w) inecollk,x̄(b, c)w′ .

We call such a 〈w,w′, k, b, c〉 tuple a collision thought experiment or just collision
experiment.

We call a collision thought experiment 〈w,w′, k, b, c〉 relevant iff the worldline
of b before the collision is the same in both worlds according to k.

(∀t ≤ locinecollk(b : c)wt ) wlinek(b, t)w = wlinek(b, t)w
′
.

The following axiom ensures that all collision thought experiments are relevant:

Axiom 8 (Axiom of Relevant Collisions).

AxCollRel Every collision thought experiment is relevant:

(∀k ∈ IOb)(∀b ∈ OIB)(∀x̄, ȳ)

(ȳt ≤ x̄t ∧W(k, b, ȳ))→ � ((∃c ∈ OIB)inecollk,x̄(b, c)→W(k, b, ȳ)) .

This axiom is the engine of our Dynamics. Upon colliding an ordinary body c
to an ordinary body b, we assume: The worldline of b changes after the collision
and remains unchanged before the collision (otherwise its speed could change
and that would ruin the whole experiment). So this axiom erases the worldline
after a certain point to make room for the collision, but preserve the rest of
the worldline to maintain the speed. This axiom also ensures a very important
fact: the relative speed of two observers remains the same in collision thought
experiments, see Item 1. of Prop. 4.19

Now that we are able to filter out the relevant collisions, we can introduce
collision experiments designed to determine the masses of the moving and sta-
tionary bodies.

19The reader may wonder why is the formula of AxCollRel so complicated, while the informal
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Figure 7: Direct Measurement
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Definition 9 (Measurements). A collision experiment 〈w,w′, k, b, c〉 is a direct
measurement iff it is relevant, c is the mass-standard and it is stationary ac-
cording to k. See Fig. 7. A collision experiment 〈w,w′, k, b, c〉 is an indirect
measurement iff it is relevant, b is stationary, and there exists a direct measure-
ment 〈w′, w′′, k, c, ε〉. See Fig. 8.

The following two axioms will ensure that the measurements described above
are determined uniquely.

Axiom 9 (Axiom of Direct Measurements).

AxDir According to any observer, every relatively moving ordinary body, other
than the mass-standard, can uniquely collide with the mass-standard such that
the mass-standard is stationary for that observer:

(∀k ∈ IOb)(∀b ∈ OIB−)

vk(b) 6= 0→ (∃r)
(

♦[vk(ε) = 0 ∧ (b : ε)k = r]∧
∧�[vk(ε) = 0→ (b : ε)k = r]

)
.

If AxDir is assumed, we can define the mass of relatively moving ordinary
bodies (except the mass-standard) as it was illustrated on Fig. 7:20

m−k (b) = r
def.⇐⇒ ♦[vk(ε) = 0 ∧ (b : ε)k = r]. (3)

Axiom 10 (Axiom of Indirect Measurements).

AxIndir For every observer, every stationary ordinary body is involved in an
indirect measurement, and the results of indirect measurements are unique, i.e.,
do not depend on the choices of the transmitting body:21

(∀k ∈ IOb)(∀b ∈ OIB)

vk(b) = 0→ (∃r)
[
♦(∃c ∈ OIB−)

(
r = (b : c)k · m−k (c)∧

∧�(∀c′ ∈ OIB−)(inecoll(b, c′)→ r = (b : c′)k · m−k (c′))
)]
.

If AxDir and AxIndir are assumed, we can define the mass of stationary or-
dinary bodies as it was illustrated on Fig. 8:

m0
k(b) = r

def.⇐⇒ vk(b) = 0 ∧ ♦(∃c ∈ OIB)[r = (b : c)k · m−k (c)]. (4)

description is so simple, what is more, why do we postulate that every collision thought
experiment is relevant instead of only those that we really need? The reason is that the
expressive power of first-order modal logic is not as strong as it seems. For example, it is
hopeless to show a formula expressing exactly the following: “There is an alternative world
w′ in which every object from w having property Pw, has a property Qw′ in w′.” The main
reason for this is that we cannot ‘quantify back’ into the previous world after we used a ♦
operator. For a summary of expressivity problems of first-order modal logic, see [17], [19]. Now
the dynamical statement like “Only b’s worldline changes” is also such a statement. So this
control is beyond the expressibility power of first-order modal logic. At the conference LR12
[26] and in [27], we sketched a solution which used a trick to enforce this kind of thought
experiments, but it cost a lot: it used two modal operators such that one of them was a
transitive closure of the other. A strong completeness theorem for such a logic is impossible,
see [9, §4.8 Finitary Methods I.]. So AxCollRel seems to be the appropriate axiom which makes
relevant collision thought experiments possible, and is still expressible.

20Note that the definitions (3), (4) and (5) express their intended meanings only if we
assume AxCollRel as well.

21It is a question for further research to find natural and more elementary axioms implying
that the results of indirect measurements do not depend on the choices of transmitting body.
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We can define an observer-independent concept of rest mass as well:

m0(b) = r
def.⇐⇒ (∃k ∈ IOb) m0

k(b) = r.

To show that m0(b) is a well-defined quantity, we have to prove that m0
k(b) does

not depend on k, i.e., co-moving observers get the same results from indirect
measurements. We prove this in four steps:

Proposition 4.

1. The relative speed of observers remains the same in collision experiments,
i.e., thought experiments described in Def. 8.

MSpecRel ∪ {AxCollRel} `
(∀k, h ∈ IOb)(∀r)(∀b ∈ OIB)[vk(h) = r →

→ �
(
(∃c ∈ OIB)inecoll(b, c)→ vk(h) = r

)
].

2. In collision experiments, ordinary bodies have the same collision ratio for
every two inertial observers co-moving with each other.

MSpecRel ∪ {AxCollRel} `
(∀k, h ∈ IOb)[vk(h) = 0→ (∀b ∈ OIB)�(∀c ∈ OIB)(b : c)k = (b : c)h].

3. Inertial observers co-moving with each other get the same results in direct
measurements.

MSpecRel ∪ {AxCollRel,AxDir} `
(∀k, h ∈ IOb)[vk(h) = 0→ (∀b ∈ OIB−)(vk(b) 6= 0→ m−k (b) = m−h (b))].

4. Inertial observers co-moving with each other get the same results in indi-
rect measurements.

MSpecRel ∪ {AxCollRel,AxDir,AxIndir} `
(∀k, h ∈ IOb)(∀b ∈ OIB) m0

k(b) = m0
h(b).

Proof.

1.: Let w be an arbitrary but fixed world in which k and h are inertial ob-
servers moving with the speed of vk(h) = vh(k) = r. Let b an ordinary
body from w. Let w′ an arbitrary but fixed transformed version of w in
which b collides inelastically with an ordinary body c. From AxMFrame,
we know that both k and h exist as observers in w′, too. From now on,
we omit the details concerning AxMFrame in this proof.

We have to prove that vk(h) = r in w′, too. To prove that, by Thm. 3, it is
enough to show that the transformations wkh

w and wkh
w′

, the worldview
transformation in w and the worldview transformation in w′, take one
timelike line to the same line, i.e.,

wkh
w′

[`] = wkh
w[`].
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For such a line, the covering line of b for k is a perfect choice, since
〈w,w′, k, b, c〉 is a collision thought experiment, and by AxCollRel, it is
relevant:

ww′

kh

[
wlinek(b)

w′]
= wlineh(b)

w′
AxCollRel
↓
= wlineh(b)

w
=

ww
kh

[
wlinek(b)

w
] AxCollRel

↓
= ww

kh

[
wlinek(b)

w′]
.

2.: Let w be an arbitrary but fixed world in which k and h are existing co-
moving observers coordinatizing an ordinary body b. Let w′ an arbitrary
but fixed transformed version of w, in which b collides inelastically with
an ordinary body c.

Let d be the resulting body of the collision. To prove (b : c)k = (b : c)h, it is
enough to show in w′, that the covering lines of b, c and d according to k
are parallel to the covering lines of b, c and d according to h, respectively.
By Thm. 3 and AxSelf, assumption vk(h) = 0 ensures this in w. So we
need that vk(h) = 0 in w′ as well. But this follows from Item 1.

3.: Let w be a world in which k and h are co-moving existing inertial observers
cooordinatizing an ordinary body b moving.

By AxDir and AxCollRel, “k can measure” the mass of b directly, i.e., there
is a world w′ such that wRw′ and in w′ the stationary mass-standard
ε collides with b with a unique collision ratio r = (b : ε)k. Because r is
unique by AxDir, by using Item 2, we have:

m−k (b)
w

= (b : ε)k
w′

Item 2
↓
= (b : ε)h

w′
= m−h (b)

w

4.: Let w be a world in which k and h are co-moving observers cooordinatizing
an ordinary body b stationary.

By AxIndir and AxCollRel, k can measure the mass of b indirectly, i.e., there
is a world w′ such that wRw′ and in w′, a transmitting ordinary body c
collides with b with a collision ratio r = (b : c)k. By Item 2, r = (b : c)h
in w′ as well. By Item 3, m−k (c) = m−h (c) in w′. Since the result of the
indirect measurement is unique because of AxIndir, we have the equations

m0
k(b)w = (b : c)k · m−k (c)

w′
Item 2, 3
↓
= (b : c)h · m−h (c)

w′

= m0
h(b)

w
.

Definition 10 (Relativistic Mass). Assume AxDir and AxIndir. We define the
relativistic mass of ordinary body b according to observer k by putting defini-
tions (3) and (4) together:

mk(b)
def.
=

{
m−k (b), if vk(b) 6= 0,
m0
k(b) otherwise.

(5)
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Because we defined the mass with the ratios of collision, we have a restricted
“built-in” conservation-theorem: a restricted conservation of the centerline of
mass.

Proposition 5. Assume AxDir and AxIndir. If c is at rest according to k, and
b and c are colliding ordinary bodies, such that b is different from the mass-
standard, then the collision ratio of this collision is the ratio of their masses.

MSpecRel ∪ {AxDir,AxIndir} `

(∀k ∈ IOb)(∀b ∈ OIB−)(∀c ∈ OIB)

[
vk(c) = 0→

(
(b : c)k =

mk(b)

mk(c)

)]
Proof. By the definition of collision ratio, for all inertial observers k and inertial
bodies b and c:

(b : c)k =
1

(c : b)k
. (6)

By equation (6), we have the following chain of equations:

(b : c)k =
1

(c : b)k
=

m−k (b)

(c : b)k · m−k (b)
=

m−k (b)

m0
k(c)

=
mk(b)

mk(c)
.

So the collision ratio is determined by the masses of b and c, or in other
words, the worldline of the resulting body is the continuation of the center of
masses of the colliding bodies. So the centerline is conserved in the following
sense: the covering line of the center of masses is the same as the covering line
of the resulting body.

However, this conservation theorem is restricted: we proved only with the
premise that one of the colliding bodies is at rest according to the observer. The
more general statement, called AxCenter, in which the colliding bodies can both
be moving according to the observer is the key axiom in [4], [23], [31, §5]. It is
an interesting fact that in the modal framework we can prove the Mass Increase
Theorem even without this more general assumption.22

4.2 Equivalents of the mass-standard

We need one more tool for measurement: the experiments with mass-standard-
equivalents. These are, as their name says, introduced with the purpose to
replace or substitute the mass-standard. We need such tools usually when we
need more measuring tools than the only mass-standard, e.g., when two rela-
tively moving observers try to compare their measuring results.

22Proving that this key axiom does not follow even from our axiom system MSpecRelDyn
(see below on p.27) is out of the scope of this paper, since it involves an even more complicated
model construction than what is outlined in Appendix 5.3. Nevertheless, the key idea is that
if we have three worlds w, w1 and w2 such that wRw1 and wRw2, then our only axioms that
are capable of harmonizing the collisions in w1 and w2 are AxDir, AxIndir and AxPDirComp
(for the latter see the next section). However, if none of the colliding bodies are co-moving
with an observer (to use AxIndir and AxPDirComp) or identical with the mass-standard (to
use AxDir), then our axioms say nothing about the collisions in w1 and w2. This fact can be
used to construct an appropriate model because AxCenter claims that if we have a collision in
w, then the measurements in w1 and w2 are determined by w.
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We have two main expectations about mass-standard-equivalents: they should
be able to substitute the mass-standard ε in an equivalent way, and they should
have the rest masses 1. Either property could be a good definition, but we start
from a more basic level. We define mass-standard-equivalents by the follow-
ing expectation: if a mass-standard-equivalent (whatever it is) collides with the
mass-standard itself, then the resulting body should be stationary according to
any median observer according to who these two bodies have opposite velocities.

Definition 11 (Median Observer). An inertial observer m is median of the
collision consisting body b and c iff the velocity of b is the opposite of that of c
according to m:

MedianObb,c(m)
def.⇐⇒ inecoll(b, c) ∧ v̄m(b) + v̄m(c) = 0̄.

Definition 12 (Symmetric Collision). A collision is called symmetric iff there
is a median observer of it coordinatizing the resulting body at rest:

SymColl(b, c)
def.⇐⇒ (∃m ∈ MedianObb,c) (b : c)m = 1.

Definition 13 (Mass-standard-equivalents). A body b is an equivalent of the
mass-standard of k iff b is co-moving with k, different from the mass-standard,
and whenever it collides with the mass-standard, it collides with it symmetri-
cally.

Etk(b)
def.⇐⇒ OIB−(b) ∧ vk(b) = 0 ∧�(inecoll(b, ε)→ SymColl(b, ε))

Theorem 6 (Symmetric Collision Theorem). Symmetric collisions have the
collision ratio of

√
1− v2 according to the co-moving observer of one of the

colliding bodies, where v is the speed of the other body.

MSpecRel ` (∀b, c ∈ OIB)(∀k, h ∈ IOb)
(

[SymColl(b, c)∧

∧ vk(b) = 0 ∧ vh(c) = 0]→ (b : c)k =

√
1− vh(k)

2
)

For the proof of this theorem, see Appendix 5.2.

Proposition 7 (Relativistic mass of moving equivalents). Assume AxDir and
AxCollRel. Every observer k measures every relatively moving h observer’s equiv-
alent(s) to be 1√

1−vk(eh)2
.

MSpecRel ∪ {AxDir,AxCollRel} ` (∀k, h ∈ IOb)

vk(h) 6= 0→ (∀eh ∈ Eth) mk(eh) =
1√

1− vk(h)
2

Proof. Let w be a world in which there are two observers k and h and a mass-
standard-equivalent eh of h such that vk(h) 6= 0. Since eh is stationary for h
by definition, it moves for k. Therefore, by AxDir, there is a possible world w′

where eh collides with the mass-standard ε stationary for k. Since eh exists in
both worlds and collides in w′, Item 1 of Prop. 4 ensures that the speed vk(h)
is the same in w and w′. Since eh is an equivalent of the mass-standard, i.e.,
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it collides symmetrically with the mass-standard, we know from the theorem of
symmetric collisions (Thm. 6) that in this world the collision ratio according to
k is

(ε : eh)k =

√
1− vk(h)

2

(6)
↓⇐⇒ (eh : ε)k =

1√
1− vk(h)

2
.

This is exactly the definition of the relativistic mass of eh in w.

To prove the substitutivity of the mass-standard, and that the equivalents’
rest masses are 1 we use the following assumption:

Axiom 11 (Axiom of Symmetry of Equivalents).

AxEqSym The equivalents of the mass-standard collide symmetrically with

each other if there is a median observer of the collision:

(∀k, l ∈ IOb)(∀ek ∈ Etk)(∀el ∈ Etl)

(∃m)MedianObek,el(m)→ SymColl(ek, el).

Furthermore, we postulate a thought experimentation axiom very similar
to the axiom of direct measurements AxDir. The axiom of pseudo-direct mea-
surement with comparison enables us to collide bodies with equivalents of the
mass-standard (instead of the mass-standard, as AxDir does) in a way we can
compare them with a median observer. This axiom comes handy, when we
should collide “the mass-standard with itself.”

Axiom 12 (Pseudo-Direct Experimentation with Comparison).

AxPDirComp According to any observer, every ordinary body can collide with

one of the observer’s mass-standard-equivalents. Moreover, if the body which
is going to be collided is a mass-standard-equivalent as well, then a median
observer stands ready to compare them:

(∀k ∈ IOb)(∀b ∈ OIB)♦(∃ek ∈ Etk)
[
inecoll(b, ek)∧

∧
(
(∃l)Etl(b)→ (∃m)MedianObb,ek(m)

)]
.

Now we can introduce axiom system MSpecRelDyn, which implies the Mass
Increase Theorem.

MSpecRelDyn
def.
=

MSpecRel ∪ {AxCollRel,AxDir,AxIndir,AxPDirComp,AxEqSym}

MSpecRelDyn is consistent. For more details and some observations about the
independence of the axioms, see Appendix 5.3.

Proposition 8 (Rest mass of mass-standard).

MSpecRel ∪ {AxCollRel,AxDir,AxIndir} ` m0(ε) = 1
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Proof. Let c be the body consisted in the indirect measurement measuring the
rest mass of ε. Since the collided body is the mass-standard, and the alternative
relation is reflexive, we do not have to go further than one world away:

m0(ε) = (ε : c)k · (c : ε)k

(6)
↓
= 1

In special relativity, we are mostly interested in those situations, where there
are at least two relatively moving observers. So from now on, we will refer to
this assumption as ∃2IOb:

∃2IOb def.⇐⇒ (∃k, h ∈ IOb)vk(h) 6= 0.

Proposition 9 (Rest mass of equivalents). The rest masses of equivalents of
the mass-standard are 1 if there are two relatively moving inertial observers.

MSpecRelDyn ` ∃2IOb→ (∀k ∈ IOb)(∀ek ∈ Etk) m0(ek) = 1

Proof. By AxIndir and AxCollRel, the rest mass is well defined for every equiv-
alent ek of k. We determine the rest mass using a relatively moving observer’s
equivalent:

m0(ek) = m0
k(ek) = (ek : eh)k · m−k (eh).

By AxEqSym and therefore the theorem of symmetric collisions (Thm. 6) and
its corollary (Prop. 7), this is

x m0(ek) =

√
1− vk(h)

2 · 1√
1− vk(h)

2
= 1.

Now we prove that the equivalents of the mass-standard are also equiva-
lent in a formal sense: the mass-standard can be substituted by its co-moving
equivalents.

Proposition 10 (Mass-standard-equivalence). The mass-standard can be re-
placed by its co-moving equivalents if there are two relatively moving inertial
observer.

MSpecRelDyn ` ∃2IOb→ (∀k ∈ IOb)(∀ek ∈ Etk)(∀b ∈ OIB−)

v̄k(ek) = v̄k(ε)→ (b : ek)k = mk(b).

Proof. From Prop. 9, we know that the equivalents have exactly the same rest
mass as the mass-standard. From Prop. 5, we also know that the mass of these
bodies (since ek is at rest for k) determines the collision ratio. So the collision
ratios (b : ek)k and (b : ε)k cannot be different if the mass-standard is at rest.
The latter is the definition of mk(b).
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4.3 Mass Increase Theorem

Theorem 11 (Mass Increase Theorem).

MSpecRelDyn ` (∀k ∈ IOb)(∀b ∈ OIB−) m0(b) =

√
1− vk(b)

2 · mk(b)

Proof. If b is at rest according to k, then the statement is true by Def. 10. So
let us assume that b is moving according to k.

By AxIndir, AxDir and the definition of mass, there is an observer h according
to whom b is at rest, and there is a “transmitting” body c such that there is an
alternative possible world w′ such that wRw′ and in w′ the following equation
is true by (4):

m0(b) = m0
h(b) = (b : c)h · mh(c).

Also by AxIndir, m0(b) is independent from the choice of the ‘transmitting’ body
c. Since k is moving in h’s coordinate system, by AxPDirComp, we can use a
mass-standard-equivalent of k for such a transmitting body c. Thus

m0(b) = (b : ek)h · mh(ek)

Prop. 7
↓
= (b : ek)h ·

1√
1− vk(h)

2
,

since vk(h) = vh(k). By vh(b) = 0, we have vk(b) = vk(h) and

m0(b) = (b : ek)h ·
1√

1− vk(b)
2
. (7)

To obtain the theorem from (7), we have to show that

(b : ek)h = (b : ek)k ·
(

1− vk(b)
2
)
.

Let us now consider k’s coordinate system on Fig. 9. Let O be the coordinate
point of the collision, and let A be a coordinate point on the very same spatial
location but ‘one second earlier,’ i.e., As = Os and At = Ot − 1 (so A is on
εk’s covering line). Let B the coordinate point on b’s covering line which is
simultaneous to A according to k, i.e., Bt = At. Then |BA| = Space(B,A) =
vh(b) since Time(O,A) = 1.

Let Ek be the coordinate point from the covering line of ek which is ‘simul-
taneous’ for h, i.e., wkh(Ek)t = wkh(B)t. Then triangles AOB and AEkB are
similar, since AOB∠ = ABEk∠ and BAO∠ = BAEk∠ by Thm. 3. Therefore,

|AEk|
|AB|

=
|AB|
|AO|

, that is,
|AEk|
vk(b)

=
vk(b)

1
.

Hence
|AEk| = vk(b)2 and |OEk| = 1− vk(b)2. (8)

Let Ch be the intersection of BEk and the covering line of the resulting
body, and Ck be the intersection of AB line of the resulting body. Then, by the
definition of collision ratio, see Def. 7,

(b : ek)k = |CkA|
|BCk| , that is, |CkA| = (b : ek)k · |BCk|, (9)
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Figure 9: Proof of Thm. 11: Transformation of the Collision Ratio
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Since wkh is an affine transformation by Thm. 3, it preserves ratios of Euclidean
distances between points on a line. Therefore,

(b : ek)h = |ChEk|
|BCh| , that is, |ChEk| = (b : ek)h · |BCh|. (10)

Let C be the coordinate point from the covering line of the resulting body
which is simultaneous for k with Ek.

Triangles AOCk and EkOC are similar, and the ratio of the similarity is
1− vk(b)2 by (8). Therefore, using (9), we have

|CEk| = |CkA| ·
(
1− vk(b)2

)
= (b : ek)k · |BCk| ·

(
1− vk(b)2

)
. (11)

Now triangles ChEkC and ChBCk are also similar; therefore,

|BCk|
|BCh|

=
|CEk|
|ChEk|

. (12)

Using (10) and (11) we can write the equation (12) in the following form:

|BCk|
|BCh|

=
(b : ek)k · |BCk| ·

(
1− vk(b)2

)
(b : ek)h · |BCh|

,

which simplifies to

(b : ek)h = (b : ek)k ·
(

1− vk(b)
2
)
. (13)
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By (13), we can change observer h to k in (7):

m0(b) = (b : ek)k ·
(

1− vk(b)
2
)
· 1√

1− vk(b)
2

= (b : ek)k ·
√

1− vk(b)
2
.

To turn (b : ek)k into mass, we only have to replace tandard-mass-equivalent ek
to the real mass-standard ε. Prop. 10 enables this step, so in w′ we have

m0(b) = mk(b) ·
√

1− vk(b)
2
.

And since this is an equation of two numbers, by AxMFrame (the invariance of
mathematics), this equation holds also in the starting point w.

5 Appendix

5.1 Poincaré Transformation Theorem

Theorem 12.
MSpecRel ` (∀k, h ∈ IOb) “wkh is a Poincaré transformation.”

To prove that wkh is a Poincaré transformation, it is enough to show that
it takes lines of slope 1 to lines of slope 1, since there is an Alexandrov-Zeeman
type theorem which works only with these premises, see [24]. To prove this
lemma, let us introduce the following notation for the speed corresponding to
coordinate points x̄ and ȳ:

v(x̄, ȳ)
def.
=

Space(x̄, ȳ)

Time(x̄, ȳ)
.

Lemma 13 (Light-line). Assume MSpecRel. Then every worldview transfor-
mation is a bijection taking lines of slope 1 to lines of slope 1.

Proof. Worldview transformations are bijections by Prop. 2.
Now we prove that worldview transformations take lines of slope 1 to lines

of slope 1. By AxEField, v(x̄, ȳ) = v(ȳ, z̄) = v(z̄, x̄) = 1 implies that x̄, ȳ and z̄
are collinear. Therefore, to finish our proof, it is enough to derive the following
formula:

(∀k, h ∈ IOb)(∀x̄, ȳ)[v(x̄, ȳ) = 1→ v(wkh(x̄),wkh(ȳ)) = 1]. (14)

Let k and h be arbitrary observers in a world w, and let x̄ and ȳ be coor-
dinate points such that v(x̄, ȳ) = 1. By AxPhExp, in every w world, there
is an accessible world w′ such that wRw′ and in w′ there is a light signal
p ∈ evk(x̄) ∩ evk(ȳ) in w′. By AxMFrame, k still exists as an observer in w′. So
p ∈ evk(wkh(x̄)) ∩ evk(wkh(ȳ)) by AxMEv. Consequently, by AxPhObs:

v(wkh(x̄),wkh(ȳ)) = 1;

and this is what we wanted to prove.

31



Figure 10: The Symmetric Collision Theorem
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5.2 Proof of Symmetric Collision Theorem

Here we are going to prove Thm. 6 stating that:

Theorem 14.

MSpecRel ` (∀b, c ∈ OIB)(∀k, h ∈ IOb)
(

SymColl(b, c)∧

∧ vk(b) = 0 ∧ vh(c) = 0→ (b : c)k =

√
1− vk(h)

2
)
.

Proof. Let k and h be observers and let b and c be ordinary bodies in a world
w such that vk(b) = 0, vh(c) = 0 and SymColl(b, c) holds for them. Since
SymColl(b, c) holds, there is an observer m (the so-called median observer) in
w such that v̄m(b) + v̄m(c) = 0̄ and (b : c)m = 1. See Fig. 10.

The time dilation effect, i.e.,

(∀k, h ∈ IOb)(∀x̄, ȳ ∈ wlinek(h)) Time(x̄, ȳ) =
Time(wkh(x̄),wkh(ȳ))√

1− vk(h)2
, (15)

is a consequence of Thm. 3, see [3, Thm. 2.4, (2)]:
We know from (15) that if the clocks of k and h show 0 at A, and the clock

of h shows −1 at C, then the clock of k shows −
√

1− v2 where v is vh(k).
We are interested in (c : b)h, which is now:

(c : b)h =
BD

DC
. (16)

Since worldview transformation are affine transformations, this ratio is the same
in the worldview of the median observer m, i.e.,

BD

DC
=
B′D′

D′C ′
. (17)
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Since the worldline of d is an angle bisector of the triangle A′B′C ′ in the world-
view of m, by the angle bisector theorem,

B′D′

D′C ′
=
B′A′

A′C ′
. (18)

Since the clocks of k and h slow down with the same rate for the median observer
m, we know that

B′A′

A′C ′
=
√

1− v2. (19)

Since the collision was symmetric, (b : c)k = (c : b)h. Therefore, from (16), (17),
(18) and (19) we have

(c : b)k =
√

1− v2,

and this is what we wanted to prove.

5.3 Consistency and Independence

To prove the consistency of MSpecRelDyn, it is enough to construct a model for
it. It is easy to construct a model of MSpecRelDyn – if we choose IObM and
WM to be empty, then almost all axioms will be satisfied, since all of them has
the form “(∀k ∈ IOb) . . . ”. The only exception is AxMFrame, since this requires
the reflexivity of the alternative relation, the rigidity of mathematics, etc., but
it is easy to satisfy these statements by choosing the set of possible worlds to
be a singleton {w} such that wRw.

However, we would not only like to prove that that MSpecRelDyn is consis-
tent but also that it has some complex models, models where there are several
observers moving relative to one another and measuring ordinary inertial bod-
ies, e.g., where we see something similar to what we had in mind during the
proofs of Section 4. This type of model construction is too complex to be in-
cluded in detail in this paper. However, in this section, we give a sketch of such
a construction.

The main difficulty in the construction of such a model is the following: If
two ordinary bodies, say b and c collide, then every observer has to measure the
two bodies and the resulting body b c directly, pseudo-directly or indirectly.
There are plenty of other measurements we have to include because, for example,
in the successor world, where the pseudo-direct measurement of b is done by ek,
there will be an ordinary body b ek, which again, has to be measured directly,
pseudo-directly, indirectly, and so on and so forth. So building any model M in
which MSpecRelDyn is true (i.e., true in every world of M), and in which ∃2IOb
and (∃b)OIB(b) is satisfied (i.e., true in some world of M) involves an infinite
process of measuring.

Another difficulty is that by ∃2IOb two observers sooner or later will compare
their equivalents by AxPDirComp, which postulates the existence of a median-
observer as well. So the cardinality of observers cannot be 2 or any finite
number.

From now on, to describe a complex model M, we take the perspective of
an observer M . To guarantee the truth of ∃2IOb and the existence of medians
(needed for AxPDirComp), we include infinitely many23 observers to meet with

23We take infinite number of observers only to simplify the construction. It is also possible
to construct a model where there are only finitely many observers in every world.
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Figure 11: A part of the model: measurements concerning two equivalents a
and b of observers A, B having opposite velocity according to M
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M in its origin in all worlds (where M exists) such that for every possible ve-
locity in the interval [−0.5, 0.5], there will be an observer in the tx-plane having
that velocity. There will be a set of possible worlds, S0, where these observers
compare their mass-standard-equivalents and measure the other’s equivalent di-
rectly in the origin at time 0 according to M . Every such comparison and
direct measurement will result a body, which again has to be measured; these
measurements will happen 1 second later according to M , and these worlds will
constitute the set S1 . Note that mass-standard-equivalents of S1 have different
worldlines than they had in S0 since their worldlines end at the time 1 instead
of 0. So there will be a set Set1 very similar to S0, where the observers compare
their mass-standard-equivalents 1 second later. The construction continues in
the same way with S2 , Set2 , S3 , Set3 . . . into infinity. A part of that model,
measurements concerning two equivalents a and b of observers A, B having op-
posite velocity according M , is illustrated on Fig. 11. This figure shows also
how are the indirect measurements fulfilled in that model: a b is measured in
the central world of the figure indirectly through worlds having the resulting
body a a b and a e (the latter is from Set1 ).

This construction will satisfy all the axioms of MSpecRelDyn except the light
signal-sending axiom AxPhExp. To make this axiom true in every world of our
model, it is enough to extend this construction with only one world, say ph,
which is an alternative of every world of the model, and which realizes every
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possible photon needed by any world.24 This means that ph will be a classical
model of SpecRel. For such a construction, see [3, Corollary 11.12, especially
pp. 643–644.].

This construction can be carried out even in a way such that the conservation
of mass and linear moment fails in the resulting model. This construction shows
that the Mass Increase Theorem can be proved without the usual conservation
postulates, which is a result similar to that of [4].25 However, MSpecRelDyn has
models (different from the above construction) where even the key axiom of [4],
AxCenter, the conservation of centerline of mass, is refutable.26

Independence. This model M can easily be modified to show the indepen-
dence of several axioms of MSpecRelDyn. For example, if we remove a pair
of worlds 〈w,w′〉 from the alternative relation where w′ is a world where the
mass-standard exists, then we can falsify AxDir while the other axioms remain
true, i.e., AxDir is independent from the rest axioms of MSpecRelDyn. If we do
the same with a w′ where instead of the mass-standard, one of its equivalents
exists, we have the independence of AxPDirComp. To show that AxCollRel is
independent, it is enough to copy an arbitrary world of M which sees the same
alternatives, but which is seen by no one. If, in this copied world, we alter the
speed of one body, we can violate AxCollRel while the other axioms remain true.

The independence of AxIndir from the rest of the axioms of MSpecRelDyn
can be showed by a one-world model where there is only one observer and only
one resting ordinary inertial body resting to that observer. However, in the
light of our motivation of M, it is worth to examine the independence of AxIndir
in the axiom system MSpecRelDyn ∪ {∃2IOb} as well. The existence of indirect
measurements is a consequence of MSpecRelDyn ∪ {∃2IOb}, the idea is used in
the proof of the Mass Increase Theorem (Thm. 11). However, the independence
of the uniqueness of the results of indirect measurements is a question for further
research. Our conjecture is that it is independent.

It is also a question for further research whether the last axiom of MSpec-
RelDyn, AxEqSym is independent from the rest of MSpecRelDyn or not; our
conjecture is that it is. However, a model which would be capable of showing
this must be entirely different from the above outlined M.27

6 Concluding Remarks

We have seen that the act of thought experimentation is a formalizable notion.
The formal counterparts of thought experiments are model transformations of
classical models. Modal logic express a large amount of these transformations.
If we stay at the level of first-order logic, we still have a strong completeness
theorem which is essential in foundational axiomatic approaches. With the aid

24Again, at the cost of simplicity, it is possible to construct a model where there are only
finitely many photons in every world.

25The key idea here is that we can adjust the worldlines in all worlds in a way that all
collisions of the model became symmetric. This causes that all body became an mass-standard-
equivalent in the model, even the results of the collision of mass-standard-equivalents, which
is a violation of the law of the conservation of mass.

26For the key idea, see footnote 22.
27We suspect that the underlying directed graph drawn by the alternative relation of a

model capable of showing the independence of AxEqSym must be very close to a tree.
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of first-order modal logic, we axiomatized relativistic Kinematics and Dynamics
with formal thought experiments.

An advantage of this approach is that we can distinguish between actual
and theoretical (or possible) objects. The philosophical importance of this is
that the ontological statuses of actual and potential objects are clearly differ-
ent. Theoretical objects are just non-existing objects that we need to prove
our statements. For example, the possible photons postulated by AxPhExp are
needed to prove that the worldview transformations are Poincaré transforma-
tions. The transmitting bodies of AxIndir, the mass-standard and its equivalents
of AxDir and AxPDirComp, respectively, are needed to give a well-defined con-
cept of relativistic mass based on only kinematical terms.

Using this definition and AxEqSym, we proved the Mass Increase Formula
without using the conservation postulates about linear momentum, mass, or
even the centerline of relativistic mass (the key axiom of [4]). This result sug-
gests that the presence of formal thought experiments make it possible to ‘dig
deeper’ in the foundations of relativity theories.
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