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A WALSH-FOURIER APPROACH TO THE

CIRCULANT HADAMARD CONJECTURE

M. MATOLCSI

Abstract. We describe an approach to the circulant Hadamard
conjecture based on Walsh-Fourier analysis. We show that the
existence of a circulant Hadamard matrix of order n is equivalent
to the existence of a non-trivial solution of a certain homogenous
linear system of equations. Based on this system, a possible way
of proving the conjecture is proposed.

1. introduction

A real Hadamard matrix is a square matrix with ±1 entries such that
the rows (and thus columns) are pairwise orthogonal. A circulant (or
cyclic) matrix C is a square matrix which is generated by the cyclic
permutations of a row vector, i.e. there exists a vector x = (x1, . . . xn)
such that ci,j = xj−i+1 for 1 ≤ i, j ≤ n (the difference being reduced
mod n to the set {1, . . . , n}; we prefer to use the indices 1, . . . , n rather
than 0, . . . , n− 1).

It is trivial to check that the 4×4 circulant matrix generated by the
row vector (−1, 1, 1, 1) is Hadamard. However, no circulant Hadamard
matrix of order larger than 4 is known. The following famous conjecture
was made by Ryser [4], more than 50 years ago :

Conjecture 1.1. (Circulant Hadamard conjecture) For n > 4 there
exists no n× n circulant real Hadamard matrix.

The first significant result concerning this conjecture was made by
R. J. Turyn [7] using arguments from algebraic number theory. He
proved that if a circulant Hadamard matrix of order n exists then n
must be of the form n = 4u2 for some odd integer u which is not a
prime-power. The most powerful breakthroughs were later obtained
by the ”field descent method” of B. Schmidt [5, 6] and its extensions
by K. H. Leung and B. Schmidt [1, 2]. Currently, the smallest open
case is n = 4u2 with u = 11715, and there are less than 1000 remaining
open cases in range u ≤ 1013.
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In this note we offer a more elementary approach to the circulant
Hadamard conjecture, based on Walsh-Fourier analysis.

2. A Walsh-Fourier approach

The approach described in this note is inspired by the results of [3],
where a Fourier analytic approach to the problem of mutually unbi-
ased bases (MUBs) was presented. The basic idea is that the Fourier
transform is capable of turning non-linear conditions into linear ones.

We briefly introduce the necessary notions and notations here. Let
Z2 denote the cyclic group of order 2, and let G = Z

n
2 . An element of

G will be regarded as a column vector of length n whose entries are
±1. And vice versa, each such column vector will be regarded as an
element of G. Accordingly, an n × n matrix A containing ±1 entries
will be regarded as an n-element subset of G, the columns of A being
the elements. We will use (Walsh)-Fourier analysis on G. Let Ĝ denote

the dual group. Then Ĝ is isomorphic to Z
n
2 and an element γ of Ĝ will

be identified with a row vector containing 0-1 entries. The action of
a character γ = (γ1, . . . γn) ∈ Ĝ on an element x = (x1, . . . xn) ∈ G is

defined as γ(x) = xγ = xγ1
1 . . . xγn

n . We will also use the notation Ĝ0 for

the subgroup of elements γ ∈ Ĝ such that γ1 + γ2 + · · ·+ γn ≡ 0 (mod
2).

Let A be any n× n matrix containing ±1 entries, and let a1, . . . , an

denote the columns of A. The Fourier transform of (the indicator

function of) A will be defined as Â(γ) =
∑n

j=1 γ(aj) =
∑n

j=1 a
γ
j . This

is our main object of study. Notice here that

(1) |Â(γ)|2 =
n
∑

j,k=1

(aj/ak)
γ,

where the quotient aj/ak is understood coordinate-wise, i.e. a/b =
(a1/b1, . . . , an/bn). (As long as we work with ±1 entries the operation
division can be replaced by multiplication, but we prefer to use division
in the notation because it can also be used in the more general context
of complex Hadamard matrices.)

To illustrate the use of the Fourier transform Â(γ), let me include
here a neat proof of the fact that an n× n Hadamard matrix can only
exist if 4 divides n. There is an easy combinatorial proof of this fact,
but i believe that the Fourier proof is the ”book proof”.
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Proposition 2.1. If an n × n real Hadamard matrix exists, then 4
divides n, or n = 1, 2.

Proof. Let H be an n×n real Hadamard matrix. If n > 1 then n must
clearly be even. Assume 2|n, but n is not divisible by 4.

As described above, the columns h1, . . .hn of H can be regarded as
elements of G = Z

n
2 and for any 0 − 1 vector γ ∈ Ĝ we have Ĥ(γ) =

∑n
j=1 h

γ
j ,and

(2) |Ĥ(γ)|2 =
n
∑

j,k=1

(hj/hk)
γ.

Clearly, |Ĥ(γ)|2 ≥ 0 for all γ. However, consider the element γ =
(1, 1, . . . , 1). On the right hand side of (2) we have 1 if j = k, and −1
if j 6= k (here we use the fact that 4 does not divide n). Therefore,
the right hand side evaluates to n − n(n − 1) = −n(n − 2), which is
negative if n > 2, a contradiction. �

Let us now turn to circulant Hadamard matrices. Assume u =
(u1, . . . un) is a ±1 vector which which generates a circulant Hadamard
matrix H . Consider the function

(3) M(γ) = uγ

where γ ranges over Ĝ = Z
n
2 . Let πj ∈ Ĝ denote the element with an

entry 1 at coordinate j, and all other entries being 0.

We have the following properties of the function M :

(4) M(γ) = ±1 for all γ ∈ Z
n
2 , and M(0) = 1.

This is trivial.

For all d = 1, . . . n/2, and all γ ∈ Z
n
2 we have

(5)
∑

j−k=d(mod n)

M(γ + πj + πk) = 0.

This is a consequence of the cyclic orthogonality property:
∑n

j=1 ujuj+d =
0. Spelling it out:

∑

j−k=d(mod n)

M(γ + πj + πk) =

n
∑

j=1

uγ+πj+πj+d = uγ

n
∑

j=1

ujuj+d = 0.

The aim is to get a contradiction from the facts (4), (5) for n > 4.
If we just consider the conditions (5), and regard each M(γ) as a real
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variable then we have a homogenous system of linear equations with
2n variables and n

2
2n linear constraints. We will prove that this is an

equivalent formulation of the circulant Hadamard conjecture, i.e. the
existence of any non-trivial solution to this linear system of equations
implies the existence of a circulant Hadamard matrix of order n. We
will first need some intermediate lemmas.

Lemma 2.2. The circulant Hadamard conjecture is true for n if and
only if the n-variable equation

(6)
n−1
∑

d=1

(

n
∑

j=1

ujuj+d

)2

= 0

admits no such solution where each variable uj assumes ±1 value.

Proof. This is trivial. �

While the above lemma is trivial, it can be combined with the system
of equations (5). Let S : Ĝ0 → R denote the function defined by the
coefficients on the left-hand side of (6), i.e.

(7)
n−1
∑

d=1

(

n
∑

j=1

ujuj+d

)2

=
∑

γ

S(γ)uγ .

Similar to (5) we can now write a system of linear equations involving
S: if u generates a cyclic Hadamard matrix then M(γ) = uγ satisfies
the following equations:

(8)
∑

ρ

M(γ + ρ)S(ρ) = 0 for all γ ∈ Z
n
2 .

Lemma 2.3. There exists a ±1 vector u generating a cyclic Hadamard
matrix if and only if the homogenous system of linear equations (8)
admits a non-trivial solution M(γ).

Proof. If u generates a cyclic Hadamard matrix then M(γ) = uγ sat-
isfies (8), yielding a non-trivial solution. In the converse direction,
assume M(γ) is a non-trivial solution to (8). Notice that the left hand
side of (8) is the convolution S ∗M of the functions S and M on the

group Ĝ. This means that the convolution S ∗M ≡ 0 on Ĝ. As M is
assumed not to be identically zero, taking Fourier transform again we
conclude that Ŝ must have a zero on G. This means exactly that there
exist a solution u to the equation (6). �
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We can now prove that the linear system of equations (5) is an equiv-
alent formulation of the circulant Hadamard conjecture.

Lemma 2.4. Regard each M(γ) as a real variable, and consider the
system of linear equations determined by (5). The circulant Hadamard
conjecture is true for n if and only if this system of equations has full
rank, i.e. the only solution is M(γ) = 0 for each γ.

Proof. One direction is trivial: if u generates a circulant Hadamard
matrix then M(γ) = uγ is a non-trivial solution to (5).

Conversely, if there exists a non-trivial solution M(γ) of (5) then
M is a fortiori a solution of (8), and therefore a circulant Hadamard
matrix exists by Lemma 2.3. �

While all the results above are fairly trivial, they do have some philo-
sophical advantages. First, we can rest assured that Ryser’s circulant
Hadamard conjecture can be proved or disproved in this manner – we
have not lost any information by setting up the system (5). Second,
the circulant Hadamard conjecture is a non-existence conjecture, which
can now be transformed to an existence result (i.e. it is enough to ex-
hibit a witness which proves the non-existence of circulant Hadamard
matrices):

Corollary 2.5. The circulant Hadmard conjecture is true for n if and
only if there exists real weights cγ,d such that

(9)
∑

γ,d

cγ,d





∑

j−k=d(mod n)

M(γ + πj + πk)



 = M(0)

Proof. If such weights exist, then (5) cannot admit a solution in which
M(0) = 1, and hence there cannot exist a circulant Hadamard matrix
of order n. Conversely, if such weights do not exist then the linear
system (5) does not have full rank, so a circulant Hadamard matrix of
order n exists by Lemma 2.4. �

Therefore we are left with the ”simple” task of exhibiting a witness (a
set of weights cγ,d) for each n. It is possible to obtain such witnesses by
computer for small values of n, i.e. n = 8, 12, 16, 20, 24. The problem
is that there are always an infinite number of witnesses (a whole affine
subspace of them with large dimension), and one should somehow select
the ”nicest” one, which could be generalized for any n.

It is natural to exploit the invariance properties of the problem as
follows. If M(γ) is a non-trivial solution to (5) then so is Mπ(γ) =
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M(π(γ)) where π is any cyclic permutation of the coordinates. We can

therefore define equivalence classes in Ĝ, regarding γ1 and γ2 equivalent
if they are cyclic permutations of each other. After averaging we can
then assume that the required weights cγ,d are constant on equivalence
classes. Furthermore, if 1 ≤ k ≤ n−1 is relatively prime to n then mul-
tiplication by k defines an automorphism of the cyclic group Zn. We can
regard γ1 and γ2 equivalent if a coordinate transformation correspond-
ing to multiplication by some k transforms one to the other. Similarly,
we can regard d1 and d2 equivalent if GCD(d1, n)=GCD(d2, n). After
averaging again, we can assume that the required witness weights cγ,d
depend only on the equivalence class of γ and that of d. However, such
restrictions still do not determine the weights cγ,d uniquely, and still
the witnesses form an affine subspace of large dimension.

It is also easy to see that we may restrict our attention without loss
of generality to the subgroup Ĝ0 = {γ ∈ Ĝ :

∑n
j=1 γj ≡ 0 (mod 2)},

because all the terms on the left hand side of (5) stay in Ĝ0 if γ ∈ Ĝ0.
We will call

∑n
j=1 γj the weight of γ, and denote it by |γ|.

In the last section of this note we will consider symmetric polynomials
of the variables uj, i.e. expressions of the form

(10)

n
∑

2|w=0

∑

|γ|=w

dwM(γ).

That is, only γ ∈ Ĝ0 are considered in the sum, and the coefficient of
M(γ) depends on the weight of γ only. It is trivial to see that such
expressions form a vector space of dimension n

2
+ 1, a natural basis of

which is given by the single-weight expressions

(11)
∑

|γ|=w

M(γ), w = 0, 2, 4, . . . n.

One way to generate an expression of the form (10) using the equations
(5) is the following:

(12)
∑

|γ|=w

n/2
∑

d=1

∑

j−k=d(mod n)

M(γ + πj + πk), w = 0, 2, 4, . . . n.

Lemma 2.6. If 4 divides n then the dimension of the subspace spanned
by the expressions (12) in the vector space of the expressions of the form
(10) is n

2
+ 1 if n 6= 4u2, while it is n

2
if n = 4u2.



A WALSH-FOURIER APPROACH TO CIRCULANT HADAMARDS 7

Proof. It is easy to see that for any w the left hand side of the expression
(12) will contain variables M(γ) where the weight |γ| is w − 2, w or
w+2. It is therefore easy to express (12) in the basis (11) explicitly, as
a vector of length n

2
+ 1 with only 3 non-zero coordinates. This leads

to a tri-diagonal matrix whose rank is n
2
+ 1 if n 6= 4u2, while it is n

2
if

n = 4u2. The explicit calculations are left to the reader. �

This lemma leads to the following well-known corollary:

Lemma 2.7. If there exists a cyclic Hadamard matrix of order n then
n must be an even square number, n = 4u2.

Proof. By Proposition 2.1 n must be divisible by 4. By Lemma 2.6 we
see that the expressions (12) generate the whole space of symmetric
polynomials given by (10). In particular, the single variable M(0) is
in this subspace, so we conclude that there exists an expansion of the
form

(13)
∑

|γ|=w

cw

n/2
∑

d=1

∑

j−k=d(mod n)

M(γ + πj + πk) = M(0),

which is a special case of (9). �

One might object that this is a very difficult way of proving a very
easy statement. However, it does have some advantages. First, it
rhymes very well with (9) and the strategy described in the paragraphs
after Lemma 2.5. Namely, put the γ’s and the d’s into some equivalence
classes and look for a solution to (9) such that the coefficients depend
only on the equivalence classes. Second, it ”nearly” works even if n
is a square: the span of the expressions (12) has dimension n

2
. One

could therefore hope for the following strategy to work. Let us call a
linear combination on the left hand side of (13) ”trivial”. If we could
find a non-trivial linear combination (9) such that the result is of the
form (10), then it is ”very likely” that the dimension of the span would
increase to n

2
+1, which would complete the proof of the general case. It

is not at all clear whether such ”magic” non-trivial linear combination
is easy to find for general n, but it is not out of the question.
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