Extremal numbers for odd cycles

Zoltan Füredi^{*} and David S. Gunderson[†]

* Rényi Institute of Mathematics, Hungarian Academy of Sciences E-mail: z-furedi@illinois.edu, furedi.zoltan@renyi.mta.hu

† University of Manitoba, Winnipeg, Canada E-mail: David.Gunderson@umanitoba.ca

Abstract

We describe the C_{2k+1} -free graphs on n vertices with maximum number of edges. The extremal graphs are unique for $n \notin \{3k-1, 3k, 4k-2, 4k-1\}$. The value of $\operatorname{ex}(n, C_{2k+1})$ can be read out from the works of Bondy [3], Woodall [14], and Bollobás [1], but here we give a new streamlined proof. The complete determination of the extremal graphs is also new.

We obtain that the bound for $n_0(C_{2k+1})$ is 4k in the classical theorem of Simonovits, from which the unique extremal graph is the bipartite Turán graph.

^{*} Research supported in part by the Hungarian National Science Foundation OTKA 104343, and by the European Research Council Advanced Investigators Grant 267195.

[†] Research supported by NSERC Discovery grant 228064.

MSC-class: 05C35, 05D99 Furedi Gunderson exoddcycles 2013 10 24 October 2013 Keywords: Turan graph problem, extremal graphs, odd cycles Printed on October 28, 2013

1 Introduction, exact Turán numbers

Given a class of simple graphs \mathcal{F} let us call a graph \mathcal{F} -free if it contains no copy of F as a (not necessarily induced) subgraph for each $F \in \mathcal{F}$. Let $\operatorname{ex}(n; \mathcal{F})$ denote the maximal number of edges in an \mathcal{F} -free graph on n vertices. If the class of graphs $\mathcal{F} = \{F_1, F_2, \ldots\}$ consists of a single graph then we write $\operatorname{ex}(n; F)$ instead of $\operatorname{ex}(n; \{F\})$.

Let $T_{n,p}$ denote the $Tur\'{a}n$ graph, the complete equi-partite graph, $K_{n_1,n_2,...,n_p}$ where $\sum_i n_i = n$ and $\lfloor n/p \rfloor \leq n_i \leq \lceil n/p \rceil$. By Tur\'{a}n's theorem [12, 13] we have $\operatorname{ex}(n; K_{p+1}) = e(T_{n,p})$; furthermore, $T_{n,p}$ is the unique K_{p+1} -free graph that attains the extremal number. The case $\operatorname{ex}(n; K_3) = \lfloor n^2/4 \rfloor$ was shown earlier by Mantel [10].

There are very few cases when the Turán number $ex(n; \mathcal{F})$ is known exactly for all n. One can mention the case when $F = M_{\nu+1}$ is a matching of a given size, $\nu + 1$. Erdős and Gallai [6] showed that

$$ex(n, M_{\nu+1}) = max\{\binom{2\nu+1}{2}, \binom{\nu}{2} + \nu(n-\nu)\}.$$

For the path of k vertices Erdős and Gallai [6] proved an asymptotic and $\operatorname{ex}(n; P_k)$ was determined for all n and k by Faudree and Schelp [7] and independently by Kopylov [9]. Erdős and Gallai [6] proved an asymptotic for the class of long cycles $\mathcal{C}_{\geq \ell} := \{C_{\ell}, C_{\ell+1}, C_{\ell+2}, \ldots\}$. The exact value of the Turán number $\operatorname{ex}(n; \mathcal{C}_{\geq \ell})$ was determined by Woodall [15] and independently and at the same time by Kopylov [9].

There is one outstanding result which gives infinitely many exact Turán numbers, Simonovits' chromatic critical edge theorem [11]. It states that if $\min\{\chi(F): F \in \mathcal{F}\} = p+1 \geq 3$ and there exists an $F \in \mathcal{F}$ with an edge $e \in E(F)$ such that by removing this edge one has $\chi(F-e) \leq p$, then there exists an $n_0(\mathcal{F})$ such that $T_{n,p}$ is the only extremal graph for \mathcal{F} for $n \geq n_0$. The authors are not aware of any (non-trivial) further result when $\mathrm{ex}(n,\mathcal{F})$ is known for all n, neither any F for which the value of $n_0(F)$ had been determined, except the case of odd cycle discussed below.

2 The result, the extremal graphs without C_{2k+1}

The aim of this paper is to determine the Turán number of odd cycles for all n and C_{2k+1} together with the extremal graphs. The value of $ex(n, C_{2k+1})$ can be read out from the works of Bondy [2, 3], Woodall [14], and Bollobás [1] (pp. 147–156) concerning (weakly) pancyclic graphs. For a recent presentation see Dzido [5] who also considered the Turán number of wheels. But here we give a new streamlined proof and a complete description of the extremal graphs.

Since $K_{\lceil n/2\rceil,\lfloor n/2\rfloor}$ contains no odd cycles, for any $k \geq 1$, $\operatorname{ex}(n; C_{2k+1}) \geq \lfloor n^2/4 \rfloor$. For C_3 here equality holds for all n with the only extremal graph is $T_{n,2}$ by the Turán-Mantel's theorem. From now on, we suppose that $2k+1 \geq 5$. Also for $n \leq 2k$ obviously $\operatorname{ex}(n, C_{2k+1}) = \binom{n}{2}$ so we may suppose that $n \geq 2k+1$.

Every edge of an odd cycle is color critical so Simonovits' theorem implies that the complete bipartite graph is the only extremal graph and $\operatorname{ex}(n; C_{2k+1}) = e(T_{n,2}) = \lfloor n^2/4 \rfloor$ for $n \geq n_0(C_{2k+1})$. After choosing the right tools we present a streamlined proof and show that $n_0(C_{2k+1}) = 4k$ (in case of $2k+1 \geq 5$).

We define two classes of C_{2k+1} -free graphs which could have at least as many edges as $T_{n,2}$ for $n \leq 4k-1$. A cactus $B(n; n_1, \ldots, n_s)$ (for $n \geq 2$, $s \geq 1$ with $\sum_i (n_i - 1) = n - 1$) is a connected graph where the 2-connected blocks are complete graphs of sizes n_1, \ldots, n_s . Let us denote by g(n, k) the largest size of an n-vertex cactus avoiding C_{2k+1} . For this maximum all block sizes should be exactly 2k but at most one which is smaller. Write n in the form n = (s-1)(2k-1) + r where $s \geq 1$, $2 \leq r \leq 2k$ are integers. Then

$$g(n,k) = (s-1)\binom{2k}{2} + \binom{r}{2}.$$
(1)

Note that $g(n,k) > \lfloor n^2/4 \rfloor$ for $3 \le n \le 4k-3$ and we have $g(n,k) = e(T_{n,2}) = \lfloor n^2/4 \rfloor$ if $n \in \{4k-2, 4k-1\}$. Thus the Simonovits threshold $n_0(C_{2k+1})$ is at least 4k.

For $n \geq k$, define the graph $H_1(n,k)$ on n vertices by its degree sequence; it has k vertices of degree n-1 and all other vertices have degree k. Then $H_1(n,k)$ is a complete bipartite graph $K_{k,n-k}$, together with all possible edges added in the first partite set. This graph does not contain the cycle C_{2k+1} . Letting $h_1(n,k)$ denote the size of $H_1(n,k)$,

$$h_1(n,k) = \binom{k}{2} + k(n-k).$$
 (2)

Note that $h_1(n, k) \leq g(n, k)$ for all $k \leq n$ and here equality holds if n is in the form n = (s-1)(2k-1) + r where $s \geq 1$ and $r \in \{k, k+1\}$.

Theorem 1. For any $n \ge 1$ and $2k + 1 \ge 5$,

$$ex(n; C_{2k+1}) = \begin{cases} \binom{n}{2} & for \ n \le 2k, \\ g(n, k) & for \ 2k + 1 \le n \le 4k - 1 \ and \\ \lfloor n^2/4 \rfloor & for \ n \ge 4k - 2. \end{cases}$$

Furthermore, the only extremal graphs are K_n for $n \leq 2k$; B(n; 2k, n-2k+1) for $2k+1 \leq n \leq 4k-1$; $H_1(n,k)$ for $n \in \{3k-1,3k\}$; and the complete bipartite graph $K_{\lceil n/2 \rceil, \lceil n/2 \rceil}$ for $n \geq 4k-2$.

3 A lemma on 2-connected graphs without C_{2k+1}

Lemma 2. Suppose that $n \geq 2k+1 \geq 5$ and G is a 2-connected, C_{2k+1} -free, non-bipartite graph with at least $\lfloor n^2/4 \rfloor$ edges. Then $e(G) \leq ex(n; C_{2k+1})$ and here equality holds only if $n \in \{3k-1, 3k\}$ and $G = H_1(n, k)$.

For $5 \le 2k+1 \le n$, define the graph $H_2(n,k)$ on n vertices and

$$h_2(n,k) := {2k-1 \choose 2} + 2(n-2k+1)$$

edges, consisting of a complete graph K_{2k-1} containing two special vertices which are connected to all other vertices. Then $H_2(n,k)$ is a 2-connected C_{2k+1} -free graph. For k=2 the graphs $H_1(n,k)$ and $H_2(n,k)$ are isomorphic. Recall a result of Kopylov [9] in a form we use it: Suppose that the 2-connected graph G on n vertices contains no cycles of length 2k+1 or larger and $n \geq 2k+1 \geq 5$. Then

$$e(G) \le \max\{h_1(n,k), h_2(n,k)\}$$
 (3)

and this bound is the best possible. Moreover, only the graphs $H_1(n,k)$ and $H_2(n,k)$ could be extremal. For further explanation and background see the recent survey [8].

The other result we need is due to Brandt [4]: Let G be a non-bipartite graph of order n and suppose that

$$e(G) > (n-1)^2/4 + 1,$$
 (4)

then G contains cycles of every length between 3 and the length of its longest cycle.

Proof of Lemma 2: The inequality $e(G) \leq \operatorname{ex}(n, C_{2k+1})$ follows from the definition. Suppose that here equality holds. Apply Brandt's theorem (4). We obtain that G contains cycles of all lengths $3, 4, \ldots, \ell$ where ℓ stands for the longest cycle length in G. It follows that $\ell \leq 2k$. Kopylov's theorem (3) implies that

$$\max\{g(n,k), \lfloor n^2/4 \rfloor\} \le \exp(n, C_{2k+1}) = e(G) \le \max\{h_1(n,k), h_2(n,k)\}.$$

Since $g(n,k) > h_2(n,k)$ except for $(n,k) \in \{(5,2),(6,2)\}$ and $g(n,k) > h_1(n,k)$ except if n is in the form n = (s-1)(2k-1) + r where $s \ge 2$ and $r \in \{k, k+1\}$ we obtain that $e(G) = h_1(n,k)$, n should be in this form, and $G = H_1(n,k)$.

Finally, $h_1(n,k) < \lfloor n^2/4 \rfloor$ for $n \ge 4k$ so we obtain that indeed $n \in \{3k-1,3k\}$. \square

4 The proof of Theorem 1

Suppose that G is an extremal C_{2k+1} -free graph, $e(G) = \operatorname{ex}(n, C_{2k+1})$. Then G is connected. Consider the cactus-like block-decomposition of G, $V(G) = V_1 \cup V_2 \cup \cdots \cup V_s$, where the induced subgraphs $G[V_i]$ are either edges or maximal 2-connected subgraphs of G. Let $n_i := |V_i|$, we have $n-1 = \sum_i (n_i-1)$, and each $n_i \geq 2$. We have $e(G[V_i]) = \operatorname{ex}(n_i, C_{2k+1})$ otherwise one can replace $G[V_i]$ by an extremal graph of the same order n_i and obtain another C_{2k+1} -free graph of size larger than e(G). Therefore $e(G[V_i]) \geq |n_i^2/4|$ and there are three types of blocks

- complete graphs (if $n_i \leq 2k$),
- bipartite blocks with $e(G[V_i]) = \lfloor n_i^2/4 \rfloor$. Finally,
- if $n_i \ge 2k+1$ and $G[V_i]$ is not bipartite then Lemma 2 implies that $n_i \in \{3k-1, 3k\}$ and $G[V_i] = H_1(n_i, k)$.

We may rearrange the graphs $G[V_i]$ and the sets V_i such a way that they share a common vertex $v \in \cap V_i$ and otherwise the sets $V_i \setminus \{v\}$ are pairwise disjoint. The obtained new graph G^* also C_{2k+1} -free and extremal, it has the same size and order as G has.

If s = 1 then we are done. Suppose $s \ge 2$. If all blocks are complete graphs, then $e(G) \le g(n, k)$. Since $g(n, k) < e(T_{n,2})$ for n > 4k - 1 we get that $n \le 4k - 1$ and G^* (and G) has only two blocks and at least one of them is of size 2k.

Finally, suppose that there are two blocks V_i and V_j , $|V_i| = a$ and $|V_j| = b$, such that $G[V_i]$ and $G[V_j]$ are not both complete subgraphs. We claim that in this case one can remove the edges of $G[V_i]$ and $G[V_j]$ from G^* and place a copy of $T_{a+b-1,2}$ or some other graph L onto $V_i \cup V_j$ such that the obtained new graph is C_{2k+1} -free and it has more edges than e(G), a contradiction.

Indeed, if $G[V_i]$ is a large bipartite graph, $a := n_i \ge 2k + 1$, $G[V_i] = T_{a,2}$ and $G[V_j]$ is a complete bipartite graph, too, then we can increase $e(G^*)$ since

$$e(T_{a,2}) + e(T_{b,2}) \le \frac{1}{4}a^2 + \frac{1}{4}b^2 < \lfloor \frac{1}{4}(a+b-1)^2 \rfloor = e(T_{a+b-1,2}).$$
 (5)

In the remaining cases the inequalities concerning the number of edges of e(L) are just elementary high school algebra. If $G[V_i] = T_{a,2}$ and $G[V_j] = H_1(b,k)$ or K_b then we can replace them again by a complete bipartite graph $T_{a+b-1,2}$. From now on, we may suppose that each block is either a complete graph (of size at most 2k) or an $H_1(a,k)$. If $G[V_i] = H_1(a,k)$ for some $a \in \{3k-1,3k\}$ and $G[V_j] = H_1(b,k)$ (with $b \in \{3k-1,3k\}$) or $G[V_j] = K_b$ with $k \le b \le 2k$ then we replace $G[V_i] \cup G[V_j]$ again by a $T_{a+b-1,2}$. Finally, if $G[V_i] = H_1(a,k)$ for some $a \in \{3k-1,3k\}$ and $G[V_j] = K_b$ with $2 \le b \le k$ then we replace $G[V_i] \cup G[V_j]$ by two complete graphs of sizes 2k

and a+b-2k and use $e(H_1(a,k))+e(K_b) < e(B(a+b-1;2k,a+b-2k))$ to get a contradiction. This completes the proof of the claim and Theorem 1.

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1979. 1, 2
- [2] J. A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971), 80–84. 2
- [3] J. A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971), 121–132. 1, 2
- [4] S. Brandt, A sufficient condition for all short cycles, in: 4th Twente Workshop on Graphs and Combinatorial Optimization (Enschede, 1995). Discrete Appl. Math. 79 (1997), 63–66. 4
- [5] T. Dzido, A note on Turán numbers for even wheels, Graphs Combin. 29 (2013), 1305–1309.
- [6] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, *Acta Math. Acad. Sci. Hung.* **10** (1959), 337–356. 2
- [7] R. J. Faudree and R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150–160. 2
- [8] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, *Bolyai Soc. Studies* (The Erdős Centennial) **25** (2013), 167–262. 4
- [9] G. N. Kopylov, Maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR 234 (1977), no. 1, 19–21. (English translation: Soviet Math. Dokl. 18 (1977), no. 3, 593–596.) 2, 4
- [10] W. Mantel, Solution to Problem 28, by H. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh, and W. A. Wythoff, Wiskundige Opgaven 10 (1907), 60–61.
- [11] M. Simonovits, Extremal graph problems with symmetrical extremal graphs, additional chromatic conditions, *Discrete Math.* **7** (1974), 349–376. 2
- [12] P. Turán, Eine Extremalaufgave aus der Graphentheorie (in Hungarian), Math. Fiz Lapook 48 (1941), 436–452. 2
- [13] P. Turán, On the theory of graphs, Collog. Math. 3 (1954), 19–30. 2
- [14] D. R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc.
 (3) 24 (1972), 739–755. 1, 2
- [15] D. R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976), 77–80. 2