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Extremal numbers for odd cycles
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Abstract

We describe the Coy41-free graphs on n vertices with maximum number of
edges. The extremal graphs are unique for n ¢ {3k — 1,3k, 4k — 2,4k —1}. The
value of ex(n, Cox1) can be read out from the works of Bondy [3], Woodall [14],
and Bollobds [I], but here we give a new streamlined proof. The complete
determination of the extremal graphs is also new.

We obtain that the bound for ng(Coxy1) is 4k in the classical theorem of
Simonovits, from which the unique extremal graph is the bipartite Turan graph.
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1 Introduction, exact Turan numbers

Given a class of simple graphs F let us call a graph F-free if it contains no copy of
F as a (not necessarily induced) subgraph for each F' € F. Let ex(n; F) denote the
maximal number of edges in an F-free graph on n vertices. If the class of graphs F =
{F, F, ...} consists of a single graph then we write ex(n; F') instead of ex(n; {F'}).

Let T,, denote the Turdn graph, the complete equi-partite graph, Ky n, .n,
where > .n; = n and |n/p] < n; < [n/p]. By Turdn’s theorem [12, 13| we have
ex(n; Kp1) = e(T,.p); furthermore, T, , is the unique K, -free graph that attains
the extremal number. The case ex(n; K3) = [n?/4]| was shown earlier by Mantel [10].

There are very few cases when the Turdn number ex(n; F) is known exactly for
all n. One can mention the case when F' = M, is a matching of a given size, v + 1.
Erdés and Gallai [6] showed that

ex(n, M, 1) = max{ <2”2+ 1), <; ) +u(n—v)}.

For the path of k vertices Erdés and Gallai [6] proved an asymptotic and ex(n; Py)
was determined for all n and k by Faudree and Schelp [7] and independently by
Kopylov [9]. Erdés and Gallai [6] proved an asymptotic for the class of long cycles
Cse = {Cs, Crs1,Crya, ... }. The exact value of the Turan number ex(n;Cs,) was
determined by Woodall [I5] and independently and at the same time by Kopylov [9].
There is one outstanding result which gives infinitely many exact Turan numbers,
Simonovits’ chromatic critical edge theorem [11]. It states that if min{yx(F') : F' €
F} =p+1 > 3 and there exists an F' € F with an edge e € E(F) such that by
removing this edge one has x(F — e) < p, then there exists an no(F) such that 7, ,
is the only extremal graph for F for n > ngy. The authors are not aware of any (non-
trivial) further result when ex(n, F) is known for all n, neither any F' for which the
value of ng(F') had been determined, except the case of odd cycle discussed below.

2 The result, the extremal graphs without (54

The aim of this paper is to determine the Turan number of odd cycles for all n
and Coyy 1 together with the extremal graphs. The value of ex(n, Cy,y1) can be read
out from the works of Bondy [2] B], Woodall [14], and Bollobas [1] (pp. 147-156)
concerning (weakly) pancyclic graphs. For a recent presentation see Dzido [5] who
also considered the Turdn number of wheels. But here we give a new streamlined
proof and a complete description of the extremal graphs.



Fiiredi-Gunderson: Extremal numbers for odd cycles 3

Since KTy /21,n/2) contains no odd cycles, for any k > 1, ex(n; Copt1) > [n?/4].
For C3 here equality holds for all n with the only extremal graph is 7,2 by the
Turan-Mantel’s theorem. From now on, we suppose that 2k +1 > 5. Also for n < 2k
obviously ex(n, Co11) = (5) so we may suppose that n > 2k + 1.

Every edge of an odd cycle is color critical so Simonovits’ theorem implies that
the complete bipartite graph is the only extremal graph and ex(n; Copt1) = €(T2) =
[n?/4| for n > ng(Cyxrq). After choosing the right tools we present a streamlined
proof and show that ng(Cary1) = 4k (in case of 2k + 1 > 5).

We define two classes of Cyyyi-free graphs which could have at least as many
edges as T,,o for n < 4k — 1. A cactus B(n;ny,...,ns) (for n > 2, s > 1 with
> .(n; —1) =n—1) is a connected graph where the 2-connected blocks are complete
graphs of sizes nq,...,ns. Let us denote by g(n, k) the largest size of an n-vertex
cactus avoiding Cygy1. For this maximum all block sizes should be exactly 2k but at
most one which is smaller. Write n in the form n = (s — 1)(2k — 1) + r where s > 1,
2 <r < 2k are integers. Then

st = =05 ) + (). 1)

Note that g(n, k) > [n?/4] for 3 < n < 4k—3 and we have g(n, k) = e(T,2) = |n?/4]
if n € {4k — 2,4k — 1}. Thus the Simonovits threshold ng(Cao1) is at least 4k.

For n > k, define the graph H;(n, k) on n vertices by its degree sequence; it has
k vertices of degree n — 1 and all other vertices have degree k. Then Hi(n,k) is a
complete bipartite graph Ky ,_, together with all possible edges added in the first
partite set. This graph does not contain the cycle Cyy1. Letting hy(n, k) denote the
size of Hy(n, k),

k
hi(n, k) = <2) + k(n — k). (2)
Note that hi(n, k) < g(n, k) for all £ < n and here equality holds if n is in the form
n=(s—1)(2k —1)+r where s > 1 and r € {k,k + 1}.
Theorem 1. For anyn > 1 and 2k +1 > 5,

(72‘) for n <2k,
ex(n; Copy1) = § g(n, k) for 2k+1<n<4k—1 and

|n?/4]  for n >4k — 2.
Furthermore, the only extremal graphs are K,, for n < 2k; B(n;2k,n — 2k + 1) for

2k+1<n<4k—1; Hi(n, k) forn € {3k — 1,3k}; and the complete bipartite graph
K21, 1n/2) forn >4k — 2.
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3 A lemma on 2-connected graphs without Cy;,.

Lemma 2. Suppose that n > 2k +1 > 5 and G is a 2-connected, Copy1-free, non-
bipartite graph with at least [n*/4] edges. Then e(G) < ex(n; Cor11) and here equality
holds only if n € {3k — 1,3k} and G = Hy(n, k).

For 5 < 2k + 1 < n, define the graph Hy(n, k) on n vertices and

ho(n, k) = (%2_ 1) b — 2k +1)

edges, consisting of a complete graph Ky, containing two special vertices which are
connected to all other vertices. Then Hy(n, k) is a 2-connected Cyyy1-free graph. For
k = 2 the graphs H,(n, k) and Hy(n, k) are isomorphic. Recall a result of Kopylov [9]
in a form we use it: Suppose that the 2-connected graph G on n vertices contains no
cycles of length 2k + 1 or larger and n > 2k + 1 > 5. Then

e(G) < max{hi(n, k), ha(n, k)} (3)

and this bound is the best possible. Moreover, only the graphs H;(n, k) and Hy(n, k)
could be extremal. For further explanation and background see the recent survey [g].

The other result we need is due to Brandt [4]: Let G be a non-bipartite graph of
order n and suppose that

e(G) > (n—1)*/4+1, (4)
then G contains cycles of every length between 3 and the length of its longest cycle.

Proof of Lemma 2@ The inequality e(G) < ex(n, Coxy1) follows from the definition.
Suppose that here equality holds. Apply Brandt’s theorem (d]). We obtain that G
contains cycles of all lengths 3,4, ..., ¢ where ¢ stands for the longest cycle length in
G. It follows that ¢ < 2k. Kopylov’s theorem (B]) implies that

max{g(n, k), [n?/4]} < ex(n, Copt1) = e(G) < max{hi(n, k), ha(n, k)}.

Since g(n,k) > ha(n, k) except for (n,k) € {(5,2),(6,2)} and g(n,k) > hi(n,k)
except if n is in the form n = (s — 1)(2k — 1) +r where s > 2 and r € {k, k+ 1} we
obtain that e(G) = hy(n, k), n should be in this form, and G = Hi(n, k).

Finally, hy(n, k) < |n?/4] for n > 4k so we obtain that indeed n € {3k—1,3k}. O
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4 The proof of Theorem (1

Suppose that G is an extremal Cor i-free graph, e(G) = ex(n,Cory1). Then G is

connected. Consider the cactus-like block-decomposition of G, V(G) = V; UV, U
--UVj, where the induced subgraphs G[V;] are either edges or maximal 2-connected

subgraphs of G. Let n; := |V;|, we have n — 1 = " .(n; — 1), and each n;, > 2. We

have e(G[Vi]) = ex(n;, Cox11) otherwise one can replace G[V;] by an extremal graph

of the same order n; and obtain another Co;-free graph of size larger than e(G).

Therefore e(G[V;]) > |n?/4] and there are three types of blocks

— complete graphs (if n; < 2k),

— bipartite blocks with e(G[V;]) = |n?/4]. Finally,

—if n; > 2k+1 and G[V}] is not bipartite then Lemma[2limplies that n; € {3k—1, 3k}

and G[‘/z] = Hl(ni, ]{7)

We may rearrange the graphs G[V;] and the sets V; such a way that they share
a common vertex v € NV; and otherwise the sets V; \ {v} are pairwise disjoint. The
obtained new graph G* also Uy ;-free and extremal, it has the same size and order
as G has.

If s =1 then we are done. Suppose s > 2. If all blocks are complete graphs, then
e(G) < g(n, k). Since g(n, k) < e(T,2) for n > 4k — 1 we get that n < 4k — 1 and G*
(and G) has only two blocks and at least one of them is of size 2k.

Finally, suppose that there are two blocks V; and Vj}, |V;| = a and |V;| = b, such
that G[V;] and G[V;] are not both complete subgraphs. We claim that in this case
one can remove the edges of G[V;] and G[V}] from G* and place a copy of T4p_1,2 or
some other graph L onto V; UV} such that the obtained new graph is Cy41-free and
it has more edges than e(G), a contradiction.

Indeed, if G[V}] is a large bipartite graph, a :=n; > 2k+1, G[V;] = 1,2 and G[V}]
is a complete bipartite graph, too, then we can increase e¢(G*) since

e(To2) + e(Tho) < iaQ + ibQ < Li(a +b—1)?] = e(Tuyp_12)- (5)
In the remaining cases the inequalities concerning the number of edges of e(L) are
just elementary high school algebra. If G[V;| =T, and G[V;] = Hy(b, k) or K, then
we can replace them again by a complete bipartite graph 7;44—12. From now on, we
may suppose that each block is either a complete graph (of size at most 2k) or an
Hi(a, k). If GV;] = Hy(a, k) for some a € {3k — 1,3k} and G[V;] = H;(b, k) (with
b e {3k —1,3k}) or G]V;] = K}, with k < b < 2k then we replace G[V;] U G[V}] again
by a T,4p—10. Finally, if G[V;] = Hy(a, k) for some a € {3k — 1,3k} and G[V;] = K,
with 2 < b < k then we replace G[V;] U G[V;] by two complete graphs of sizes 2k
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and a + b — 2k and use e(Hi(a, k)) + e(Kp) < e(B(a+b—1;2k,a+ b—2k)) to get a
contradiction. This completes the proof of the claim and Theorem [Il O
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