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DECOMPOSING THE REAL LINE INTO BOREL SETS CLOSED

UNDER ADDITION

MÁRTON ELEKES AND TAMÁS KELETI

Abstract. We consider decompositions of the real line into pairwise disjoint
Borel pieces so that each piece is closed under addition. How many pieces can
there be? We prove among others that the number of pieces is either at most
3 or uncountable, and we show that it is undecidable in ZFC and even in the
theory ZFC + c = ω2 if the number of pieces can be uncountable but less
than the continuum. We also investigate various versions: what happens if we

drop the Borelness requirement, if we replace addition by multiplication, if the
pieces are subgroups, if we partition (0,∞), and so on.

1. Introduction

We consider decompositions of the real line into Borel subsets with some addi-
tional algebraic structure. In this paper the words ‘decomposition’ and ‘partition’
will always refer to writing the real line as a union of pairwise disjoint sets. The main
question is weather the number of pieces can be strictly between ω and c. First,
the question is interesting if we impose no algebraic structure at all. Lebesgue was
the first one to show that the real line can be decomposed into ω1 Borel sets, hence
it is consistent with ZFC that the number of pieces can be strictly between ω and
c. Later Hausdorff [8] showed that there is in fact a partition into ω1 many Fσδ

sets. Whether the real line can be partitioned into ω1 many Gδσ sets is already
independent from ZFC, and even from ZFC + c = ω2, see [14] for the details.
Finally, J. Stern [18] and independently A. W. Miller [14] proved that consistently
c = ω2 and the real line can be partitioned into ω1 many compact sets.

It is important to mention the following remarkable theorem of Silver: If an
equivalence relation on the line (considered as a subset of the plane) is Borel then
there are countably many or continuum many equivalence classes [16]. This shows
that in all these decompositions into κ ∈ (ω, c) many Borel pieces the relation of
being in the same piece is fairly complicated. We will return to this issue in the
Open questions section.

In this paper the algebraic assumption about the pieces will mostly be that each
piece is closed under addition. In other words, we partition the real line into Borel
additive semigroups. Since (−∞, 0), {0} and (0,∞) are closed under addition, we
can trivially decompose R into one, two or three Borel sets that are closed under
addition. We show (Theorem 2.4) that in any other decomposition of the real line
into Borel additive semigroups each semigroup must have Lebesgue measure zero
and must be of first category. Therefore the number of pieces is either 1, 2, 3 or
uncountable (in fact, at least max(covM, covN )). The sets of the form c · Q+

clearly decompose R into continuum many sets that are closed under addition. So
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2 MÁRTON ELEKES AND TAMÁS KELETI

it is consistent with ZFC that the set of the possible number of pieces is {1, 2, 3, c}.
Can this be proved in ZFC?

Our main result (Theorem 3.1) is that it is consistent with ZFC that c = ω2

and R can be decomposed into ω1 Borel sets that are closed under addition.
Now, in the remaining part of the introduction we say a few words about certain

natural variations of the problem.
If we do not require the sets to be Borel then the problem is much easier and

the answer is much simpler. Throughout the paper κ and λ will denote cardinal
numbers.

Proposition 1.1. For any 1 ≤ κ ≤ c there exists a decomposition R =
⋃

α<κ Aα

such that each Aα is nonempty and closed under addition.

Proof. Let H = {hα : α < c} be a Hamel basis of R. For every x ∈ R \ {0} take its
unique representation in the form x = r1hα1

+. . .+rnhαn
, where r1, . . . , rn ∈ Q\{0}

and α1 < . . . < αn < c and let f(x) = α1 and g(x) = r1. For any α < c let

Bα = {x : f(x) = α, g(x) > 0}.

Clearly every Bα is nonempty and closed under addition. The same is true for
Cβ = R \ (∪α<βBα) for any β ≤ c since x ∈ Cβ ⇔ f(x) ≥ β or g(x) < 0 or x = 0.

Let κ′ be κ − 1 if κ is finite and κ otherwise. Then R = Cκ′ ∪
⋃

α<κ′ Bα is a
decomposition with the required properties. �

If we consider multiplication instead of addition then we get similar results (both
for the Borel and the non-Borel case), but the negative numbers cause some extra
technical complications, see Theorem 2.6 and Corollary 2.8. Hence it is perhaps
more natural to decompose only (0,∞) into subsets that are closed under multi-
plication. Taking logarithm it is clear that such a decomposition is equivalent to
a decomposition of R into sets that are closed under addition. Recently R. Freud
[7] raised the question if (0,∞) can be decomposed into two parts that are closed
under both addition and multiplication. It turned out that this had already been
solved in 2007 by D. M. Kane, who had proved that such a decomposition exists.
Another answer was given in [12], where the authors also describe the structure of
all such decompositions. They also show that for any 1 ≤ κ ≤ c one can decompose
(0,∞) into κ sets that are closed under addition and multiplication.

So far we considered additive or multiplicative semigroups. It is natural to
ask what happens if we require groups. Then of course we cannot hope to get
decompositions since all groups contain the neutral element. So we should rather
require that their intersection only contains the neutral element. In this case we say
that the subgroups are essentially disjoint. But it turns out that even in that case
the answer is fairly easy, even in a more general setting. Recall that |X | denotes
the cardinality of a set X .

Proposition 1.2. If an infinite group G is the union of κ many essentially disjoint
subgroups then κ = 1 or κ = |G|.

Proof. Let G =
⋃

α<κ Hα be a union consisting of essentially disjoint nonempty
subgroups. Assume κ ≥ 2. Since the Hα’s are essentially disjoint, κ cannot exceed
|G|, so we only need to show that κ ≥ |G|.

Let α < κ and g /∈ Hα. Then |gHα ∩ Hβ | ≤ 1 for every β 6= α, since if

g1, g2 ∈ gHα∩Hβ then g−1
1 g2 ∈ Hα∩Hβ = {e}, hence g1 = g2. Since gHα∩Hα = ∅,

the Hβ ’s cover gHα, hence κ ≥ |Hα|. Repeating the argument for every α yields
κ ≥ sup{|Hα| : α < κ}. Let λ = sup{|Hα| : α < κ}, then κ ≥ λ. If λ = |G| then
κ ≥ λ = |G| and we are done, so let λ < |G|. Since the Hα’s cover G, we obtain
κλ ≥ |G|, in particular, κ is infinite. Then κλ = κ, therefore κ ≥ |G|, hence the
proof is complete. �
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We remark here that it is easy to check that if R is the union of essentially disjoint
subgroups, then these groups are actually Q-linear vector spaces. Hence there is a
close connection to the theory of so called vector space partitions, which deals with
the problem of how one can write a vector space as the union of essentially disjoint
proper subspaces. However, this theory mostly considers finite vector spaces, since
one of the main motivations is the connection to error-correcting codes. See e.g.
[3], [4], [6], [9] and the references therein for more details.

2. Non-existence results concerning Borel decompositions

In this section we prove structural results about decompositions into additive
and/or multiplicative Borel semigroups, which in turn yield strong limitations about
the possible number of pieces. All results of the section are proved in ZFC.

Notation 2.1. For any A ⊂ R, n ∈ N+ let (n)A = {a1 + . . .+ an : an ∈ A}.

The following lemma is clearly well-known, however, for the sake of completeness
we include its proof.

Lemma 2.2. Let B ⊂ R be a Borel set and suppose that B has positive Lebesgue
measure or B is of second category.

(i) Then
⋃

∞

k=1
(2k)B contains a halfline.

(ii) If we also have B +B ⊂ B or B +B +B ⊂ B then B contains a halfline.

Proof. (i) If B has positive Lebesgue measure then Steinhaus theorem [17], if B is
of second category then Piccard theorem [15] (see also in [11]) implies that B + B
contains an interval (a, b), so (2k)B ⊃ (ka, kb) for any k ∈ N+. Since for large
enough k the consecutive intervals (ka, kb) overlap, and so ∪∞

k=1(ka, kb) contains a
halfline, this completes the proof of (i).

(ii) If B +B ⊂ B then B contains
⋃

∞

k=1
(2k)B so we are done by (i).

Now suppose that B+B+B ⊂ B. Then, by induction we get that (2k+1)B ⊂ B
for any k ∈ N+. Thus we have

⋃

∞

k=1
(2k + 1)B ⊂ B. Since

⋃

∞

k=1
(2k + 1)B =

B +
⋃

∞

k=1
(2k)B and B is nonempty, (i) implies that

⋃

∞

k=1
(2k + 1)B contains a

halfline, which completes the proof of (ii). �

Lemma 2.3. Suppose that we have a decomposition (0,∞) =
⋃

α<κ Bα such that
every Bα is Borel and for each α < κ we have Bα +Bα ⊂ Bα or Bα +Bα +Bα ⊂
Bα. Then either every Bα is of Lebesgue measure zero and is of first category or
Bα1

= (0,∞) for some α1 < κ.

Proof. Suppose that there is an α1 < κ such that Bα1
has positive Lebesgue mea-

sure or is of second category. We will show that Bα1
= (0,∞).

By Lemma 2.2, Bα1
contains a halfline, so the other sets of the decomposition

are all bounded. But clearly no bounded nonempty set B ⊂ (0,∞) can have the
property B +B ⊂ B or B +B +B ⊂ B, so we have Bα1

= (0,∞). �

Theorem 2.4. Suppose that we have a decomposition R =
⋃

α<κ Aα such that each
Aα is a Borel set closed under addition. Then every Aα is of Lebesgue measure zero
and is of first category, or is equal to R, (−∞, 0), (−∞, 0], (0,∞), or [0,∞).

Proof. If R =
⋃

α<κ Aα is a decomposition such that each Aα is closed under
addition then (0,∞) =

⋃

α<κ Aα ∩ (0,∞) is also a decomposition and each Aα ∩
(0,∞) is closed under addition. Then by Lemma 2.3, Aα ∩ (0,∞) is either (0,∞)
or a set of Lebesgue measure zero and of first category. By symmetry, we also have
that Aα ∩ (−∞, 0) is either (−∞, 0) or a set of Lebesgue measure zero and of first
category.

It remains to prove that if Aα contains (0,∞) or (−∞, 0) then Aα equals R,
(−∞, 0), (−∞, 0], (0,∞) or [0,∞). So suppose that Aα ⊃ (0,∞) and a ∈ Aα ∩
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(−∞, 0). Then, since Aα is closed under addition, we get Aα ⊃ (a,∞), so Aα ∩
(−∞, 0) has positive measure, thus by the previous paragraph Aα ⊃ (−∞, 0),
therefore Aα = R. Similarly, we can prove that if Aα ⊃ (−∞, 0) and a ∈ Aα∩(0,∞)
then Aα = R, which completes the proof. �

Recall that if I is an ideal on a set X then cov I = min{|H| : H ⊂ I,∪H = X}.
Let N and M denote the ideal of Lebesgue nullsets and the ideal of sets of first
category in R, respectively.

Corollary 2.5. Suppose that we have a decomposition R =
⋃

α<κ Aα such that
each Aα is a nonempty Borel set closed under addition. Then κ ∈ {1, 2, 3} or
κ ≥ max(covN , covM).

Proof. If κ < max(covN , covM) then at most κ sets of Lebesgue measure zero
and of first category cannot cover (−∞, 0) or (0,∞). Then by Theorem 2.4, every
Aα equals to {0}, R, (−∞, 0), (−∞, 0], (0,∞), or [0,∞), so κ ≤ 3. �

Theorem 2.6. Suppose that we have a decomposition R =
⋃

α<κ Mα such that
each Mα is a Borel set closed under multiplication. Then every Mα is of Lebesgue
measure zero and is of first category, or is the union of some of the sets (−1, 0) ∪
(0, 1), (−∞,−1) ∪ (1,∞), {−1, 1} and {0}.

Proof. Let Bα = Mα ∩ (−∞,−1). Then Bα is not closed under multiplication
but we still have Bα · Bα · Bα ⊂ Bα since Mα · Mα · Mα ⊂ Mα and (−∞,−1) ·
(−∞,−1) · (−∞,−1) ⊂ (−∞,−1). Let Cα = log(−Bα). Then

⋃

α<κ Cα is a Borel
decomposition of (0,∞) and we have Cα + Cα + Cα ⊂ Cα. Then by Lemma 2.3,
either every Cα is of Lebesgue measure zero and is of first category or there exists
an α1 < κ for which Cα1

= (0,∞). In the first case every Bα = Mα ∩ (−∞,−1)
is also of Lebesgue measure zero and is of first category. In the latter case, for
this α1, we have (−∞,−1) = Bα1

= Mα1
∩ (−∞,−1). Since Mα1

is closed under
multiplication, it also contains (1,∞), so we have Mα1

⊃ (−∞,−1) ∪ (1,∞).
Repeating the above argument for B′

α = Mα ∩ (−1, 0) and C′

α = − log(−B′

α) we
get that either every B′

α = Mα ∩ (−1, 0) is of Lebesgue measure zero and of first
category or there exists an α2 < κ such that Mα2

⊃ (−1, 0) ∪ (0, 1).
Since the set Mα that contains −1 also contains 1, the only fact that remains

to prove is that if Mα contains one of (−∞,−1) ∪ (1,∞) and (−1, 0) ∪ (0, 1) then
either it contains the other one or it is disjoint from the other one. So suppose that
Mα ⊃ (−∞,−1)∪ (1,∞) and a ∈ Mα ∩ ((−1, 0)∪ (0, 1)). Then, since Mα is closed
under multiplication, we get Mα ⊃ (−∞,−a) ∪ (a,∞), so Mα ∩ ((−1, 0) ∪ (0, 1))
has positive measure, thus by the above paragraphMα ⊃ (−1, 0)∪ (0, 1). Similarly,
we can prove that if Mα ⊃ (−1, 0) ∪ (0, 1) and a ∈ Mα ∩ (−∞,−1) ∪ (1,∞)) then
Mα ⊃ (−∞,−1) ∪ (1,∞), which completes the proof. �

Remark 2.7. Similarly to Theorem 2.4, we could also explicitly describe in The-
orem 2.6 the possible options for Mα, in case it is not a Lebesgue measure zero
set of first category. We cannot get all the 24 = 16 possible unions of the sets
(−1, 0)∪ (0, 1), (−∞,−1)∪ (1,∞), {−1, 1} and {0}, since some of these unions are
not closed under multiplication. We do not have to take those ones that are of
measure zero and first category. But it is easy to see that Mα can be any of the re-
maining 10, namely (−1, 0)∪(0, 1), [−1, 0)∪(0, 1], (−1, 1), [−1, 1], (−∞,−1)∪(1,∞),
(−∞,−1]∪ [1,∞), (−∞,−1)∪{0}∪ (1,∞), (−∞,−1]∪{0}∪ [1,∞), R and R\{0}.

Corollary 2.8. Suppose that we have a decomposition R =
⋃

α<κ Mα such that
each Mα is a nonempty Borel set closed under multiplication. Then κ ∈ {1, 2, 3, 4}
or κ ≥ max(covN , covM).
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Proof. If κ < max(covN , covM) then at most κ sets of Lebesgue measure zero
and of first category cannot cover any interval. Then by Theorem 2.6 every Mα is
the union of some of the sets (−1, 0) ∪ (0, 1), (−∞,−1) ∪ (1,∞), {−1, 1} and {0},
so κ ≤ 4. �

Corollary 2.9. Suppose that we have a decomposition R =
⋃

α<κ Bα such that
each Bα is a nonempty Borel set closed under both addition and multiplication.

(i) Then either every Bα is of Lebesgue measure zero and is of first category or
Bα1

= R for some α1 < κ.
(ii) We have κ = 1 or κ ≥ max(covN , covM)

Proof. Claim (i) follows directly from Theorems 2.4 and 2.6. Claim (ii) follows from
(i). �

3. The main result: Existence of a certain Borel decomposition

Theorem 3.1. It is consistent that c = ω2 and the real line can be partitioned into
ω1 additive Fσ semigroups; that is, there exists a decomposition R =

⋃

α<ω1
Aα

such that each Aα is a nonempty Fσ set closed under addition.

Proof. Ciesielski and Pawlikowski [5] proved that consistently c = ω2 and there
exist a Hamel basis that is the union of ω1 pairwise disjoint Cantor sets. Fix such a
Hamel basis H with such a decomposition H =

⋃

α<ω1
Cα, and in each Cantor set

Cα fix a countable base {Bk
α}k∈N+ such that for each k and α both Bk

α and Cα \Bk
α

are compact.
Every x ∈ R has a unique representation of the form x = r1b1+ . . .+rnbn, where

r1, . . . , rn ∈ Q \ {0} and b1, . . . , bn ∈ H . For notational simplicity, let us define
B(x) = {b1, . . . , bj}, and for any J ⊂ H we say that ri is a J-coefficient of x if
bi ∈ J . For x ∈ R let

I(x) = { α < ω1 : x has a Cα-coefficient } = { α < ω1 : B(x) ∩ Cα 6= ∅ }.

For x ∈ R and J ⊂ H also let S(x, J) be the sum of the J-coefficients of x. Note
that S(x+ y, J) = S(x, J) + S(y, J) for every J ⊂ H and x, y ∈ R.

Finally, let

A+(α, k) = {x ∈ R \ {0} : max(I(x)) = α, S(x,Bk
α) > 0, (∀i < k) S(x,Bi

α) = 0},

A−(α, k) = {x ∈ R \ {0} : max(I(x)) = α, S(x,Bk
α) < 0, (∀i < k) S(x,Bi

α) = 0}.

In other words, A+(α, k) contains x ∈ R \ {0} if and only if α is the largest
ordinal so that x has a Cα-coefficient and k is the smallest integer so that the sum
of the Bk

α-coefficients of x is nonzero and this sum is positive, and similarly for
A−(α, k).

We claim that {0} and the sets A+(α, k) and A−(α, k) for α < ω1 and k ∈ N+

form a decomposition with all the required properties.
It is clear from the definitions that these sets are pairwise disjoint. To show that

their union is R it is enough to check that if x has a Cα-coefficient then S(x,Bi
α) is

nonzero for some i ∈ N+. So suppose that x has a Cα-coefficient, that is, B(x)∩Cα

is a nonempty finite subset of Cα. Since {Bi
α}i∈N+ is a base of Cα, there exists an i

such that B(x) ∩Bi
α is a singleton, hence S(x,Bi

α), as the sum of a single nonzero
term, cannot be zero.

Now we show that the sets A+(α, k) and A−(α, k) are closed under addition. By
symmetry, it is enough to prove this for A+(α, k). If x, y ∈ A+(α, k) then clearly
S(x+y,Bk

α) = S(x,Bk
α)+S(y,Bk

α) > 0 and S(x+y,Bi
α) = S(x,Bi

α)+S(y,Bi
α) = 0

for every i < k. Since S(x + y,Bk
α) > 0, x + y has a Cα-coefficient. On the other

hand, x and y have no Cβ-coefficients for β > α, so x+y cannot have Cβ -coefficients
either, thus max(I(x+ y)) = α. Therefore x+ y ∈ A+(α, k), indeed.
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So it remains to prove that the sets A+(α, k) and A−(α, k) are Fσ, and again
it is enough to prove this for A+(α, k). Fix α < ω1 and k ∈ N+. Note that
A+(α, k) = Dα + E+(α, k), where

Dα =
{

x ∈ R \ {0} : B(x) ⊂ ∪β<αCβ

}

,

E+(α, k) =
{

x ∈ R \ {0} : B(x) ⊂ Cα, S(x,Bk
α) > 0, (∀i < k) S(x,Bi

α) = 0
}

,

and we use the notation A+B = {a+ b : a ∈ A, b ∈ B}. The sum of two compact
sets is compact, hence the sum of two σ-compact sets is σ-compact, thus it is enough
to check that both Dα and E+(α, k) are σ-compact.

The set Dα is σ-compact since

Dα =
⋃

{ r1Cβ1
+ . . .+ rmCβm

: m ∈ N+, (∀i = 1, . . .m) ri ∈ Q, βi < α }.

In order to show that E+(α, k) is σ-compact, we rewrite it as

E+(α, k) = F+(α, k) ∩ F 0(α, 1) ∩ F 0(α, 2) ∩ . . . ∩ F 0(α, k − 1),

where for any n ∈ N+,

F 0(α, n) = { x ∈ R \ {0} : B(x) ⊂ Cα, S(x,Bn
α) = 0 },

F+(α, n) = { x ∈ R \ {0} : B(x) ⊂ Cα, S(x,Bn
α) > 0 }.

Thus, to complete to proof, it is enough to show that the sets F 0(α, n) and F+(α, n)
are σ-compact. Note that these sets can be also written as

F 0(α, n) =
⋃

{

r1B
n
α + . . .+ rmBn

α + rm+1(Cα \Bn
α) + . . .+ rm+l(Cα \Bn

α) :

m, l ∈ N, r1, . . . , rm+l ∈ Q, r1 + . . .+ rm = 0
}

,

F+(α, n) =
⋃

{

r1B
n
α + . . .+ rmBn

α + rm+1(Cα \Bn
α) + . . .+ rm+l(Cα \Bn

α) :

m, l ∈ N, r1, . . . , rm+l ∈ Q, r1 + . . .+ rm > 0
}

.

Since the sets Bn
α and Cα \Bn

α were chosen to be compact, these sets are σ-compact
indeed, which completes the proof. �

The following simple observations show that Theorem 3.1 is sharp in the sense
that Fσ cannot be replaced by Gδ.

Proposition 3.2. Suppose that for some cardinal κ we have a decomposition R =
⋃

α<κ Aα such that each Aα is closed under addition and nonempty.

(i) Then each Aα is the union of sets of the form c ·Q+ (c ∈ R).
(ii) If each Aα is a nonempty Gδ set then each Aα is the union of some of the

sets (−∞, 0), {0}, (0,∞), consequently κ ≤ 3.

Proof. (i) Suppose that x, y ∈ R, x/y ∈ Q+, x ∈ Aα and y ∈ Aβ . Since x/y ∈ Q+,
x and y has a common positive integer multiple z. But then z is both in Aα and
Aβ , so we have α = β, which completes the proof of (i).

(ii) If each Aα is a nonempty Gδ set then, by (i), each Aα is residual in (−∞, 0)
or in (0,∞) or equals to {0}, which completes the proof of (ii). �

Combining the results of this section and the previous one, in case of c = ω2 we
can exactly determine how many Borel additive semigroup one can decompose R

into:

Corollary 3.3. Let K be the set of cardinalities of all possible decompositions of R
into Borel additive semigroup; that is, let

K = {κ : ∃ Borel decomposition ∪α<κ Bα = R with (∀α)Bα +Bα ⊂ Bα, Bα 6= ∅}.
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If c = ω2 then K = {1, 2, 3, ω1, ω2} or K = {1, 2, 3, ω2} and both possibilities are
consistent.

Proof. Suppose that c = ω2. Since max(covM, covN ) ≥ ω1, Corollary 2.5 implies
that K ⊂ {1, 2, 3, ω1, ω2}. The trivial decompositions R = R, R = (−∞, 0)∪ [0,∞),
R = (−∞, 0) ∪ {0} ∪ (0,∞) show that K ⊃ {1, 2, 3}. Let {Jα : α < c} be the
equivalence classes of the relation x ∼ y ⇔ (x = y = 0 or x/y ∈ Q). Then each Jα
is countable and closed under addition, so the decomposition R =

⋃

α<c
Jα shows

that ω2 = c ∈ K.
Thus it remains to prove that both ω1 ∈ K and ω1 6∈ K are consistent if c = ω2.

Theorem 3.1 shows the consistency of ω1 ∈ K. It is well known (see [2]) that it
is consistent that covM = covN = ω2 = c. But in this case, by Corollary 2.5,
ω1 6∈ K, which completes the proof. �

4. Open questions

In this final section we collect some of the numerous remaining open questions.

Question 4.1. Is it consistent that c = ω3 and the real line can be partitioned
into ω2 additive Borel (or Fσ) semigroups; that is, there exists a decomposition
R =

⋃

α<ω1
Aα such that each Aα is a nonempty Borel (or Fσ) set closed under

addition?

We remark here that it is not hard to see from [18] or [14] that it is consistent
that c = ω3 and the real line can be partitioned into ω2 compact sets.

Question 4.2. What can we say about the following cardinal invariant?

γ = min{κ : κ > 3, ∃ Borel dec. ∪α<κ Bα = R with (∀α)Bα +Bα ⊂ Bα, Bα 6= ∅}.

By Corollary 2.5 we know that γ ≥ max(covN , covM) and by Theorem 3.1 we
know that it is consistent that c = ω2 and γ = ω1. What else can we say?

As we pointed out above, by Silver’s theorem the construction in Theorem 3.1
cannot yield a Borel equivalence relation. (Two real numbers are equivalent if they
are in the same piece of the decomposition, and the equivalence relation is Borel if
it is Borel when considered as a subset of the plane.) Actually, Silver proved his
theorem for so called co-analytic equivalence relations, see [11] for the definition and
some background in descriptive set theory. Now we remark that our construction
is not analytic either. Indeed, by a result of Stern [19] if each equivalence class of
an analytic equivalence relation is Fσ then there are countably many or continuum
many classes. However, we do not know the answer to the following.

Question 4.3. Is it consistent that c = ω2 and the real line can be partitioned into
ω1 additive Borel semigroups so that the resulting equivalence relation is analytic?

It would also be interesting to check whether our construction consistently pro-
duces a projective equivalence relation.

The following question is closely related to our topic in that it also requires some
extra condition using the additive structure of the real line.

Question 4.4. Suppose that R =
⋃

α<κ Bα is a decomposition into Borel sets that
are translates of each other. Does this imply that κ ≤ ω is or κ = c?

First we show that κ ≤ ω or κ ≥ covN , so an affirmative answer is consistent
with ZFC. Indeed, if Bα has measure zero then clearly κ ≥ covN . If Bα has
positive measure then we have κ disjoint translates of a set of positive measure,
and it is easy to check that this implies κ ≤ ω.
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We also claim that the answer is affirmative in ZFC if the sets Bα are Fσ . Indeed,
suppose that ω < κ. By [1, Thm. 1] a σ-compact set has either at most countably
many or continuum many pairwise disjoint translates, hence B0 has continuum
many pairwise disjoint translates {B0+xα : α < c}. One can easily check that this
implies that no translate of B0 can contain more than one number −xα, hence less
than c many translates of B0 cannot cover R, therefore κ = c.

This proof also raises the following natural question.

Question 4.5. Suppose that a Borel subset of R has uncountably many pairwise
disjoint translates. Does it also have continuum many pairwise disjoint translates?

The last question is the natural continuation of the question of Freud.

Question 4.6. Suppose that (0,∞) =
⋃

α<κ Bα is a decomposition into nonempty
Borel sets that are closed under both addition and multiplication. Does this imply
that κ = 1 or κ = c?

We remark here that the case κ = c is possible indeed, as was pointed out by
András Máthé [13]. Let G be the smallest family of real functions closed under
addition and multiplication and also forming a group under composition (in par-
ticular, G contains the identity function). Note that this makes sense, since we can
generate this family inside the group of strictly increasing functions. Then G is
clearly countable and it is easy to see that the orbits of G form a partition of R into
c many countable sets all of which are closed under addition and multiplication.
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