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Abstract

A cross-free set of size m in a Steiner triple system (V, B) is three pairwise
disjoint m-element subsets X1, X9, X3 C V such that no B € B intersects all
the three X;-s. We conjecture that for every admissible n there is an STS(n)
with a cross-free set of size L"T_?’J which if true, is best possible. We prove this
conjecture for the case n = 18k + 3, constructing an STS(18k + 3) containing
a cross-free set of size 6k. We note that some of the 3-bichromatic STSs,
constructed by Colbourn, Dinitz and Rosa, have cross-free sets of size close to
6k (but cannot have size exactly 6k).

The constructed STS(18k+3) shows that equality is possible for n = 18k+3
in the following result: in every 3-coloring of the blocks of any Steiner triple
system STS(n) there is a monochromatic connected component of size at least
[%ﬂ + 1 (we conjecture that equality holds for every admissible n).

The analogue problem can be asked for r-colorings as well, if r — 1 =
1,3 (mod 6) and r — 1 is a prime power, we show that the answer is the same
as in case of complete graphs: in every r-coloring of the blocks of any STS(n),
there is a monochromatic connected component with at least -*5 points, and
this is sharp for infinitely many n.
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1 Introduction

A hyperwalk in a hypergraph H = (V, E) is a sequence vy, €1, Vg, €a, ..., V41, €11,V
of vertices and edges such that for all 1 < ¢ < ¢ we have v; € e; and v,y € e;.
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We say that v ~ w, if there is a hyperwalk from v to w. The relation ~ is an
equivalence relation, and the subhypergraphs induced by its classes are called the
connected components of H. A vertex v that is not covered by any edge forms a
trivial component with one vertex v and no edge.

The size of the largest monochromatic component in edge colorings of complete
graphs and hypergraphs is well investigated, for a present survey see [5]. For example,
in every 3-coloring of the edges of the complete graph K,, there is a monochromatic
connected component of size at least n/2 and in every 3-coloring of the edges of K2,
the complete 3-uniform hypergraph, there is a monochromatic spanning component.
What happens in between, when the blocks of a Steiner triple system (V,B) are
colored? For example, in every coloring of the blocks of STS(9) with 3 colors, there is
a monochromatic connected component of size at least 7 but in the 4-coloring of its
blocks defined by the four parallel classes, every component in every color has only 3
points. Let f(n) denote the largest m such that in every 3-coloring of the blocks of
any STS(n) there is a monochromatic connected component on at least m points. It
is easy to see that f(7) =6, f(9) = 7. Our main result is the following.

Theorem 1. f(6k + 3) > 4k + 3 with equality if k is divisible by 3. Moreover,
f(6k+1) >4k + 2.

In fact, the inequalities of Theorem [l are probably always sharp (one can easily
check the cases k = 1,2):

Conjecture 2. For every positive integer k, f(6k+ 1) = 4k + 2, f(6k + 3) = 4k + 3.

Three pairwise disjoint m-element sets of points, X1, Xo, X3 C V| is a cross-free
set of size m in a Steiner triple system (V,B) if no block B € B intersects each X;
in exactly one point. To obtain the upper bound in Theorem [I we need some STS
with a cross-free set of size almost n/3. In Theorem [ we construct an STS(6k + 3)
for the case k = 0 (mod 3) which contains a cross-free set of size 2k (and this is best
possible).

It is worth noting that constructions of Colbourn, Dinitz and Rosa in [2] provides
STS(n)-s with cross-free sets of size asymptotic to n/3. They construct 3-bichromatic
STSs where all points are partitioned into X7, X5, X3 so that every block intersects
precisely two of the X;-s and they can also control the sizes of the X;s. In particular,
they provide 3-bichromatic ST'S(n)s where the sizes are nearly equal to n/3. However,
it follows easily that in 3-bichromatic STS(n)s with | X;| < |Xs| < |Xj3], n/3 — | X}
tends to infinity with n. Therefore, to achieve a cross-free set of size 2k in an STS(6k+
3) the number of blocks inside the X;s tends to infinity with n.

To see the connection of cross-free sets to f(n), let G(n) be the size of the largest
cross-free set present in some STS(n).



Lemma 3. f(n) <n—G(n).

Proof. Suppose | X;| = |X3| = | X3] = G(n) for a cross-free set X1, Xy, X3 C V in
some STS(n). Then coloring any block B with the smallest ¢ such that B C V' \ X,
we have a 3-coloring of the blocks with one nontrivial monochromatic connected
component of size n — G(n) in each color. [

The next result implies the equality f(6k + 3) = 4k + 3 for k divisible by 3 in
Theorem [I]

Theorem 4. Forn = 18k + 3, G(n) = 6k.

In fact, Theorem [ probably can be extended, it would imply Conjecture
Conjecture 5. G(6k + 3) = 2k, G(6k + 1) = 2k — 1.

It is easy to see that Conjecture [l is sharp (if true). Indeed, a cross-free set of size
2k + 1 in an STS(6k + 3) would mean that there are at most 3(%;1) blocks and that
is less than (°*?)/3. Similarly, a cross-free set of size 2k in an STS(6k + 1) would
show that there are at most 3k + 3(22k) blocks, less than (Gk; 1) /3.

One can define f,.(n) similarly for r-colorings of blocks. A lower bound on it can
be easily derived from known results.

Proposition 6. f.(n) > [-25].

Proof. Any r-coloring of the blocks of an STS(n) defines an r-coloring of the edges
of K,, by coloring the three pairs defined by a block with the color of the block.
In this coloring there is a monochromatic, say red connected component C' with at
least [-“5] vertices, proved first in [4], a more accessible account is the survey [3].
The blocks covering the red edges of C' obviously span a red connected component
on C. O

The lower bound of Proposition [@l is trivially sharp for » = 2 but also for certain
other values of r, starting with » = 4, 8,10, 14, ...

Proposition 7. f,(n) = L5 for infinitely many n if r — 1 is in the form 3™, p™, ¢*™
where m > 1, p,q are primes, p=1 (mod 6),q = —1 (mod 6).

Proof. f,(n) > -5 follows from Proposition 6l Suppose 7 — 1 is a prime power in
the form 3™, p™, ¢*™ where m > 1, p, q are primes, p = 1 (mod 6),q = —1 (mod 6).
This implies that r — 1 = 1 (mod 6) or r — 1 = 3 (mod 6). Then there exists an
affine plane P of order r — 1 and we can define an STS((r — 1)?) by substituting
each line of P by a copy of an STS(r — 1). Then the blocks of STS((r — 1)?) can



be naturally colored with r colors according to the r parallel classes of P. In this
coloring every component has size r —1 = %, providing an example with equality.
To get infinitely many, we can apply the well-known direct product construction (see
[1]) of STS(ning) from STS(n1),STS(ng). Assume we already know that for some
t > 0 the blocks of STS(3!(r — 1)?) can be r-colored so that each color class has
r — 1 nontrivial components (of size 3'(r — 1)) and consider the STS(3!"!(r — 1)?)
defined as STS(3!(r — 1)?) xT where T is a single block on three points. Then each
component C' in each color class of STS(3!(r — 1)?) defines a component C' x T' in
STS(3!(r — 1)?) whose blocks in C' x T can be colored with the same color. This
defines a natural r-coloring of the blocks of STS(3!"!(r —1)?), preserving the property
that each color class has r — 1 nontrivial components. [

Our problem to determine f(n) led to find G(n), the size of the largest cross-free
set present in some STS(n). It seems natural and interesting to find or estimate the
size g(n) of the largest cross-free set present in any STS(n). Obviously,

Gn) > gln) > 27
where a(n) is the largest independent set present in any STS(n). For the most recent
result and history on a(n) see [3].

Problem 8. Is g(n) significantly smaller than G(n)?

2 Proof of Theorems [, 4

We prove first that f(6k 4+ 3) > 4k + 3, f(6k + 1) > 4k + 2.

Suppose that the blocks of an STS (V, B) with |V| = n are 3-colored and consider
the three components C, Cs, C3 in colors 1,2, 3 containing a point v € V. There are
some cases according to the number of C;s with points covered only by C;, we call
such points as “private parts” of C;.

Case 1. No C; has private part. In this case the sets C; doubly cover V' \ {v} and v is
triply covered. This implies easily that f(6k+3) > 4k+3 and also f(6k+1) > 4k+2,
unless if the C;s intersect in one point and all the three doubly covered sets have size

2k. However, in this case we can have 3k blocks covering v and any other block must
6k+1)

cover a pair of (C; N C;) \ {v}. Thus altogether we have at most 3k + 3(22k) < (%
blocks in STS(6k + 1) and that is a contradiction.

Case 2. Only (' has a private part. Now there is no point w € V' that belongs to
(Co N C3) \ C1, otherwise no block can cover wx where z is from the private part of
(1. Thus in this case C] covers V.



Case 3. Two (s, say C,Cy have private parts. Now (C; N Cs) \ Cy and (C7 N
C5) \ C5 are both empty and any pair of points x,y from the private parts of C7, Cs,
respectively, must be in a block colored with color 3. Thus the union of the private
parts of C7, Cs is part of a component C' of color 3. We can now apply the argument
of Case 1 to the components C, C1, Cs.

Case 4. All C;s have private parts. Now sets covered by precisely two of C4, Cy, Cs
must be empty and the private parts X; C C; together with X, = C, N Cy N Ch,
partition V. Pairs of points x € X,y € X, must be in a block of color 3, pairs of
points x € X7,y € X3 must be in a block of color 2, pairs of points z € X5,y € X3
must be in a block of color 1, thus the union of any two X;s is covered by (in fact
equal to) a monochromatic component. Observe that every block of our (V, B) must
contain a pair from some of the X;s, thus

4 n
| X (5)
= > =L 1
First let n = 6k + 3, assume w.l.o.g that
[ Xq| < [Xo] < [X5] < | Xy,

If |X3| > 3k + 1+t for some positive integer ¢ then let X; be the largest among
Xg,Xg,X4. Then

3k —t+2
\X1\+\Xj|z3k+1+t+%z4k+3

proving what we need. However, if |X;| < 3k + 1 then the maximum of s (under
the condition that each component has size at most 2k + 2) is obtained when | X;| =
3k +1,|Xs| = | X3| = k+ 1,|X4| = k. But this contradicts to (). Similar argument
works if n = 6k + 1, then

| X1| =3k +1,|Xs] = [Xs| = |Xy| =k

gives the largest s and the contradiction.

This finishes the proof of the two inequalities of Theorem [ It is left to prove
that f(6k + 3) = 4k + 3 if k is divisible by 3, i.e. to prove Theorem @l In fact we
need to prove only that G(n) > 6k, however G(n) < 6k + 1 follows easily: a partition
of V for a STS(18k + 3) into three sets of size 6k + 1 cannot be cross-free since then
there are at most t = 3(6kz+ 1) blocks and ¢ is less than the number of blocks required
in an STS(18k + 3).

We construct an STS(18% + 3) with a cross-free set of size 6k as follows. Let Hy
be the graph with 6k vertices and 4k edges, having 2k components, k of them a Pj,
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a path on four vertices, and k of them a single edge. We call the middle of Hj the
union of the middle edges of the P, components in Hy. A near factor of a graph with
2m (or 2m — 1) vertices means m — 1 pairwise disjoint edges.

Lemma 9. Let T be the graph containing k vertex disjoint edges on 6k vertices. Then
the edge set of Gy, = K \T can be partitioned into 2k factors Fi, ..., Fy, and 4k
near factors Ey, ..., Ey in such a way that the pairs uncovered by the near factors
form a graph isomorphic to Hy, and in the isomorphism the middle of Hy corresponds
to the pairs of T.

Based on the lemma, we define an STS(18% + 3) with a cross-free set of size 6k.
Take three disjoint copies of Hj on vertex sets Xy, X7, X5 and define 7 as a partial
triple system PTS(18k) on U?_,X; as follows. Partition each X; into k P, paths
11, U0, O3, 014 and k edges ag; s, ag;yq for j =0,... k—1. This way each X;
spans a copy of Hy.

Now Lemma [9 can be applied with vertex set Xy to obtain 2k factors and 4k
near factors with the required properties (with respect to the copy of Hy C Xj).
We can extend these factors and near-factors to blocks of 7, using vertices of X; as
follows. Let aéj 44 define blocks with the pairs of the near factor £y, with uncovered
pair ag;, s, agjys, j = 0,...,k — 1. Then ag, , defines blocks with the pairs of the
near factor Eyjio with uncovered pair ag;,5,ag;,.6, 7 = 0,...,k — 1; similarly ag;,¢
defines blocks with the pairs of the near factor Ey;3 with uncovered pair ag;, , ag; o,
j=0,...,k—1; and ag; 5 defines blocks with the pairs of the near factor Ej;14 with
uncovered pair ag;, s, ag;. 4, j = 0,...,k — 1. Finally, ag;,,, ag;,3 define blocks with
the pairs of the factors Fyjiq, oy, 7 =0,...,k — 1.

The construction of the previous paragraph can be repeated cyclically, defining
blocks with one vertex in X5 and two in X;, and a third time defining blocks with
one vertex in Xy and two in X5. By Lemma [0 the partial STS 7 defined this way
covers all pairs of Xy U X; U Xy except a 3-regular graph U of with the following
edges: ag; o, a; 5 for i = 0,1,2 and j = 0,...,k — 1 (formed by the middle of the
three copies of Hy) and the 3 x 8k edges between the pairs X;, X; that belong to the
uncovered pairs of the 3 x 4k near factors. It can be easily seen that the graph U can
be factored into three 1-factors. In fact, these factors are

i i i -1 i i—1
Qej425 U65+35 A6j+17 Doj+60 Dej+5) Agjt4

i -1 i -1 i i—1
Qgj+45 Ugj+25 A6j+57 Do5+3) Dej+6> pj+15
i -1 i -1 i i—1
Agj115 Q65455 gt Y6537 Agj+65 Va2
where : = 0,1,2 and 5 =0,...k — 1 with arithmetic on 7, j-s are modulo 3, 6, respec-
tively.



Finally, T is extended to an STS(18k+3) by extending each factor of U to a block
with one of three new points A, B, C' which also forms the last block. This finishes
the proof of Theorem [ and with it Theorem [l [

Proof of Lemma Ol The required partition is constructed from the standard fac-
torization of Kg, on vertex set {1,2,...,6k — 1} Uoco where (for i =1,2,...,6k — 1)
factor F; contains (i,00) and {(i — j,i +j) : 1 < j < 3k — 1} with mod 6k — 1
arithmetic.

We shall keep 2k — 1 of the factors F; and define the near factors Ey, ..., Ey by
deleting one edge from each of the other 4k factors so that the deleted edges form a
graph isomorphic to Hy. The factor formed by the middle of Hj, is left uncovered and
all other edges of H; form a new factor F™* which is added as the 2k-th factor in the
partition. To define the construction, it is enough to specify the set of 4k pairs (all
from different F;) which form a graph Z; isomorphic to Hy. The construction is the
simplest for K =1 (mod 2) so we describe that first.

Suppose that £ = 1 (mod 2) and set W = {(1,3),(2,4), (3,5), (5,00)}. More-
over, for m € {6,12,...,6(k —2)} let L,, = A,, U B,,, be the following set of eight
pairs on twelve consecutive numbers:

Ap ={(m,m+2),(m+2,m+4),(m+4,m+6),(m+1,m+3)},

It is immediate to check that W, A,,, B,, are all define (6-vertex) graphs with a P,
component and a K, component. Thus the graph Zj defined by W (for £ = 1) and
by WU%]:Gz) L,, (for odd k > 1) is isomorphic to Hy. Moreover, since all edges (apart
from (5,00)) of Zj are in the form (j,7 4+ 2) and j # 4, each edge of Z; belongs to
different F;.

The case k =0 (mod 2) is slightly more involved, we use another type of com-
ponents C,,, D,, (beside W) to define Z.

Cr = {(m,m + 1), (m,m +2), (m + 2,m +4), (m+ 3,m +5)},
Dy = {(m,m+2), (m+1,m+2),(m+1,m+3),(m+4,m+5)}.

For k = 2 we use W followed by Cg to define Z,. For k > 2 start with W, then g copies
of Cp, (m = 6,12,...,3k) then £52 copies of D,,, (m = 3k+6,...,6(k—1)). To check
here that each edge of Z; belongs to different Fj, note that “jumping pairs” (j, 7+ 2)
are obviously from different F; (from Fji;). The same is true for the “consecutive
pairs” (j,7 + 1). To check consecutive pairs against jumping pairs, notice that for
m = 6,12,...,3k the pair (m,m+ 1) of C,, belongs to Fzjy, a starting point of the
D-block opposite to (), thus it is not skipped by any jumping pair. Similarly, for



m =3k +6,...,6(k—1), the pairs (m+ 1,m + 2) and (m +4,m +5) in D,,, belong
to Fio-sr and F, 5 3, respectively, and they are not skipped in their opposite
C-blocks. [
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