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THE TOPOLOGY OF STEIN FILLABLE MANIFOLDS IN HIGH

DIMENSIONS II.

JONATHAN BOWDEN, DIARMUID CROWLEY,
AND ANDRÁS I. STIPSICZ, WITH AN APPENDIX BY BERND C. KELLNER

Abstract. We continue our study of contact structures on manifolds of dimension at least
five using surgery theoretic methods. Particular applications include the existence of ‘max-
imal’ almost contact manifolds with respect to the Stein cobordism relation as well as the
existence of weakly fillable contact structures on the product M × S2. We also study the
connection between Stein fillability and connected sums: we give examples of almost contact
manifolds for which the connected sum is Stein fillable, while the components are not.

Concerning obstructions to Stein fillability, we show for all k > 1 that there are almost
contact structures on the (8k−1)-sphere which are not Stein fillable. This implies the same
result for all highly connected (8k−1)-manifolds which admit almost contact structures.
The proofs rely on a new number theoretic result about Bernoulli numbers.

1. Introduction

One of the driving questions in contact topology was to determine which smooth closed
oriented manifolds M of dimension 2q+1 admit a contact structure, where a (coorientable)
contact structure is a codimension-1 distribution ξ that is defined as the kernel of a 1-form
λ ∈ Ω1(M) with the property that λ ∧ (dλ)q is a positive volume form. Since a contact
structure splits the tangent bundle of the (2q+1)-manifold M as the direct sum of a trivial
real line bundle and a complex q-dimensional subbundle, we need to assume that the manifold
in question is already equipped with such a splitting, called an almost contact structure. The
general existence question for almost contact manifolds was recently answered by Borman-
Eliashberg-Murphy:

Theorem 1.1 ([BEM]). Suppose that (M,ϕ) is a closed oriented (2q+1)-dimensional almost
contact manifold. Then there is a contact structure on M homotopic to the given almost
contact structure. �

Indeed, the construction of [BEM] provides a contact structure which contains an over-
twisted disk (cf. [BEM, Section 2.5]), so in particular it is not symplectically fillable in any
sense. (For various notions of symplectic fillability, see Section 2.1 and [MNW].) For this
reason, constructions of fillable structures, and obstructions for their existence seem essen-
tial in an effort to understand all contact structures (up to contactomorphism or contact
isotopy) on a given almost contact (2q+1)-manifold. Such complete classifications are avail-
able for some classes of 3-dimensional manifolds, although the complete picture is still to be
discovered even in that dimension.

The strongest fillability notion is provided by Stein fillability. Recall that a compact
complex manifold W is a Stein domain if it admits a strictly plurisubharmonic function
for which the boundary is a regular level set. According to Eliashberg’s characterization, a
2n-manifold with n ≥ 3 admits a Stein structure if and only if it admits an almost complex
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structure and a handle decomposition with handles of index at most n [CE, E2]. A Stein
structure on W naturally induces a contact structure on M = ∂W , and contact structures
presentable in this way are called Stein fillable. Using the above topological characterization
of Stein domains, modified surgery theory can be fruitfully applied in studying Stein fillability
as in [BCS2].

This topological characterization of Stein domains easily generalizes to cobordisms, pro-
viding the relation of topological Stein cobordism for almost contact manifolds: Two almost
contact manifolds (M0, ϕ0) and (M1, ϕ1) are in this relation if there is an almost complex
cobordism between them that is compatible with ϕ0 and ϕ1 on the two ends, and admits a
relative handle decomposition with handles of index at most half the dimension when built
on M0 × [0, 1]. For convenience we write (M0, ϕ0) ≺ (M1, ϕ1) in this case. (Notice that this
relation is not symmetric.)

A surprising application of the surgery theoretic approach to existence problems in contact
topology provides the following result about topological Stein cobordisms. (For a more
precise statement, see Proposition 3.1.)

Theorem 1.2. For a fixed dimension 2q+1 ≥ 5 there is an almost contact (2q+1)-manifold
(Mmax, ϕmax) such that for any almost contact (2q+1)-manifold (M,ϕ) we have

(M,ϕ) ≺ (Mmax, ϕmax).

This theorem should be compared with a result of Etnyre-Honda [EH], showing that in
dimension three there are initial contact manifolds so that (Mmin, ξmin) is Stein cobordant
to any other contact manifold (M, ξ). In the case of almost contact 5-manifolds whose
almost contact structures have vanishing first Chern class, one can even take (Mmax, ϕmax) =
(S5, ϕstd) (cf. Proposition 3.4).

The notion of topological Stein cobordism introduced above allows for the following inter-
pretation of the main result of [BCS1]. Recall that according to a result of Bourgeois [Bou],
for a contact manifold (M, ξ) the product M × T 2 carries an almost contact structure ϕT

which can be represented by a contact structure ξT . By [MNW, Example 5], if (M, ξ) is
weakly fillable then so is ξT . Since the main result of [BCS1] shows that for some appropri-
ately chosen almost contact structure ϕS on M ×S2 we have (M × T 2, ϕT ) ≺ (M ×S2, ϕS),
this yields the following variant of the main result of [BCS1]:

Theorem 1.3. Suppose that a contact manifold (M, ξ) admits a weak symplectic filling
(W,ω). Then the product M × S2 admits a weakly fillable contact structure.

Remark 1.4. Note that while all our other statements are concerned with almost contact
structures on manifolds, Theorem 1.3 is about genuine contact structures.

We now move from products to connected sums. The connected sum of two 3-manifolds
is Stein fillable if and only if both 3-manifolds are Stein fillable [E1]. Recall that in higher
dimensions, the diffeomorphism types of components of a connected sum are only well-defined
up to connect summing with homotopy spheres. In contrast to dimension three, we have the
following result.

Theorem 1.5. Let M = ST ∗S2k+1 be the unit cotangent bundle of the (2k+1)-sphere. For
every odd k ≥ 5, M admits an almost contact structure ϕ such that (M,ϕ)#(−M,−ϕ) ad-
mits a Stein fillable contact structure. However, for every almost contact homotopy (4k+1)-
sphere (Σ, ϕΣ), neither (M#Σ, ϕ#ϕΣ) nor

(
−(M#Σ),−(ϕ#ϕΣ)

)
is Stein fillable.
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Dimension five appears to be intermediate between dimension three and higher dimensions,
with regard to the Stein fillability of the summands of a Stein fillable connected sum. In
dimension five, there are no exotic spheres, and if (M,ϕ) is an almost contact manifold where
M is a connected sum M = M0#M1, then (M,ϕ) = (M0, ϕ)#(M1, ϕ1) for almost contact
structures ϕi on Mi which are uniquely defined up to homotopy (see Lemma 4.7). By abuse
of notation we let c1(ϕ) : π2(M) → Z = π2(BU) denote the evaluation homomorphism given
by the first Chern class of the almost contact structure ϕ. We then have the following
analogue of Eliashberg’s theorem.

Theorem 1.6. Let (M,ϕ) = (M0#M1, ϕ0#ϕ1) be a Stein fillable almost contact 5-manifold.
Assume that either c1(ϕ) = 0 or that

c1(ϕ)(π2(M0)) = c1(ϕ)(π2(M1)) = Z = π2(BU).

Then both (M0, ϕ0) and (M1, ϕ1) are Stein fillable.

We next consider Stein fillability of almost contact structures on spheres. Let (S2q+1, ζstd)
be the standard stable almost contact structure on the (2q+1)-dimensional sphere, which
is induced by the Stein (2q+2)-disk. When 2q+1 = 8k−1, basic obstruction theory shows
that S8k−1 has two stable almost contact structures, ζstd and a non-standard or exotic stable
almost contact structure ζex. The exotic structure ζex is harder to visualize than ζstd (see
Section 5.2 for a description when k > 1). It follows from [BCS2, G1] that (S7, ζex) can be
represented by a Stein fillable contact structure. In contrast, for 8k−1 > 7 we have

Theorem 1.7. The exotic stable almost contact structure ζex on S8k−1 cannot be represented
by a Stein fillable contact structure once k ≥ 2.

Theorem 1.7 rests on Theorem 1.8 below, which improves a result of Yang [Y] about the
existence of stable almost complex structures on (4k−1)-connected 8k-manifolds. Before
stating these results we first recall some notation and terminology. Let F : BU → BSO
be the forgetful map between the classifying spaces for stable unitary and stable oriented
vector bundles. A necessary condition for an oriented manifold X to admit a stable complex
structure is that

Im(τX∗) ⊆ F∗(π4k(BU)) ⊆ π4k(BSO),

where τX∗ : π4k(X) → π4k(BSO) is induced by the classifying map of the stable tangent
bundle of X , τX : X → BSO. (Note that when k is even, π4k(BSO)/F∗(π4k(BU)) = Z/2.)
According to the following theorem, once k > 1, this necessary condition is also sufficient.

Theorem 1.8. A smooth closed oriented (4k−1)-connected 8k-manifold Y admits a stable
almost complex structure if and only if

(1) k ≥ 3 is odd, or
(2) k = 1 and the signature σY of Y is even, or
(3) k is even and Im(τY ∗) ⊆ F∗(π4k(BU)).

The improvement provided by Theorem 1.8 over Yang’s result is the removal of assump-
tions involving Bernoulli numbers. This step is made possible by a new divisibility property
of differences of reciprocals of Bernoulli numbers, which is proven in the Appendix written
by Bernd Kellner.

Computing the appropriate bordism obstruction class to Stein fillability from [BCS2],
Theorem 1.7 implies the following non-fillability result for highly connected manifolds:
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Corollary 1.9. Let M be a (4k−2)-connected (8k−1)-manifold and k ≥ 2. Suppose that
M admits an almost contact structure. Then M admits an almost contact structure which
cannot be represented by any Stein fillable contact structure.

Outline of the paper: In Section 2 we review some basic notions and recall the definition
of the obstruction class as introduced in [BCS2] associated to an almost contact manifold.
We also prove Theorems 1.3 in this section. In Section 3 we present the proof of Theorem 1.2.
Section 4 is devoted to the study of the relation between Stein fillability and connected sums,
and in particular it contains the proofs of Theorems 1.5 and 1.6. In Section 5 we examine
the Stein fillability of stable almost contact structures on (8k−1)-spheres, and in particular
prove Theorem 1.7 and Corollary 1.9. Section 5 also contains our improvement of Yang’s
result given in Theorem 1.8 about existence of stable almost complex structures on highly
connected 8k-manifolds. The Appendix contains the number theoretic result about Bernoulli
numbers needed for the proof of Theorem 1.7, and was written by Bernd Kellner.

Acknowledgements: The authors would like to thank the Max-Planck-Institute in Bonn
and the Laboratoire de Mathématiques Jean Leray in Nantes for their hospitality which
enabled parts of this work to be carried out. We would also like to thank Pieter Moree for
providing a bridge to the world of number theory and contacting Karl Dilcher and Bernd
Kellner. We are grateful to the referee for many helpful comments and suggestions. JB
was partially supported by DFG Grant BO4423/1-1. DC acknowledges the support of the
Leibniz Prize of Wolfgang Lück, granted by the Deutsche Forschungsgemeinschaft. AS was
partially supported by OTKA K100796, by the Lendület program of the Hungarian Academy
of Sciences and by ERC Advanced Grant LDTBud. The present work is part of the authors’
activities within CAST, a Research Network Program of the European Science Foundation.

2. Fillability and surgery

In their proof of the existence of contact structures on closed almost contact manifolds
[BEM], Borman-Eliashberg-Murphy produce contact structures with the additional property
that they are not fillable in any sense. For this reason we will focus on finding fillable
structures on various manifolds.

2.1. Fillable structures and Stein cobordisms. We begin by recalling the definitions of
the various standard notions of fillability of contact structures. For a more detailed account
we refer to [G3, MNW]. Recall that a symplectic manifold (W,ω) is a (2q+2)-dimensional
manifold W with a closed 2-form ω such that ωq+1 6= 0. Hence a symplectic manifold carries
a canonical orientation. Similarly, a cooriented contact structure ξ on a (2q+1)-manifold M
determines an orientation of M given by the form λ ∧ (dλ)q.

Definition 2.1. A contact manifold (M, ξ) is weakly symplectically fillable if it is the
oriented boundary of a compact symplectic manifold (W,ω) and there is an almost complex
structure J that is tamed by ω so that J(TM) ∩ TM = ξ and for a contact form λ defining
ξ we have dλ(v, Jv) > 0 (for all 0 6= v ∈ ξ).

This definition was introduced in [MNW], where it was shown to be strictly weaker than the
more standard notion of strong fillability.
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Definition 2.2. A contact manifold (M, ξ) is called strongly symplectically fillable if
it bounds a compact symplectic manifold (W,ω) and there is an outward pointing vector field
V near ∂W such that the Lie derivative satisfies LV ω = ω and λ = ιV ω is a defining 1-form
for ξ. If the symplectic form ω is also exact then we say that (M, ξ) is exactly fillable.

Note that strong fillability is equivalent to weak fillability plus the condition that the sym-
plectic form is exact near the boundary [MNW, Remark 1.11]. A further specialisation of the
fillability notion is that of Stein fillability. Recall that a Stein domain is a compact, complex
manifold (W,J) with boundary that admits a function f : W → [0, 1] so that f−1(1) = ∂W
is a regular level set and ω = −ddCf is a symplectic form (where dCf(X) = df(JX)).

Definition 2.3. A contact manifold (M, ξ) is Stein fillable if it bounds a Stein domain
(W,J) such that ξ = J(TM) ∩ TM .

These notions of fillability fit into the following sequence of inclusions of contactomorphism
classes of contact manifolds, all of which are known to be strict:

{Stein fillable} ⊂ {exactly fillable} ⊂ {strongly fillable} ⊂ {weakly fillable}.

The applicability of surgery theoretic methods in the study of fillable contact structures
is provided by the following fundamental result of Eliashberg:

Theorem 2.4 (Eliashberg’s h-principle, [CE, E2]). Let (W,J) be a compact (2q+2)-dimen-
sional almost complex manifold admitting a handle decomposition with handles of index q+1

or less, and suppose that q ≥ 2. Then J is homotopic to a complex structure J̃ so that (W, J̃)
is a Stein filling of a contact structure ξ on M = ∂W . �

The concept of Stein domains can be generalized to cobordisms as follows:

Definition 2.5. A smooth cobordism W between contact manifolds (M0, ξ0) and (M1, ξ1) is
a Stein cobordism if

• ∂W = −M0 ⊔M1;
• W admits a complex structure J and a map f : W → [0, 1] such that M0 := f−1(0)
and M1 := f−1(1) are regular level sets;

• ω = −ddCf is a symplectic form;
• ξi = J(TMi)∩ TMi, i.e. the complex structure J induces the contact structures ξi on
the ends of the cobordism. The contact manifold (M0, ξ0) is usually called the concave
end and (M1, ξ1) the convex end of the Stein cobordism (W,J).

The proof of Theorem 2.4 proceeds by inductively adding handles to the standard contact
structure on the sphere S2q+1 (which is regarded as the boundary of the standard complex
ball), and showing that the traces of these handle attachments can be endowed with the
structure of a Stein cobordism:

Theorem 2.6. Let (M2q+1, ξ) be a contact manifold of dimension 2q+1 ≥ 5. Suppose that
k ≤ q+1 and that M ′ is obtained from M via an almost complex handle attachment of index
k with trace (M × I)∪hk. Then the almost complex structure J on the trace is homotopic to

a complex structure J̃ so that ((M × I)∪ hk, J̃) is a Stein cobordism from (M, ξ) to (M ′, ξ′)
(with some contact structure ξ′ on M ′). �
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Remark 2.7. By equipping the product M0 × I with the symplectic structure given by the
symplectization ωsp(ξ0) of the contact structure ξ0 and isotoping the attaching sphere of the
handle hk to an isotropic sphere, the symplectic form ωsp(ξ0) was extended by Weinstein [We]
to the trace (M0× I)∪hk. The existence of a Stein structure on the trace (in particular, the
construction of the appropriate function f of the definition) is due to Eliashberg [CE, E2].
When the symplectic or Stein structures are implicitly assumed in our later arguments, we
will refer to such handles and handle attachments as Stein/Weinstein handles resp. handle
attachments.

In the following we would like to emphasize the topological nature of the above definitions.
To do this in the proper setting, we need to recall the definitions of almost contact and stably
complex structures and manifolds.

Suppose that M is a smooth closed oriented (2q+1)-manifold and ϕ is an almost contact
structure onM . The tangent bundle ofM is classified by the the map τ : M → BSO(2q+1),
and an almost contact structure provides a lift of this map to BU(q):

BU(q)

Fq

��

M
τ //

ϕ
99sssssssssss

BSO(2q+1),

where Fq is induced by the canonical embedding U(q) → SO(2q+1). All these maps can
be stabilized to yield maps to BSO resp. BU . For some purposes, it is helpful to formulate
results using the stable normal Gauss map ν : M → BSO rather than the tangential map
τ , and we will follow this strategy. In this setting, a map ζ : M → BU in a commutative
diagram

BU

F
��

M
ν //

ζ
;;①①①①①①①①①
BSO

describes a complex structure on the normal bundle of M . Since the sum of the stable
tangent and normal bundles is canonically trivialized, a normal complex structure determines
a unique stable complex (or stable contact) structure, and vica versa. Theorem 2.6 motivates
the following definition:

Definition 2.8. A stably almost contact (2q+1)-manifold (M0, ζ0) is topologically Stein

cobordant to (M1, ζ1) if there is a stably complex cobordism (W, ζ) such that

∂(W, ζ) = −(M0, ζ0) ⊔ (M1, ζ1)

as stably complex manifolds and W is built from M0 × [0, 1] by attaching handles of index
≤ q+1. In this case we write

(M0, ζ0) ≺ (M1, ζ1),

and call (W, ζ) a topological Stein cobordism.

Note that according to [BCS2, Lemma 3.6] the Stein cobordism relation is the same if
we consider almost complex cobordisms or stably complex ones. This follows from the fact
that every almost complex structure in a given stable class can be realized by taking the
connected sum with various Stein fillable almost contact structures on the standard sphere.
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Hence we can also consider the Stein cobordism relation given by a true almost complex
bordism (W,J) between almost contact manifolds (M0, ϕ0) and (M1, ϕ1). In short, if ϕi

generates the stable complex structure ζi, then

(1) (M0, ϕ0) ≺ (M1, ϕ1) ⇐⇒ (M0, ζ0) ≺ (M1, ζ1).

If, in addition, an almost contact structure ϕ0 on M0 is represented by a contact structure,
then repeated application of Theorem 2.6 shows that J can be homotoped to a Stein structure
on the cobordism W .

A Stein cobordism from (M0, ξ0) to (M1, ξ1) can be glued to a Stein filling of (M0, ξ0),
providing a Stein filling of (M1, ξ1). Attaching Stein/Weinstein handles preserves strong
fillability, hence gluing a Stein cobordism to a strong filling again yields a strong filling.
When gluing a Stein cobordism to a weak symplectic filling, however, some care is needed:
as shown by the next lemma, we need to assume that the symplectic form vanishes on the
attaching spheres of 3-handles.

Lemma 2.9. Let (W,ω) be a weak filling of a contact manifold (M, ξ0) and suppose that
(W1, J) is a Stein cobordism from (M, ξ0) to (M1, ξ1) consisting of a single k-handle at-
tachment so that ω vanishes on the homology class of the attaching sphere if k = 3. Then
W ′ = W ∪W1 (equipped with a suitable symplectic structure ω′, based on ω and the Stein
structure on W1) provides a weak filling of (M1, ξ1).

Furthermore, if the attaching sphere of a 2-handle bounds a surface Σ in M then we can
assume that the ω′([Σ ∪D2]) = 0, where D2 denotes the core of the 2-handle.

Proof. Let (−ǫ, ǫ) ×M be a small regular neighbourhood of M in W , where W has been
extended slightly. Let λ be a defining 1-form for ξ. Suppose that ω|M is exact on the
attaching sphere Sk−1 of the k-handle of W1. Then there is a form ω cohomologous to ω|M
which vanishes near Sk−1. By [MNW, Lemma 1.10] one can alter the symplectic structure
after attaching a sufficiently long end [0, 2C]× ∂W so that the symplectic form is given by
ω+d(tλ) for all t ≥ C−ǫ and we still have a weak filling ofM =M×{C}. In particular, near
Sk−1 ⊂ M × {C} the symplectic form is just d(tλ). We attach a Stein/Weinstein k-handle
along Sk−1 and denote the resulting filling by (W ′, ω′). The almost complex structure J on
W used in the definition of weak filling then extends to an almost complex structure J ′ on
W ′ that is tamed by ω′.

Since ω is always exact near an attaching sphere Sk−1 with k 6= 3 and this is the case by
assumption if k = 3, the lemma follows immediately.

In the case of a 2-handle whose attaching sphere S1 bounds a surface Σ, we can assume
that the form ω above vanishes on Σ ⊂M ×{C}. Then since the core of a Weinstein handle
is isotropic with isotropic boundary, it follows that

ω′([Σ ∪D2]) =

∫

Σ

C dλ+

∫

D2

ω′ =

∫

∂Σ

C λ = 0,

giving the final claim. �

In [BCS1] a contact structure was constructed on M × S2 by constructing a topological
Stein cobordism between M × T 2 and M × S2 for appropriate choices of almost contact
structures. With the above lemma at hand, this point of view then provides the following
fillability result, which corresponds to Theorem 1.3 in the Introduction.
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Proposition 2.10. Let (M, ξ) be a contact manifold of dimension 2q+1 that admits a weak
symplectic filling (W,ω). Then M × S2 admits a weakly fillable contact structure.

Proof. Let (W,ω) be a weak filling of (M, ξ). By [MNW, Example 5] the manifold M × T 2

admits a contact structure that is weakly filled by the symplectic manifold (W×T 2, ω⊕ωT 2).
According to [BCS1, Proposition 3.1] there is a Stein cobordism Y from M × T 2 to M × S2

which fits into the following diagram:

(2) M × T 2

f0 &&▲▲
▲▲

▲▲
▲▲

▲▲

i0 // Y
gY

��

M × S2i1oo

Id
xxrrr

rr
rr
rr
r

M × S2,

where gY is a (q+2)-equivalence and f0 is the product of the identity with a map of degree
1.

The idea of the proof is to inductively apply Lemma 2.9 to Stein handle attachments
which make up the bordism Y , starting from from M × T 2. We first find a topological
Stein structure on Y where we can apply Lemma 2.9 to each handle attachement. For this,
we need to keep track of the cohmology class of the symplectic form of the filling, when
restricted to the outgoing boundary. Hence we note the equality of cohomology classes
[ω|M ⊕ ωT 2] = f ∗

0

(
[ω|M ⊕ ωS2]

)
for a symplectic form ωS2 on S2.

Let α, β ⊂ T 2 be the standard generators of π1(T
2) which we consider in different T 2-

fibers of M × T 2. These are then null-homotopic in Y and hence extend to maps of discs,
which can be taken to be proper embeddings in Y since the dimension of Y is at least 6.
Let Y2 be the bordism obtained by attaching a pair of 2-handles along α and β. We then
obtain decomposition of Y = Y2 ∪X2

Y3, where X2 is the upper boundary component of Y2.
Attaching these 2-handles yields π1(Y2) = π1(X2) = π1(M) by construction and also that
the map Y2 → M × S2 is a surjection on π2. This latter claim in obvious for classes in
the π2(M)-factor and for the class coming form the S2-factor observe that the result of the
surgery on the class [pt× T 2] is a spherical class that is mapped to [pt× S2] under (gY )∗.

Since Y2 is formed by 2-handle attachments, it has the homotopy type of a space obtained
by attaching (2q+2)-cells to X2. Hence the inclusion X2 → Y2 is (2q+1)-connected and so
gX2

: X2 → M × S2 is 2-connected: Here, and for the rest of the proof, we set gZ := gY |Z
for any subspace Z ⊂ Y . Since Y3 is obtained from the (2q+2)-dimensional manifold Y
by deleting neighbourhoods of 2-handles, the inclusion Y3 → Y is (2q+1)-connected and so
gY3

: Y3 → M × S2 is at least 3-connected. It follows that the pair (Y3, X2) is algebraically
2-connected, and we will use this later in the proof.

The fact that Y3 is obtained from Y by deleting neighbourhoods of 2-handles has another
important consequence. Combined with the fact that (Y,M × S2) is algebraically (q+1)-
connected, it implies that the pair (Y3,M×S2) is algebraically (q+1)-connected. Thus there
is a handle decomposition of Y3 relative to M × S2 containing only handles of index at least
q+2 by a result of Wall [BCS2, Theorem 2.18] or dually there is a handle decomposition of
Y3 relative to X2 containing only handles of index at most q+2. More precisely Wall shows
inductively that given any handle decomposition one can cancel handles of index k < q+2
with (k+1)-handles at the expense of introducing a (k+2)-handles.

We now apply Lemma 2.9 to Y2 to obtain a weak filling (Y2, ω
′) of X2. Since the 2-

handles are attached along curves that are non-trivial in rational homology it follows from
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the long exact sequence of the pair (Y2,M × T 2) that the map M × T 2 → Y2 induces an
injection on cohomology. In particular, we have the following equality for cohomology classes
[ω′] = (gY2

)∗
(
[ω|M ⊕ ωS2]

)
.

We now consider any topological Stein handle decomposition of Y3 relative to X2. As this
pair is 2-connected we can then apply Wall’s argument to cancel all handles of index k ≤ 1
at the expense of introducing 3-handles. In particular, the resulting handle decomposition
will still be topologically Stein as dim(Y3) = 2q+4 ≥ 6.

We now attach the 2-handles h2i of Y3 to X2. Let Y2+ = Y2 ∪ ∪n
i=1h

2
i ⊂ Y3 be the union of

Y2 and these new 2-handles. Let D2
i be the core of h2i . Since the pair (Y3, X2) is 2-connected

the disc D2
i can be homotoped inside Y3 to a disc ∆i ⊂ X2 relative to its boundary, which by

general position is embedded. Applying Lemma 2.9 for each 2-handle we obtain a weak filling
(Y2+, ω

′) such that ω′([D2
i ∪ ∆i]) = 0. We claim that at the level of cohomology classes we

again have [ω′] = (gY2+
)∗
(
[ω|M ⊕ωS2]

)
. To see this, consider the cohomology exact sequence

of the pair (Y2+, Y2):

· · · −→ H2(Y2+, Y2)
j

−→ H2(Y2+) −→ H2(Y2) −→ · · · .

By construction, [ω′] and (gY2+
)∗
(
[ω|M ⊕ωS2 ]

)
agree when restricted to Y2, so their difference

lies in j(H2(Y2+, Y2)), where H
2(Y2+, Y2) is a free abelian group with dual basis consisting

of the 2-handles h2i . Since D2
i and ∆i are homotopic relative to their boundary in Y3,

the spherical class [D2
i ∪ ∆i] is null-homotopic in Y3. This, combined with the fact that

ω′([D2
i ∪∆i]) = 0, ensures that [ω′]− (gY2+

)∗
(
[ω|M ⊕ ωS2]

)
= 0.

We next attach 3-handles to Y2+. In order to apply Lemma 2.9 we must ensure that the
resulting symplectic form vanishes on the attaching 2-sphere S2

a. Let ι2+ : Y2+ → Y be the
inclusion. Since S2

a bounds a 3-disc in Y , it follows that

(gY2+
)∗([S

2
a ]) = (gY )∗(ι2+)∗([S

2
a]) = 0 ∈ H2(M × S2).

We then have

〈(gY2+
)∗
(
[ω|M ⊕ ωS2]

)
, [S2

a]〉 = 〈[ω|M ⊕ ωS2 ], (gY2+
)∗([S

2
a])〉 = 0,

where the angular brackets denote the natural Kronecker pairing. Thus we can again ap-
ply Lemma 2.9. As above the cohomology class of the symplectic structure ω′ is just the
restriction of (gY )

∗
(
[ω|M ⊕ωS2]

)
. Inductively applying Lemma 2.9 to the remaining handles

completes the argument. �

2.2. The surgery obstruction and topological Stein cobordisms. In this subsection
we briefly recall the main construction of [BCS2]. We then extend this point of view and
identify the “topological Stein envelope” of an almost contact manifold, i.e. those almost
contact manifolds which can be obtained from a given one via a topological Stein cobordism.

Recall that an almost contact structure ϕ on a (2q+1)-manifold M can be regarded as a
map ϕ : M2q+1 → BU(q), which lifts the classifying map τ : M2q+1 → BSO(2q+1) of the
tangent bundle of M . We then stabilize ϕ and pass to the corresponding complex normal
structure, which is an equivalence class of maps ζ : M → BU , which lift the stable normal
Gauss map ν : M → BSO.
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For a fixed integer k, the map ζ : M → BU admits a Postnikov factorization (Bk
ζ , η

k
ζ , ζ̄)

with the following properties: these maps and spaces fit into the commutative diagram

Bk
ζ

ηk
ζ

��
M

ζ
//

ζ̄
>>⑤⑤⑤⑤⑤⑤⑤⑤
BU,

and satisfy the following conditions:

(1) ηkζ is a Serre fibration,

(2) ζ̄ is a (k+1)-equivalence, that is, it induces an isomorphism on πi for all i < k+1 and
a surjection for i = k+1, and

(3) ηkζ is a (k+1)-coequivalence, that is, it induces an isomorphism on πi for i > k+1 and
an injection for i = k+1.

The existence of these spaces and maps are proved in [Ba, Chapters 2 & 5]. The pair (Bk
ζ , η

k
ζ )

is unique (up to fiber homotopy equivalence), and we call them the complex normal k-type
of the stable complex manifold (M, ζ). The map ζ̄ : M → Bk

ζ is called a ζ-compatible normal
smoothing and is not, in general, uniquely determined by ζ . The only explicit complex
normal k-types we will use in this paper are covered by the following

Example 2.11 (cf. [BCS2, Example 2.5]). We take the stable complex bundle (Bk
ζ , η

k
ζ ) =

(BU〈k+1〉, πk+1) where the map πk+1 : BU〈k+1〉 → BU is the k-fold connective covering of
BU . Recall that BU〈k+1〉 is the space whose homotopy groups are trivial in degree i ≤ k−1
and such that πk+1 induces a surjection on the k-th homotopy group and isomorphisms for

all higher homotopy groups. We denote the bordism groups Ω∗(BU〈k+1〉; πk+1) by Ω
U〈k〉
∗ .

When k = 3, we have that Ω∗(BU〈4〉; π4) = ΩSU
∗ is just special unitary bordism as consider

in [St, Chapter X].

For an almost contact (2q+1)-manifold (M,ϕ) with its induced stable complex structure
ζ we consider the associated complex normal (q−1)-type (Bq−1

ζ , ηq−1
ζ ). The map ζ̄ then

provides a bordism class [M, ζ̄] in the bordism group Ω2q+1(B
q−1
ζ ; ηq−1

ζ ). For a detailed
discussion of this group see [BCS2].

A priori the bordism class [M, ζ̄] depends on the choice of (q−1)-smoothing ζ̄, but we call
any such class an obstruction class, since — according to the next theorem — [M, ζ̄] vanishes
if and only if the almost contact structure ϕ can be represented by a Stein fillable contact
structure.

Theorem 2.12 ([BCS2, Theorem 1.2]). A closed almost contact manifold (M,ϕ) of dimen-
sion 2q+1 ≥ 5 admits a Stein fillable contact structure homotopic to the almost contact
structure ϕ if and only if [M, ζ̄] = 0 ∈ Ω2q+1(B

q−1
ζ ; ηq−1

ζ ) for any, equivalently for all, choices

of ζ̄, where ζ is the stabilization of ϕ. �

Remark 2.13. The applicability of the obstruction class described above hinges on computa-
tions of the bordism group Ω2q+1(B

q−1
ζ1

; ηq−1
ζ1

), which is a highly nontrivial matter in general.
For simply connected 7-manifolds with torsion free second homotopy group [BCS2, Theorem
1.3] shows that Ω7(B

2
ζ , η

2
ζ) = 0; implying that all such almost contact 7-manifolds are Stein

fillable. For (q−1)-connected (2q+1)-manifolds further calculations of these bordism groups
will be presented in [BCS3].
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In terms of the topological Stein cobordism relation given in Definition 2.8, Theorem
2.12 states that (S2k+1, ζstd) ≺ (M, ζ) if and only if an obstruction class [M, ζ̄ ] vanishes.
We now extend Theorem 2.12 to give a bordism theoretic determination of the topological
Stein cobordism relation for any pair of closed (2q+1)-dimensional stably complex manifolds
(M0, ζ) and (M1, ζ1).

Theorem 2.14. There is a topological Stein cobordism (W, ζ) from (M0, ζ0) to (M1, ζ1),
i.e. (M0, ζ0) ≺ (M1, ζ1), if and only if there is a map α of fibrations over BU

Bq−1
ζ0

η
q−1

ζ0
""❊

❊❊
❊❊

❊❊
❊

α // Bq−1
ζ1

η
q−1

ζ1
||②②
②②
②②
②②

BU

and ζi-compatible normal (q−1)-smoothings ζ̄i : Mi → Bq−1
ζi

such that

α∗([M0, ζ̄0]) = [M1, ζ̄1] ∈ Ω2q+1(B
q−1
ζ1

; ηq−1
ζ1

).

Proof. Suppose that α∗([M0, ζ̄0]) = [M1, ζ̄1] and let (W, ζ̄) be a (Bq−1
ζ1

, ηq−1
ζ1 )-nullcobordism of

(−M0,−α◦ ζ̄0)⊔ (M1, ζ̄1). Applying surgery below the middle dimension [BCS2, Proposition
2.6], we can assume that ζ̄ : W → Bq−1

ζ1
is a (q+1)-equivalence. It follows from a result of

Wall [BCS2, Theorem 2.18] that W is built from M1 by attaching handles of index ≥ q+1
and dually thatW is obtained fromM0 by attaching handles of index at most q+1, verifying
one direction of the equivalence.

Conversely, if (W, ζ) is a topological Stein cobordism with boundary (−M0,−ζ0)⊔(M1, ζ1),
then the universal properties of Postnikov factorizations [Ba, Chapters 2 & 5] mean that there
is a homotopy commutative diagram,

−M0

−ζ̄0
��

i0 // W

ζ̄
��

M1

ζ̄1
��

i1oo

Bq−1
ζ0

##❋
❋❋

❋❋
❋❋

❋

Bi0 // Bq−1
ζ

��

Bq−1
ζ1

{{①①
①①
①①
①①

Bi1oo

BU ,

where ζ̄0, ζ̄1 and ζ̄ are all (q−1)-smoothings and for j = 0, 1, ij : Mj →W are the inclusions
and Bij are the corresponding induced maps of complex normal (q−1)-types. Since W is
obtained from M1 by the addition of handles on index (q+1) or larger, the proof of [BCS2,
Lemma 2.9 (3)] shows that Bi1 is an equivalence of complex normal (q−1)-types. We then
set α to be the following map of fibrations over BU :

α := (Bi1)
−1 ◦Bi0 : B

q−1
ζ0

→ Bq−1
ζ1

,

where (Bi1)
−1 denotes a homotopy inverse of Bi1. By definition, (W, ζ̄) is a (Bq−1

ζ1
, ηq−1

ζ1
)-

bordism which gives α∗([M0, ζ̄0]) = [M1, ζ̄1]. �

Remark 2.15. Notice that [BCS2, Theorem 3.8] is a direct consequence of the above result
(by taking α = id). While [BCS2, Theorem 3.8] is symmetric for (M0, ζ0) and (M1, ζ1), in
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Theorem 2.14 the direction of the map α breaks this symmetry. The above extension of our
earlier result was suggested by a question from Andy Wand in Nantes in September 2013.

3. Maximal almost contact manifolds

In dimension three the Stein cobordism relation has several interesting properties, one of
which is that there are initial elements: There exists a contact manifold (Mmin, ξmin) such
that for any other contact 3-manifold (M, ξ) we have

(Mmin, ξmin) ≺ (M, ξ).

In fact, by [EH] any overtwisted contact structure on any manifold will do (see also [GZ]).
On the other hand, in high dimensions, i.e. for dim(M) = 2q+1 ≥ 5 there exist final almost
contact elements. It is not clear whether such objects exist in dimension three.

The next proposition provides a proof of Theorem 1.2 from the Introduction.

Proposition 3.1. In every dimension 2q+1 ≥ 5 there exists an almost contact manifold
(Mmax, ϕmax) so that for any almost contact manifold (M,ϕ) we have

(M,ϕ) ≺ (Mmax, ϕmax).

Moreover, in dimensions 5 and 7 we can take certain almost contact structures on the non-
trivial sphere bundles over S2 as final elements:

(Mmax, ϕmax) = (S3×̃S2, ϕmax), (Mmax, ϕmax) = (S5×̃S2, ϕmax),

where ϕmax is any almost contact structure whose first Chern class is primitive.

Proof. For (Mmax, ϕmax) we can take any almost contact (2q+1)-manifold where the corre-
sponding stable complex manifold (Mmax, ζmax) has complex normal (q−1)-type Bq−1

ζmax
= BU

and the map to BU is just the identity. To construct such a manifold, we begin with
any stably complex (2q+1)-manifold ζ : M → BU and apply surgery below the middle di-
mension [BCS2, Proposition 2.6] to obtain a stably complex manifold (Mmax, ζmax) where
ζmax : Mmax → BU is a q-equivalence, which then has the desired complex normal (q−1)-
type. We then take ϕmax, to be any almost contact structure which stabilizes to ζmax, which
exists by [BCS2, Lemma 2.17].

Now let (M,ϕ) be any almost contact (2q+1)-manifold with stable complex structure ζ ,
complex normal (q−1)-type (Bq−1

ζ , ηq−1
ζ ) and with ζ-compatible normal (q−1)-smoothing

ζ̄ : M → Bq−1
ζ . By definition, ηq−1

ζ : Bq−1
ζ → BU is a fibration and we set α = ηq−1

ζ . Bordism
of BU -manifolds is just ordinary complex bordism, and by [St, p.117] the odd bordism
groups ΩU

2q+1 are trivial, which implies that α∗([M, ζ̄]) = 0 = [Mmax, ζmax]. By Theorem
2.14 it follows that (M, ζ) ≺ (Mmax, ζmax) and due to the equivalence given in (1) above we
finally conclude that (M,ϕ) ≺ (Mmax, ϕmax).

In dimensions 5, 7 one checks that the explicit manifolds stated in the proposition have
the correct complex normal 1- resp. 2-types. For this, note that π1(BU) = π3(BU) =
0, π2(BU) = Z and the assumption that c1 is primitive ensures that the second homotopy
group of the associated type is Z. �

Remark 3.2. The almost contact manifold (Mmax, ϕmax) is far from being unique. In-
deed, if (Mmax, ϕmax) ≺ (M ′, ϕ′) then (M ′, ϕ′) is also maximal for the topological Stein
cobordism relation. For example, for any Stein fillable almost contact manifold (M0, ϕ0),
(Mmax#M0, ϕmax#ϕ0) is also maximal. Note also that (Mmax, ϕmax) is necessarily Stein
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fillable (that is, contains a Stein fillable contact structure), shown by the Stein cobordism
from, say, the standard contact sphere to (Mmax, ϕmax).

Remark 3.3. At the level of contact structures, it seems very unlikely that the analogue of
Proposition 3.1 holds. Specifically, it seems unlikely that there is a single contact (2n+1)-
manifold (Mmax, ξmax) such that for every contact (2n+1)-manifold (M, ξ) the manifold
(Mmax, ξmax) is the out-going end of some Stein cobordism starting from (M, ξ). However by
Theorem 2.6 we have the following: For any maximal almost contact manifold (Mmax, ϕmax)
of dimension (2q+1) ≥ 5, and for any contact (2q+1)-manifold (M, ξ), (Mmax, ϕmax) admits
a contact structure ξ(M,ξ) and a Stein cobordism from (M, ξ) to (Mmax, ξ(M,ξ)).

A further interesting special case of the Stein cobordism relation occurs for “Calabi-Yau”
almost contact structures on 5-manifolds and 7-manifolds.

Proposition 3.4. Let n = 5 or 7 and let (M,ϕ) be an almost contact n-manifold such that
c1(ϕ) = 0. Then

(M,ϕ) ≺ (Sn, ϕstd),

where ϕstd denotes the almost contact structure underlying the standard contact structure on
Sn and the Stein cobordism (W,J) can be assumed to have c1(J) = 0.

Proof. Let n = 2q+1, so that q = 2 or 3 and let ζ be the stabilization of the almost contact
structure ϕ. Since c1(ϕ) = 0, the complex normal (q−1)-type of (M, ζ) factors through
BSU → BU by [BCS2, Lemma 2.22 (ii), Lemma 2.23]. Since the complex normal (q−1)-
type of (Sn, ϕstd) is BSU → BU , the lemma follows from Theorem 2.14 and the fact that
ΩSU

5 = ΩSU
7 = 0; see [St, p. 248]. �

Remark 3.5. In contrast to the 3-dimensional case, there can be no minimal elements with
respect to the Stein cobordism relation in dimension at least 5. For example if (M0, ϕ0) ≺
(M1, ϕ1) and c1(ϕ1) = 0, then the fact that c1(ϕ1) = 0 implies that c1(ϕ0) = 0. To see
this note that a topological Stein cobordism (W,J) from M0 to M1 is obtained from M1 by
attaching high index handles, which means that c1(J) = 0. But this would imply that an
initial element (Mmin, ϕmin) must have c1(ϕmin) = 0. A similar argument shows that for
certain choices of M1 the fact that cq1(ϕ1) 6= 0 implies cq1(ϕmin) 6= 0 (cf. [BCS2, Proposition
6.2]). For this note that the inclusion of M1 into W gives an isomorphism on fundamental
groups. Suppose that β ∈ H1(Bπ1(W )) is a class such that when restricted to M1

p∗1(β) ∪ c
q
1(J) 6= 0,

where p1 : W −→ Bπ1(W ) is the classifying map of the universal cover of W . It follows
that the restriction of p∗1(β) ∪ cq1(J) 6= 0 to M0 = Mmin is also non-zero and hence that
c1(ϕmin) = c1(J)|Mmin

6= 0.
In fact, these sorts of arguments show that there can be no initial elements even if one

forgets about the almost contact structures, and one simply considers Pontrjagin classes
rather than Chern classes.

4. Stein fillability and connected sums

The connected sum of Stein fillable manifolds is again Stein fillable, since adding a one-
handle to the Stein fillings can be done in a way that is compatible with Stein structures.
Eliashberg [E1, Section 8] has shown that the converse of this statement holds for 3-manifolds:
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a connected sum of 3-manifolds is Stein fillable if and only if both summands are. In addition,
the Stein fillable structures on the components can be chosen so that their connected sum is
isotopic to the given Stein fillable structure on the connected sum. (For a detailed description
of the contact connected sum construction see [G3, p. 301-302].) Extensions of some aspects
of the above result of Eliashberg to higher dimensions are given in [GNW].

In this section we prove Theorem 1.5, which shows that in higher dimensions the sum-
mands of a Stein fillable almost contact manifold in a connected sum decomposition are not
necessarily Stein fillable. To make this statement precise, we note that the summands are
well-defined only up to almost diffeomorphism, that is, up to connected sum with homotopy
spheres. Indeed, forM1#M2 the manifolds M1− int Dn and M2− int Dn can be turned into
closed manifolds (by gluing back Dn) in many different ways, differing by connected sums
with homotopy spheres. Below we find examples of almost contact connected sums where
the summands are not Stein fillable, even after the addition of homotopy spheres.

For the proof of Theorem 1.5 we examine the Stein fillability of certain almost contact
structures on the unit cotangent bundle ST ∗S2k+1 of the (2k+1)-sphere S2k+1. We first need
to establish some preliminary results. Lemma 4.1 is a small elaboration of a theorem of
Milnor and Spanier about the topology of ST ∗S2k+1. Proposition 4.2 gives a description of
the topology of possible Stein fillings of manifolds almost diffeomorphic to ST ∗S2k+1, which
may be of independent interest. Finally, Lemmas 4.4 and 4.5 show that ST ∗S2k+1 admits
an almost contact structure ϕ which is not Stein fillable, provided k ≥ 5 is odd.

Lemma 4.1 (cf. [MSp, Theorem 2]). There is a map f : ST ∗S2k+1 → S2k such that the
induced homomorphism f∗ : H2k(ST

∗S2k+1) → H2k(S
2k) is an isomorphism if and only if

k = 0, 1 or 3.

Proof. Let π : ST ∗S2k+1 → S2k+1 be the bundle projection of the unit cotangent bundle of
S2k+1. If we consider π merely as a spherical fibration, then a map f as in the statement
of the lemma exists if and only if π is trivial as a spherical fibration. This is because the
product map

f × π : ST ∗S2k+1 → S2k × S2k+1

is a homology isomorphism, and so by Whitehead’s theorem a homotopy equivalence, and
this gives a fibre homotopy trivialisation of π. By [MSp, Theorem 2], the bundle projection
π is trivial as a spherical fibration if and only if k = 0, 1 or 3. �

The proof of the following proposition uses handle cancelling and the Whitney trick, which
are familiar from the proof of the h-cobordism theorem in higher dimensions. For details
concerning these constructions we refer to [Mi, Wh].

Proposition 4.2. Let k ≥ 1 and letM = (ST ∗S2k+1)#Σ0 be the connected sum of ST ∗S2k+1

with some homotopy sphere Σ0. Choose some almost contact structure ϕ on M and let
W 4k+2 be the smooth manifold underlying a Stein filling of (M,ϕ). Then W decomposes as
a boundary connected sum

W = Wl ♮WΣ,

where H2k(Wl) = Z/lZ and WΣ is a 2k-connected filling of some homotopy sphere Σ. More-
over we have the following possibilities for the topology of Wl:

(1) If l > 1, then Wl has a handle decomposition with precisely one handle of index 2k
and two handles of index 2k+1;
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(2) If l = 1, then W1
∼= DT ∗S2k+1;

(3) If l = 0, then we must have k = 1, 3 and W0
∼= D2k+2 × S2k.

In particular, ST ∗S2k+1 admits a subcritical filling if and only if k = 1, 3.

Proof. First note thatM = ∂W is (2k−1)-connected and thatH∗(∂W ) ∼= H∗(S
2k×S2k+1). It

follows that any Stein filling of M is (2k−1)-connected and hence by the Hurewicz Theorem
the map π2k+1(W ) −→ H2k+1(W ) is surjective. The long exact sequence of the pair

H2k+1(∂W )
ι

−→ H2k+1(W ) −→ H2k+1(W, ∂W ) −→ H2k(∂W ) −→ H2k(W ) −→ 0

yields that H2k(W ) = Z/lZ is cyclic and we also know that H2k+1(W ) is torsion free since W
admits a handle decomposition without handles of index greater than 2k+2 by assumption.
Moreover, the intersection pairing is unimodular on a complement H to im(ι) ⊆ H2k+1(W ).
We let {x1, . . . , x2r} be a symplectic basis for H consisting of primitive elements, which can
in turn be represented by spheres. Since the target is simply connected, we can use the
Whitney trick to find embedded representatives in the interior of W . We can furthermore
assume that the geometric intersection numbers of these spheres agree with their algebraic
intersection numbers.

Thus we have a configuration of embedded (2k+1)-dimensional spheres {S1, . . . , S2r} hav-
ing a regular neighbourhood N whose boundary is a homotopy sphere Σ. It follows that W
decomposes as a boundary connected sum

W = Wl ♮WΣ,

where WΣ
∼= N is 2k-connected. This boundary connected sum is obtained by choosing an

embedded path γ from ∂N to ∂W and removing N along with a tubular neighbourhood of
γ. Note that in this decomposition ∂Wl =M#(−Σ). Applying Mayer-Vietoris, we conclude
that H2k(Wl) ∼= Z/lZ. This proves the first part of the proposition.

We now consider the topology of Wl and prove the remainder of the proposition. Wl is
(2k−1)-connected, hence it follows by handle cancelling that Wl is obtained by attaching
handles of index at least 2k to ST ∗S2k+1#Σ0#(−Σ). Turning this handle decomposition
upside down gives a handle decomposition with handles of index at most 2k + 2. Then by
further cancellation of handles we can find a handle decomposition with at most one handle
of index 2k and at most two handles of index 2k+1, where we use the fact that Wl is simply
connected. This proves case (1).

If l = 1, then the handle decomposition of Wl reduces further to contain a single (2k+1)-
handle, and W1 is diffeomorphic to a linear D2k+1-bundle over S2k+1. This bundle must
be stably trivial, otherwise M will have a non-trivial stable tangent bundle. Moreover, by
analysing the homotopy long exact sequence of the fibration

SO(2k+1) → SO(2k+2) → S2k+1,

one sees that any stably trivial bundle over S2k+1 is either trivial or isomorphic to the unit
tangent bundle of the sphere. If k 6= 1, 3 then W1 cannot be the total space of the trivial
bundle, because this would give rise to the existence of a map f : M → S2k as in Lemma
4.1 which is impossible. On the other hand, if k = 1, 3, then the tangent bundle of S2k+1

is trivial. In both cases we conclude that there is a diffeomorphism W1
∼= DT ∗S2k+1, which

proves case (2).
If l = 0, then H2k(W ) = H2k(W0) = Z. It follows that the handle decomposition of W0

has just one 2k-handle and hence W0 is diffeomorphic to a linear D2k+2-bundle over S2k.
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This bundle is stable and must be stably trivial, otherwise the tangent bundle of M would
not be stably trivial. We conclude that W0 is diffeomorphic to D2k+2 × S2k. �

Remark 4.3. Although not the focus of this work, the topology of Stein fillings, as opposed to
their boundaries, is of independent interest and may be relevent to certain computations in
contact homology. In the case that k = 1, Proposition 4.2 determines the smooth manifolds
underlying Stein fillings of almost contact structures on S2×S3. In this dimension there are
no exotic 5-spheres [KM] and by [Sm2, Theorem 6.2] the manifold WΣ is diffeomorphic to
#r(S

3 × S3)− Int(D6). Concerning the manifolds Wl, we conjecture that they are classified
up to diffeomorphism by l. If this is correct, then topological Stein fillings (W,J) of S2×S3

are classified up to stably complex diffeomorphism by their integral homology groups H∗(W )
along with their first Chern class c1(J) ∈ H2(W ).

Lemma 4.4. If k is odd, there exist almost contact structures ϕ on ST ∗S2k+1 with non-zero
kth-Chern class, 0 6= ck(ϕ) ∈ H2k(ST ∗S2k+1) ∼= Z.

Proof. Let ϕcan be the standard almost contact structure underlying the canonical contact
structure on M = ST ∗S2k+1, and let ζcan be the stable complex structure determined by
ϕcan. Since ζcan extends over DT ∗S2k+1, we have that ck(ϕcan) = ck(ζcan) = 0. To find a
stable complex structure ζ with ck(ζ) 6= 0, we recall that the group [M,SO/U ] acts freely
and transitively on the set of homotopy classes of stable complex structures on M . Now
if we let M• := M \ B4k+1 be the manifold obtained by removing a ball, then there is a
homotopy equivalence M• ≃ S2k ∨ S2k+1 and hence

(3) [M•, SO/U ] ∼= π2k(SO/U)⊕ π2k+1(SO/U).

Since k is odd, π4k(SO/U) = 0 [Bott], and so there is no obstruction to extending a map
M• → SO/U to a map M → SO/U . Hence the restiction map [M,SO/U ] → [M•, SO/U ]
is onto. Again using that k is odd, the boundary map, π2k(SO/U) → π2k−1(U), in the
homotopy long exact sequence of the fibration U → SO → SO/U is non-zero [Bott]. Since
π2k−1(U) classifies stable unitary bundles over S2k which are in turn classified by their kth

Chern class [Hu, Proposition 9.1], it follows from (3) and the discussion above that we can
choose ψ ∈ [M,SO/U ] such that ζ := ζcan + ψ has ck(ζ) 6= 0. By [BCS2, Lemma 2.17], we
know that ζ destabilizes to an almost contact structure ϕ, which then also has ck(ϕ) 6= 0. �

Lemma 4.5. Let ϕ be an almost contact structure on M = ST ∗S2k+1 with ck(ϕ) 6= 0 and
let (Σ, ϕΣ) be any almost contact homotopy sphere. If k 6= 1, 3, then neither (M#Σ, ϕ#ϕΣ)
nor

(
−(M#Σ),−(ϕ#ϕΣ)

)
is Stein fillable.

Proof. Suppose that (W,J) is a Stein filling of (M#Σ, ϕ#ϕΣ). Since ck(ϕ#ϕΣ) = ck(ϕ) is
non-zero and pulls back from ck(J) ∈ H2k(W ), we conclude that H2k(W ) is infinite. Now
by Proposition 4.2, this can only happen if k = 1, 3. Since we assumed k 6= 1, 3, no such
Stein filling (W,J) can exist. For the reversed orientation, we use [BCS2, Propostion 6.7]
which states that (M#Σ, ϕ#ϕΣ) is Stein fillable if and only if

(
−(M#Σ),−(ϕ#ϕΣ)

)
is Stein

fillable. �

Proof of Theorem 1.5. We let k ≥ 5 be odd and set (M,ϕ) = (ST ∗S2k+1, ϕ), where we
have ck(ϕ) 6= 0. By Lemma 4.4 such almost contact structures always exist. Now, by
Lemma 4.5, for any almost contact homotopy sphere (Σ, ϕΣ) neither (M#Σ, ϕ#ϕΣ) nor(
−(M#Σ),−(ϕ#ϕΣ)

)
is Stein fillable.
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On the other hand, we let M• =M \ B4k+1 and we let ϕ• be the induced almost contact
structure onM•. We setW 4k+2 :=M•× [0, 1], which has a natural almost complex structure
ϕ•×[0, 1] induced by ϕ•. Moreover, the smoothened boundary ofW with the induced almost
contact structure is precisely (M,ϕ)#(−M,−ϕ). Since M is (2k−1)-connected, it follows
from a theorem of Smale [Sm1, Theorem C], that M• admits a handle decomposition with
handles of index less than or equal to 2k+1. Since any handle decomposition on M• gives
rise to one on M• × I with handles of the same index, we have that W =M• × [0, 1] admits
a handle decomposition with handles of index less than or equal to 2k+1. Consequently
(W,ϕ• × [0, 1]) is a topological Stein filling of (M,ϕ)#(−M,−ϕ), which is then admits a
Stein fillable contact representative ξM#(−M) by Theorem 2.4. �

Remark 4.6. Notice that the non-fillability of (ST ∗S2k+1, ϕ) in Theorem 1.5 arises from the
choice of the almost contact structure ϕ, since ST ∗S2k+1 does admit Stein fillable contact
structures. In [BCS3] we shall prove a stronger version of Theorem 1.5 which asserts the
existence of (4k−1)-connected closed smooth (8k+1)-manifolds M , such thatM (andM#Σ
for any homotopy sphere Σ) admits no Stein fillable almost contact structure at all, but
M#(−M) is Stein fillable. We would like to point out that our result is on the almost
contact level: we do not claim that the Stein fillable contact structure ξM#(−M) onM#(−M)
found in the proof of Theorem 1.5 (representing the almost contact structure ϕ#(−ϕ)) can
be given as a connected sum ξ+#ξ− where ξ± is a contact structure on ±M .

We now turn to dimension 5 and prove Theorem 1.6, restated below as Theorem 4.8.
Notice that in dimension five the connected sum M0#M1 determines the diffeomorphism
type of its components M0 and M1, since there are no exotic 5-spheres. The following
lemma extends this statement to almost contact 5-manifolds.

Lemma 4.7. Let ϕ be an almost contact stucture on the connected sum of 5-manifolds M0

and M1. Then there are, up to homotopy unique, almost contact structures ϕ0 on M0 and
ϕ1 on M1, such that (M0#M1, ϕ) = (M0#M1, ϕ0#ϕ1).

Proof. For i = 0, 1, letM•
i :=Mi−int(D5) ⊂M0#M1 be the punctured copy ofMi contained

in the connected sum. We define ϕi|M•

i
:= ϕ|M•

i
. It remains to show that there is a unique

extension of ϕi|M•

i
to an almost contact structure on Mi. Now the obstruction to extension

lies in π4(SO(5)/U(2)) and the obstruction to uniqueness lies in π5(SO(5)/U(2)). By [Ma],
we have π4(SO(5)/U(2)) = π5(SO(5)/U(2)) = 0, which concludes the proof. �

With the aid of this lemma we have

Theorem 4.8. Let (M,ϕ) = (M0#M1, ϕ0#ϕ1) be a Stein fillable almost contact 5-manifold.
Assume that either c1(ϕ) = 0 or that

c1(ϕ)(π2(M0)) = c1(ϕ)(π2(M1)) = Z = π2(BU).

Then both (M0, ϕ0) and (M1, ϕ1) are Stein fillable.

Proof. Let ζ, ζ0 and ζ1 be the stable complex structures determined by ϕ, ϕ0 and ϕ1 respec-
tively. After stabilizing we have (M, ζ) = (M0, ζ0)#(M1, ζ1). Also, let Ki = K(π1(Mi), 1) so
thatK(π1(M), 1) = K0∨K1. Under the assumptions of the proposition, [BCS2, Lemma 2.13]
implies that the complex normal 1-type of (M, ζ) is given by

(B1
ζ , η

1
ζ )

∼= (BSU × (K0 ∨K1) , prBSU)
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if c1(ϕ) = 0 and
(B1

ζ , η
1
ζ )

∼= (BU × (K0 ∨K1) , prBU )

if c1(ϕ)(π2(M0)) = c1(ϕ)(π2(M1)) = π2(BU) = Z. Since η1ζ is the projection to BSU resp.

BU , there is a canonical isomorphism Ω5(B
1
ζ ; η

1
ζ )

∼= ΩG
5 (K0 ∨K1) for G = U or SU , which

we use in the remainder of the proof.
Let us now assume that c1(ϕ) = 0. The argument in the other cases is formally the same,

and is given by replacing the map BSU → BU by Id : BU → BU . Let ζ̄ : M → B1
ζ be a

ζ-compatible normal 1-smoothing. We first consider the product smoothing ζ̄ ◦ prM : M ×
[0, 1] → M → B1

ζ and attach a 6-dimensional 5-handle to M × {1} along the connect sum

locus S4 × [0, 1] ⊂M =M0#M1 to obtain a bordism W . Since π4(SO/SU) = 0, there is no
obstruction to making this a stably complex 5-handle (see [BCS2, Section 2.3]), and indeed
there is no obstruction to extending ζ̄ ◦ prM to a normal smoothing ζ̄ ′W : W → B1

ζ . Consider

the map ζ̄W given by taking the composition of ζ̄ ′W with the collapsing map induced by the
wedge sum:

W
ζ̄′
W−→ BSU × (K0 ∨K1)

col
−→ BSU ×K1.

This is a normal map, and setting ζ̄i to be the restriction of ζW toMi we see that the bordism
(W, ζ̄W ) gives the equality

[M, col ◦ ζ̄] = [M0, ζ̄0] + [M1, ζ̄1] ∈ ΩSU
5 (K1).

Now, by Theorem 2.12, [M, ζ̄] = 0 since (M,ϕ) is Stein fillable, and consequently the bordism
class [M, col ◦ ζ̄ ] is trivial too. Moreover, since the composition prK1

◦ ζ̄0 : M0 → K1 is null-
homotopic and the bordism group ΩSU

5 = ΩU
5 = 0 according to [St, p. 248], it follows that

[M0, ζ̄0] = 0. Hence the bordism class [M1, ζ̄1] is trivial. Since the map

ζ̄1 : M1 → BSU ×K1

is a ζ1-compatible normal 1-smoothing, Theorem 2.12 implies that (M1, ϕ1) is Stein fillable.
The same argument mutatis mutandis shows that (M0, ϕ0) is Stein fillable as well. �

Remark 4.9. We point out that in dimension five the method in the proof of Theorem 4.8 does
not ascend to give control over contact structures. That is, if the almost contact manifolds
(M0, ϕ0) and (M1, ϕ1) are induced from contact manifolds (M0, ξ0) and (M1, ξ1), and even if
we know that (M0#M1, ξ0#ξ1) is Stein fillable, then in contrast to the situation in dimension
3, we cannot conclude that (M0, ξ0) and (M1, ξ1) are Stein fillable.

Remark 4.10. Note that in the proof of Theorem 4.8 involved constructing a nullbordism of
each component of the connected sum M0#M1 by first adding a 5-handle and then capping
off two of the resulting boundary components. This bordism is thus far from having the
correct homotopy type, but applying surgery below the middle dimension as in the proof of
Theorem 2.12 has the virtue of remedying this.

5. Non-fillable almost contact structures on highly connected manifolds

In dimensions congruent to 7 mod 8, the isomorphism π8k−1(SO/U) ∼= Z2 means that
there are precisely two homotopy classes of stable almost contact structures on S8k−1. One
of these homotopy classes, denoted ζstd, bounds over D

8k and is thus Stein fillable. Let us call
the other stable almost contact structure on S8k−1 exotic and denote it by ζex. By [BCS2,
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Theorem 1.3] we know that (S7, ζex) is Stein fillable. Indeed, (according to Theorem 5.7
below) the quaternionic projective plane HP2 admits no almost complex structure, but if we
puncture it, then as the Hopf D4-bundle over S4 it does. Thus the punctured HP2 provides a
filling of (S7, ζex) which admits a Stein structure, inducing a Stein fillable contact structure
on S7 that stabilizes to ζex. In higher dimensions, however, we have the following result
(which corresponds to Theorem 1.7 from the Introduction):

Theorem 5.1. The exotic stable complex structure ζex on S8k−1 cannot be represented by a
Stein fillable contact structure once k ≥ 2.

Before giving the proof of this result, we derive Corollary 1.9 as a simple consequence.

Proof of Corollary 1.9. Let ϕ be an almost contact structure on the (4k−2)-connected ori-
ented (8k−1)-manifold M . If (M,ϕ) is not Stein fillable, we are done. If (M,ϕ) is Stein
fillable, let ζ be the stable complex structure determined by ϕ and observe that the complex
normal (4k−2)-type of (M, ζ) is (BU〈4k〉, π4k) from Example 2.11, with associated bordism

groups Ω
U〈4k−1〉
∗ . Let ζ̄ : M → B4k−2

ζ be a (4k−2)-smoothing. By Theorem 2.12 we have

[M, ζ̄] = 0 ∈ Ω
U〈4k−1〉
8k−1 . The connected sum (M, ζ̄#ζ̄ex) := (M, ζ̄)#(S8k−1, ζ̄ex) does not

change the complex normal (4k−2)-type, and

[M, ζ̄#ζ̄ex] = [M, ζ̄] + [S8k−1, ζ̄ex] ∈ Ω
U〈4k−1〉
8k−1 .

By Theorem 5.1 the stable complex manifold (S8k−1, ζex) is not Stein fillable, and so by
Theorem 2.12 [S8k−1, ζ̄ex] 6= 0, since (BU〈4k〉, π4k) is the complex normal (4k−2)-type of
(S8k−1, ζ̄ex). It follows that [M, ζ̄#ζ̄ex] 6= 0 and consequently (M, ζ#ζex) is not Stein fillable
by Theorem 2.12, since (BU〈4k〉, π4k) is the complex normal (4k−2)-type of (M, ζ#ζex). �

Remark 5.2. According to [G2, Proposition 6 (vi)], the hypothesis of Corollary 1.9 that the
(4k−2)-connected (8k−1)-manifold M admit an almost contact structure is equivalent to
assuming that Im(τM∗) ⊆ F∗(π4k(BU)). In Theorem 5.7 (3) below, we prove that provided
k ≥ 2, the same condition is a necessary and sufficient condition for a (4k−1)-connected
8k-manifold to admit a stable complex structure.

Remark 5.3. The stable almost contact structures ζ and ζ#ζex appearing in the proof of
Corollary 1.9 differ by precisely the “top-dimensional Z/2-obstruction to stable homotopy of
almost contact structures” identified by Geiges in [G2, Theorem 4 (2b)].

Remark 5.4. By [BEM] the stable almost contact structure found in Corollary 1.9 (as any
stable complex, or even almost contact structure) can be represented by an overtwisted
contact structure; according to Theorem 5.1 the stable almost contact structure ζex on S8k−1

as well as the stable contact structure found by Corollary 1.9 cannot be represented by Stein
fillable contact structures. It would be interesting to see if these particular stable complex
structures admit fillable or tight (that is, not overtwisted) contact representatives.

5.1. Almost complex 8k-manifolds. In order to prove Theorem 5.1, we first improve
a theorem of Yang [Y] determining which smooth closed oriented (4k−1)-connected 8k-
manifolds admit stable complex structures.

Let Y be a smooth closed oriented (4k−1)-connected 8k-manifold, let τY : Y → BSO
classify the stable tangent bundle of Y and let

τY ∗ : π4k(Y ) → π4k(BSO)
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be the induced homomorphism. If Y admits a stably complex structure, then τY factors
through F : BU → BSO and in this case Im(τY ∗) ⊆ F∗(π4k(BU)) ⊆ π4k(BSO). Now let Bi

denote the ith Bernoulli number (where we use the topological indexing and sign conventions,
in particular, B1 =

1
6
and B2 =

1
30
). The following theorem is a straightforward reformulation

of (2) and (3) of [Y, Theorem 1].

Theorem 5.5 (cf. [Y, Theorem 1, (2) & (3)]). A smooth closed oriented (4k−1)-connected
8k-manifold Y with signature σY admits a stable complex structure if and only if,

(1) k is odd and
(

B2k+Bk

B2kBk
· 1
24k−2

)
σY ≡ 0 mod 2, or

(2) k is even, Im(τY ∗) ⊆ F∗(π4k(BU)) and
(

B2k−Bk

B2kBk
· 4k
24k

)
σY ≡ 0 mod 2. �

Remark 5.6. Using the Hurewicz isomorphism π4k(Y ) ∼= H4k(Y ) and the Universal Coeffi-
cient Theorem, we regard the homomorphism τY ∗ : π4k(Y ) → π4k(BSO) = Z as a cohomology
class τY ∗ ∈ H4k(Y ), which Yang denotes by ν. When k is even, F∗(π4k(BU)) ⊂ π4k(BSO) is
the subgroup of index two [Bott], and so the condition Im(τY ∗) ⊆ F∗(π4k(BU)) is equivalent
to the condition that τY ∗ vanishes mod 2, which is the condition Yang uses.

The following result, Theorem 1.8 from the Introduction, simplifies Yang’s theorem by
removing the assumptions involving Bernoulli numbers from its statement.

Theorem 5.7. A smooth closed oriented (4k−1)-connected 8k-manifold Y admits a stable
almost complex structure if and only if

(1) k ≥ 3 is odd, or
(2) k = 1 and the signature σY of Y is even, or
(3) k is even and Im(τY ∗) ⊆ F∗(π4k(BU)).

Remark 5.8. The simplification achieved in moving from Theorem 5.5 to Theorem 5.7 is
perhaps surprising and rests on Theorem A.1, which is a non-trivial fact about the differences
of reciprocals of Bernoulli numbers. Theorem 5.7 can be interpreted as a statement about
the characteristic numbers (signature and p2k) of closed (4k−1)-connected almost complex

smooth manifolds and the bordism groups Ω
U〈4k−1〉
8k . It would be interesting to see if there

are further connections between number theory and the characteristic numbers of closed
j-connected almost complex n-manifolds for other values of j and n.

Proof of Theorem 5.7. For k = 1, 2, B1 =
1
6
and B2 = B4 =

1
30
, see e.g. [Hi, p. 12]. Hence

B2 +B1

B2B1

·
σY
22

= 9σY and
B4 − B2

B4B2

= 0

and Theorem 5.5 implies Theorem 5.7 in these two cases.
The case k > 2 will follow from a result of Wall, a fact about Bernoulli numbers (see

Theorem A.1 in the Appendix) and from the evenness of σY . As in Remark 5.6, we regard
τY ∗ as a cohomology class τY ∗ ∈ H4k(Y ) and define the integer

τ 2Y := 〈(τY ∗)
2, [Y ]〉.

Setting ak := 3−(−1)k

2
, Wall [W, (15)m] proved that the Â-genus of a (4k−1)-connected

8k-manifold Y is given by the following formula:

(4) Â2k(Y ) =
a2k · 2

4k−4 · B2
k · (2

2k − 1)2 · τ 2Y − k2σY
24k+1 · k2 · (24k−1 − 1)

,
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where τ 2Y = χ2 in Wall’s notation. Now let Bk =
Nk

Dk
where Nk andDk denote respectively the

numerator and denominator of Bk expressed in lowest terms. We recall from [MSt, p. 284]
that Nk is odd and that Dk = 2D′

k where D′
k is odd: in fact D′

k is the product of odd primes
p such that (p− 1) divides 2k. Writing k = 2j · c for c an odd integer, j ≥ 0, we rewrite (4)
as

(5) Â2k(Y ) =
a2k · 2

4k−6−2j ·N2
k · (22k − 1)2 · τ 2Y − (D′

k)
2 · c2 · σY

24k+1 · c2 · (D′
k)

2 · (24k−1 − 1)
.

Since k > 2 and Y is (4k−1)-connected, the intersection form of Y is even by [W], and hence
τ 2Y is an even in integer. In addition, if k is even, then for Y to admit a stably complex

structure, τY must lie in 2H4k(Y ), and so 8 divides τ 2Y . Since Â2k(Y ) is an integer, (5) entails
that 24k−3−2j divides σY .

To apply Theorem 5.5 when k is odd, we must show that

Num

(
B2k +Bk

B2kBk

·
σY

24k−2

)

is even, where Num
(
a
b

)
denotes the numerator of a

b
, expressed in lowest terms. Since k is

odd, j = 0, and hence 24k−3 divides σY . Furthermore, the largest power of 2 which divides
Denom

(
σY

24k−2

)
is 2. But

Num

(
B2k +Bk

B2kBk

)
= DkN2k +D2kNk = 2(D′

kN2k +D′
2kNk)

is divisible by 22, and condition (1) in Theorem 5.5 holds.
To apply Theorem 5.5 when k is even, we must show that

Num

(
B2k − Bk

B2kBk

·
4k · σY
24k

)

is even. Since k = 2jc and 24k−3−2j divides σY , the largest power of 2 which can divide

Denom
(
4k·σY

24k

)
is 2j+1. By Theorem A.1, 2j+3 divides Num

(
B2k−Bk

B2kBk

)
, which ensures that

condition (2) in Theorem 5.5 holds. �

To prove Theorem 5.1, we shall need the following result.

Lemma 5.9. Let q ≡ 3 mod 4 and let (W,J) be an almost complex (2q+2)-manifold with
∂W = S2q+1. The stable complex structure induced on the boundary, (S2q+1, S∂J), is inde-
pendent on the choice of the almost complex structure J up to homotopy and depends only
on the oriented diffeomorphism type of W .

Proof. Let (W,J0) and (W,J1) be two almost complex structures on the same topological
Stein filling of S2q+1, which is then a q-connected manifold. By the Hurewicz Theorem
and repeated application of the Whitney trick we can find a basis of Hq+1(W ) consisting of
primitive elements {x1, . . . , xn} represented by embeddedings fi : S

q+1 →֒ W . The embedded
spheres fi(S

q+1) will intersect in the pattern determine by the intersection form of W , which
is unimodular, since the boundary of M is a sphere, and is denoted by

λW : Hq+1(W )×Hq+1(W ) → Z.

We now consider the boundary connected sum
(
W♮(−W ), J0♮(−J1)

)
, given by reversing

the orientation on (W,J1) and then attaching an almost complex 1-handle. This manifold is
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again q-connected. By tubing together the two copies of the embeddings fi, taking care to
reverse the orientation along the tube, we obtain embeddedings fi#(−fi) : S

q+1 →֒W♮(−W ),
which represent a basis of the anti-diagonal summand

L := 〈(x1,−x1) . . . , (xn,−xn)〉 ⊂ Hq+1(W♮(−W )) = Hq+1(W )⊕Hq+1(W ).

We claim that this basis for L is represented by disjoint embedded (q+1)-spheres with trivial
normal bundle. The normal bundle of each embedding fi#(−fi), i = 1, . . . , n, is isomorphic
to the Whitney sum of the normal bundle of fi and its inverse, and so is trivial. Moreover,
the intersection form of W♮(−W ) is the orthogonal sum λW ⊕ −λW , and so for all pairs
(i, j), the algebraic intersection of (xi,−xi) with (xj ,−xj) is given by

λW♮(−W )((xi,−xi), (xj ,−xj)) = λW (xi, xj)− λW (−xi,−xj) = 0.

By further applications of the Whitney trick, we arrive at the required disjoint embeddings
φi : D

q+1 × Sq+1 →֒W♮(−W ) representing the given basis of L.
The stable complex structure induced on φi(D

q+1 × Sq+1) by ζ = S(J0♮(−J1)) may be
regarded as an element ζi ∈ πq+1(SO/U) and since q ≡ 3 mod 4, each ζi lies in the image
of the map πq+1(SO) → πq+1(SO/U). Moreover, the condition that q ≡ 3 mod 4 implies
that the stabilization homomorphism πq+1(SO(q+1)) → πq+1(SO) is onto by [K], and hence
we may reframe our embeddings to obtain new embeddings φ̄i so that each ζi is trivial.
It follows that there is no obstruction to extending the stable complex structure induced
by J0♮(−J1) on W♮(−W ) over a handle attachment along φ̄i. That is, we may perform
stably complex surgeries on the embeddings φ̄i: see [BCS1, Section 2.3]. The trace of
these surgeries is a stably complex bordism, relative to the boundary, to a simply connected
homology ball, which is in turn a topological ball: see [KM, Lemma 7.1]. Moreover, the stable
almost complex structure on the boundary is equal to the stabilization of ∂J0#(−∂J1). It
follows that S(∂J0#(−∂J1)) is the standard stable complex structure and thus that S∂J0 =
S∂J1. �

Proof of Theorem 5.1. Suppose that k ≥ 2. Let (W,J) be a Stein filling with boundary
S8k−1, and consider the smooth closed oriented manifold X obtained by adding the 8k-disc
to W via the identity map:

X := W ∪Id D
8k.

We consider the manifold X = W ∪id D
8k. Note that since W admits an almost complex

structure J by hypothesis, we have Im(τX∗) = Im(τW∗) ⊂ F∗(π4k(BU)). It follows from
Theorem 5.7 that X also admits a stable complex structure ζX .

Now take the resulting stably complex manifold (X, ζX) and remove a small open disc. The
outcome is a smooth oriented manifold diffeomorphic to W with an induced stable complex
structure ζW . Since ζW extends to X , we conclude that the induced stable complex structure
∂ζW on S8k−1 is homotopic to ζ0. Now by Lemma 5.9, the stable complex structures S∂J and
∂ζW are homotopic and hence S∂J is homotopic to ζ0. This shows that only the standard
stable complex structure on S8k−1 admits a Stein filling, which proves Theorem 5.1. �

5.2. A description of (S8k−1, ϕex). In this subsection we give an explicit description of an
almost contact structure ϕex on S8k−1 which stabilizes to (S8k−1, ζex) when k ≥ 2. Recall
that π8k−1(SO) → π8k−1(SO/U) is onto, and that by [K], for k ≥ 2, the stabilization
homomorphism

π8k−1(SO(8k−2)) → π8k−1(SO)
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is also onto. Let f : (D8k−1, S8k−2) → (SO(8k−2), id) be a smooth map representing a class
[f ] ∈ π8k−1(SO(8k−2)) where [f ] stabilizes to a generator of π8k−1(SO). Let ξstd ⊂ TS8k−1

be the oriented hyperplane distribution given by the standard contact structure on S8k−1

and let Jstd be the complex structure on ξstd induced by the choice of a contact form. We
observe that we can use f to define a vector bundle automorphism

αf : ξstd ∼= ξstd

where αf is the identity on all fibres outside a small (8k−1)-disc D ⊂ S8k−1 and on
TS8k−1|D ∼= D × R8k−1 we use f to twist ξstd in the obvious way. We can then use αf

to pull-back the complex structure Jstd on ξstd and obtain α∗
f(Jstd). Clearly (ξstd, Jstd) and

(ξstd, α
∗
f(Jstd)) are isomorphic complex vector bundles but since αf is not homotopic to a

unitary automorphism of (ξstd, Jstd), it follows that (ξstd, Jstd) and (ξstd, α
∗
f (Jstd)) are not ho-

motopic as complex structures on ξstd. Indeed, even after stabilization αf is not homotopic
to a unitary automorphism and so the almost contact structure

(6) ϕex := (ξstd ⊂ TS8k−1, α∗
f(Jstd))

stabilizes to the stable complex structure on S8k−1 given by acting on ζstd with the generator
of π8k−1(SO/U) ∼= Z/2. Hence we have proven

Lemma 5.10. For k ≥ 2, the almost contact structure (S8k−1, ϕex) of (6) stabilizes to the
stable complex structure (S8k−1, ζex). �

The examples (S8k−1, ϕex) above and also the examples (STS4k−1, ϕ) with ck(ϕ) 6= 0
from Lemma 4.1 are interesting examples of (q−1)-connected (2q+1)-dimensional almost
contact manifolds which are not Stein fillable. The Stein fillability of such manifolds was
studied in [G1, G2]. In [BCS3] we take up this question in the context of Theorem 2.12 by
systematically studying the bordism groups Ω2q+1(B

q−1
ζ ; ηq−1

ζ ).

Appendix: 2-adic valuation of differences of the Bernoulli numbers:

By Bernd C. Kellner

Let Bk be the kth Bernoulli number with topologist’s indexing and sign conventions as in
[Hi, p. 12] and [MSt, Appendix B]. In particular, we have

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, B4 =

1

30
,

B5 =
5

66
, B6 =

691

2730
, B7 =

7

6
, B8 =

3617

510
.

Given a fraction a
b
, let Num

(
a
b

)
and Denom

(
a
b

)
denote respectively the numerator and the

denominator of a
b
, when expressed in lowest terms. In this Appendix we prove the following

theorem about Bernoulli numbers, which is the essential number-theoretic input to the proof
of Theorem 5.7.

Theorem A.1. Suppose that k is even and write k = 2jc, where c is odd and j ≥ 1. Then

2j+3 | Num

(
B2k − Bk

B2kBk

)
.
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Let p be any prime and let Zp denote the ring of p-adic integers. As usual, define the
p-adic valuation of s ∈ Zp by ordp s, such that s = u pordp s where u ∈ Z×

p is a unit.
We will prove Theorem A.1 later, since we first need to show some p-adic properties of the

Bernoulli numbers. From now on, it is more convenient to switch to the notation of signed
and even-indexed Bernoulli numbers Bn as commonly used in number theory. They may be
defined by the generating function

t

et − 1
=
∑

n≥0

Bn

tn

n!
, |t| < 2π.

These numbers are rational and Bn = 0 for odd n > 1. The even-indexed Bernoulli
numbers alternate in sign, such that (−1)

n
2
+1Bn > 0 for even n > 0. Accordingly

(−1)n+1Bn = B2n, n ≥ 1.

The famous theorem of von Staudt and Clausen [IR, Theorem 3, p. 233] asserts for even
n ≥ 2, that

(7) Bn +
∑

p−1|n

1

p
∈ Z, which implies that Denom(Bn) =

∏

p−1|n

p.

Let n ≥ 2 be even. If p− 1 | n, then we obtain by (7) that

Bn +
1

p
∈ Zp,

whereas we already have Bn ∈ Zp in the case p− 1 ∤ n. Both cases imply that

Bn − Bm ∈ Zp,

whenever n,m ≥ 2 are both even and satisfy n ≡ m (mod p− 1). As an easy consequence,
iterated finite differences of a sequence of Bernoulli numbers Bn are p-integers, assuming
that all indices are even and congruent mod p− 1. Now, we consider the special case p = 2,
where we use the following more general result of Carlitz.

Theorem A.2 (Carlitz [C, Theorem 7]). If n ≥ 2 is even, r ≥ 1, and 2e−1 | w with e ≥ 2,
then

r∑

s=0

(−1)s
(
r

s

)
2Bn+sw ≡ 0 (mod gcd(2n−1, 2re+λ)),

where λ = min(r − 1, r − r′ + 3) and 2r
′

≤ 2r < 2r
′+1.

Note that the sum above describes an iterated finite difference with increment w. As
mentioned above, this sum still lies in Z2, if we cancel the factor 2 that occurs. We can
rewrite this result as follows.

Corollary A.3. If n, w ≥ 2 are both even and r ≥ 1, then

ord2

(
r∑

s=0

(−1)s
(
r

s

)
Bn+sw

)
≥ min(n−2, re+ λ− 1),

where e = 1 + ord2 w ≥ 2, l = ⌊log2 r⌋ ≥ 0, and λ = min(r − 1, r − l + 2) ≥ 0.



THE TOPOLOGY OF STEIN FILLABLE MANIFOLDS IN HIGH DIMENSIONS II. 25

Proposition A.4. If m > n ≥ 2 are both even, then

ord2

(
1

Bn

−
1

Bm

)
= 2 + ord2(Bn − Bm) ≥ min(n, 2 + ord2(m− n)).

Proof. We first observe that

ord2

(
1

Bn

−
1

Bm

)
= ord2

(
Bn − Bm

BnBm

)
= 2 + ord2(Bn − Bm),

since by (7) we have ord2(Denom(BnBm)) = 2. Using Corollary A.3 with parameters r = 1
and w = m− n, we then infer that

ord2(Bn − Bm) ≥ min(n−2, ord2(m− n)),

completing the proof. �

Proof of Theorem A.1. Recall that k = 2jc where c is odd and j ≥ 1. Since k is even, the
Bernoulli numbers B2k and B4k have the same sign. Thus, we can apply Proposition A.4 to
obtain that

ord2

(
B2k − Bk

B2kBk

)
= 2 + ord2(B2k − B4k) ≥ min(2k, 3 + ord2 k) = 3 + ord2 k.

The last step follows by a simple counting argument. Since ord2 k = j, this gives the
result. �

In the Summer of 2013, Theorem A.1 arose as a conjecture. At the same time, it was
independently proved by Karl Dilcher and the author of this appendix using results of Carlitz.
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