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Erdős-Pyber theorem for hypergraphs and secret sharing

László Csirmaz · Péter Ligeti · Gábor Tardos

Abstract A new, constructive proof with a small explicit constant is given to the Erdős-Pyber
theorem which says that the edges of a graph on n vertices can be partitioned into complete
bipartite subgraphs so that every vertex is covered at most O(n/ logn) times. The theorem is
generalized to uniform hypergraphs. Similar bounds with smaller constant value is provided
for fractional partitioning both for graphs and for uniform hypergraphs. We show that these
latter constants cannot be improved by more than a factor of 1.89 even for fractional covering
by arbitrary complete multipartite subgraphs or subhypergraphs. In the case every vertex of
the graph is connected to at least n −m other vertices, we prove the existence of a fractional
covering of the edges by complete bipartite graphs such that every vertex is covered at most
O(m/ logm) times, with only a slightly worse explicit constant. This result also generalizes to
uniform hypergraphs. Our results give new improved bounds on the complexity of graph and
uniform hypergraph based secret sharing schemes, and show the limits of the method at the
same time.

Keywords graph covering · partition cover number · bipartite graph · uniform hypergraph ·
secret sharing.
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1 Introduction

While graph decomposition is an interesting topic by itself [1,3,8,9,10,11,14], our interest comes
mainly from a particular application in cryptography. Upper bounds on the worst case complex-
ity of secret sharing schemes often use graph decomposition techniques [2,13,16]. In this respect
the most cited result is the Erdös-Pyber theorem [7], which gives the estimate O(n/ logn) on
the vertex cover number of a graph G on n vertices when the edges of G are partitioned into
complete bipartite subgraphs of G. (In this paper log denotes the base 2 logarithm.) An imme-
diate consequence is that for any graph there is secret sharing scheme realizing that graph with
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complexity O(n/ logn) – the best upper bound known for the share size in general graphs. Any
improvement in the the Erdős-Pyber theorem implies immediately a similar improvement in
this bound. In this paper we give an alternate proof of the Erdős-Pyber theorem which yields an
almost optimal explicit constant, and prove a generalization for d-uniform hypergraphs, again
with an almost optimal explicit constant term.

Motivated by the question of what makes a graph “hard” for secret sharing schemes, Beimel
et al [2] considered very dense graphs, that is, graphs where every node has high degree. In this
paper we look at the cover number of graphs on n vertices where every vertex has degree at
least n−m. Our result implies that all of these graphs can be realized by secret sharing schemes
with complexity O(m/ logm) with an explicit constant term. Setting m = n we get yet another
proof of the Erdös-Pyber theorem, in this case the constant is only 1.443 times larger than the
constant in our first proof.

Finally, in the other direction we show that our results are optimal within a factor of 1.89.
In particular, we show that for large enough n there are graphs (d-uniform hypergraphs) on n
vertices where the fractional cover number is more than 0.53 times our upper bound, even if
arbitrary complete multipartite graphs are allowed in the covering. This result implies that the
technique of covering G with complete multipartite graphs cannot improve the known upper
bound of O(n/ logn) on the complexity of G.

The paper is organized as follows. In Sect. 2 we recall some definitions and notations, and
present our results. Our constructive proof of the Erdős-Pyber theorem is given in Sect. 3. The
generalization for d-uniform hypergraphs is proved in Sect. 4, Sect.5 deals with the case of dense
graphs. Finally in Sect. 6 we prove that our results are the best possible up to a small constant
multiplier.

2 Preliminaries and results

2.1 Graph decomposition

Let F be a collection of graphs. An F -graph is a graph which is isomorphic to an element of F .
An F-cover of a graph G = (V,E) is a collection of subgraphs of G that are F -graphs, and the
union of whose edge sets is E. An F -cover is an F-partition if the edge sets of the subgraphs are
pairwise disjoint. Given an F -cover of G, the load of a vertex v ∈ V is the number of subgraphs
containing it. The vertex F-cover number and the vertex F-partition number of a graph G is
the smallest r such that for some F -cover (or F -partition, respectively) of G all vertex loads
are at most r. We denote these numbers by vcF(G), and vpF (G), respectively, and the value
is +∞ when no such a cover or partition exists. For more information on this notation and a
discussion of its relevance, see, e.g., [12].

In the fractional, or weighted version, each F -subgraph of a graph G = (V,E) has a non-
negative weight, and the total weight of the subgraphs containing an edge e ∈ E should be at
least 1 (cover), or exactly 1 (partition). In this case the load of a vertex is the sum of the weights
of the F -subgraphs containing it, and the corresponding fractional vertex F-cover number and
fractional vertex F-partition number are denoted by vc∗F(G), and vp∗F (G), respectively. It is
clear that

vc∗F (G) ≤ vcF(G) ≤ vpF (G), and vc∗F(G) ≤ vp∗F (G) ≤ vpF(G). (1)

The most frequently investigated case is when F is the collection of complete bipartite graphs,
denoted here by CB. In the classical work of Fishburn and Hammer [8] vcCB(G) is called the
bipartite degree of G. Dong and Liu showed in [6] that vcCB(Kn) = vp

CB
(Kn) = ⌈logn⌉,1 and

that vpCB(G) ≤ 4 for planar graphs. Pinto [14] calls vcCB(G) and vpCB(G) the local biclique
cover and partition number ofG, respectively, and shows that there are graphs with vcCB(G) = 2

1 Note that log denotes base 2 logarithm.
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while vp
CB

(G) can be arbitrary large. V. Watts investigates fractional partitions and covers in
[17].

Other well studied graph families are the collection of stars, and the collection of cycles. We
will use another important graph family, that of the complete multipartite graphs. These graphs
are the complements of disjoint unions of complete graphs and we denote their collection by
CM.

2.2 d-uniform hypergraphs

Let d ≥ 2 be an integer. A d-uniform hypergraph H is a pair (V,E), where V is the set of
vertices, and E is the set of edges, often called hyperedges, and each edge is a d-element subset
of V . A subhypergraph of H is a d-uniform hypergraph (V ′, E′) with V ′ ⊆ V and E′ ⊆ E.

A d-uniform hypergraph H is a complete d-uniform k-partite hypergraph, a (d, k)-cuph for
short, if its vertex set can be partitioned into k parts such that the edge set consists of the
subsets of the vertices that intersect d of the parts, each in a single vertex. We call the parts of
this partition the partite sets of H. When k = d we call a (d, d)-cuph simply a d-cuph.

With a slight abuse of notation, the family of complete d-uniform multipartite hypergraphs
((d, k)-cuphs) is also denoted by CM, and the family of d-cuphs is denoted by CB. In these
definitions we consider d to be fixed but the class CM contain (d, k)-cuphs for arbitrary k.
Note that in the d = 2 case we get back the the standard notion of complete multipartite and
bipartite graphs, respectively.

When F is a collection of d-uniform hypergraphs, the notion of F -cover and F -partition as
well as the load of a vertex generalizes easily for d-uniform hypergraphs. The values vcF (H),
vpF (H) and their fractional versions are defined similarly as has been done for standard graphs.
Inequalities in (1) remain valid in this case.

2.3 Secret sharing

A secret sharing scheme, introduced in [4,15] is a probabilistic method by which a dealer, who
holds a secret, distributes shares to a set of participants, so that only authorized subsets of the
participants are able to reconstruct the secret from their shares. The collection of all authorized
subsets is called the access structure. We only consider perfect schemes, in which unauthorized
subsets of participants should learn nothing about the secret, that is, the collection of their
shares should be independent of the secret. Secret sharing schemes are considered as one of the
main building blocks in modern cryptography [13]. Most research on secret sharing focuses on
the ratio between the size of the largest share and the size of the secret. Size is measured here
by way of entropy. The complexity, or information ratio of an access structure is the infimum
of this ratio over all schemes realizing the structure. In this paper we consider access structures
where all minimal authorized subsets have the same size d ≥ 2. These access structures can be
described by d-uniform hypergraphs, where each vertex represents a participant, and d vertices
form a hyperedge if and only if the respective d-element set of participants is authorized. For
such a hypergraph H, the complexity of the access structure based on H is denoted by σ(H).
Hypergraphs with at least one edge have complexity at least 1. Hypergraphs with complexity
exactly 1 are called ideal. The complete d-uniform multipartite hypergraphs, that is (d, k)-
cuphs, are ideal [13]. When d = 2 all other non-trivial graphs have complexity at least 3/2 [5],
for d ≥ 3 the characterization of ideal d-uniform hypergraphs is an open problem.

Our interest in graph decomposition stems from Stinson’s Decomposition Theorem [16]
which is an indispensable tool in giving upper bounds on the complexity of access structures.
While Stinson’s theorem is more general, we state here in a special case.
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Theorem 1 (Stinson [16]) Let F be any collection of ideal d-uniform hypergraphs. For any
d-uniform hypergraph H we have σ(H) ≤ vc∗F (H). ⊓⊔

As complete d-uniform multipartite graphs are ideal, the complexity of the hypergraph H can
be upper bounded by vpCM(H).

2.4 Our results

In the asymptotic notation O(·) and o(·) we assume that d is fixed and n and in the case of
Theorem 4 and Corollary 5, also m tend to infinity.

Erdős and Pyber proved in [7] that for any (standard) graph G on n vertices, the edge set of
G can be partitioned into complete bipartite graphs so that every vertex of G is contained in at
most O(n/ logn) of the bipartite graphs. Using the notation introduced above, their result can
be expressed equivalently as vpCB(G) = O(n/ logn). They also remarked that this estimate is
the best possible. We give a constructive proof of the Erdős-Pyber theorem with an improved
explicit constant factor.

Theorem 2 If G is a graph on n vertices, then

vpCB(G) ≤
(

1 + o(1)
) n

logn
,

moreover
vp∗

CB
(G) ≤

(

0.5 + o(1)
) n

logn
.

We prove a generalization of this theorem to d-uniform hypergraphs with higher values of d
as follows.

Theorem 3 Let d ≥ 2 be an integer, and H be a d-uniform hypergraph on n vertices. In this
case

vpCB(H) ≤
( 1

(d− 2)!
+ o(1)

)nd−1

log n
,

and

vp∗CB(H) ≤
( 1

d!
+ o(1)

)nd−1

log n
.

In case a graph G is dense and each vertex is connected to almost all other vertices, the
bound on vc∗

CB
(G) implied by Theorem 2 can be strengthened. Similar strengthening works for

dense hypergraphs. Note that we can choose m = n to get a result for arbitrary graphs or
hypergraphs, and even in this case the bounds are only slightly worse than the ones implied by
Theorems 2 and 3.

Theorem 4 If G is a graph on n vertices such that every vertex has degree at least n−m, then
we have

vc∗CB(G) ≤ (0.722 + o(1))
m

logm
.

If the d-uniform hypergraph H on n vertices satisfies that every set of d−1 vertices that appears
together in an edge appears in at least n−m edges, then

vc∗CB(H) ≤

(

1.443

d!
+ o(1)

)

nd−2m

logm
.

Our results can be applied to get universal bounds on the complexity of graph and uniform
hypergraph based structures.
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Corollary 5 For any graph G on n vertices, σ(G) ≤ (1/2 + o(1))
n

logn
. If the graph G has

minimum degree n−m, then σ(G) ≤ (0.722 + o(1))
m

logm
.

For any d-uniform hypergraph H on n vertices, σ(H) ≤ (
1

d!
+ o(1))

nd−1

logn
. If every set of

d− 1 vertices in H that appears in a hyperedge appears in at least n−m of them, then we also

have σ(H) ≤ (
1.443

d!
+ o(1))

nd−2m

logm
.

From the other direction we show that the fractional results in Theorems 2 and 3 cannot
be improved by more than a factor of 1.89 even if we consider fractional covering instead of
fractional partition and arbitrary complete multipartite hypergraphs instead of d-cuphs.

Theorem 6 For every d ≥ 2 and n ≥ n0(d) there is a d-uniform hypergraph H on n vertices
such that

vc∗CM(H) ≥
0.53

d!
·
nd−1

log n
.

This theorem indicates that new and different ideas are required to improve the general upper
bound on the complexity of graphs and hypergraphs given by Corollary 5.

3 Graphs - proof of the Erdős-Pyber theorem

With the choice k = ⌈logn− 2 log logn⌉ the following lemma implies Theorem 2. We formulate
this lemma because for the generalizations for hypergraphs we will need its bound on the total
number of subgraphs used in the partition. For the same choice of k it is O(n2/ log3 n).

Lemma 1 Let G be a graph on n vertices and let 1 ≤ k ≤ n. There exists a CB-partition of G
involving less than 2kn/k complete bipartite subgraphs such that load of every vertex is at most
2k−1 + ⌈n/k⌉.

Furthermore, there exists a fractional CB-partition of G involving less than 2kn/k complete
bipartite subgraphs, each with weight 1/2 or 1, such that the load of every vertex is at most
2k−2 + ⌈n/k⌉/2.

Proof Let us orient each edge e of G arbitrarily, so now one of its vertices is h(e), the head
of e, while the other is the tail t(e) of e. We write N+(v) for the set of outneighbors of the
vertex v, i.e., N+(v) = {h(e) : e ∈ E, t(e) = v}. Let us partition the vertex set into classes
H1, . . . , H⌈n/k⌉ in such a way that each class has at most k elements. For a nonempty subset
S ⊆ Hi of a class Hi we consider the complete bipartite graph GS whose two partite sets are
S and TS = {v ∈ V : N+(v) ∩ Hi = S}. Figure 1 illustrates an example of such graph. The
graphs GS are clearly subgraphs of G, their number is less than 2kn/k as claimed and their
edge sets partition the edge set E as e ∈ E appears in the unique subgraph GS , where Hi

is the class containing h(e) and S = N+(t(e)) ∩ Hi. Furthermore a vertex v ∈ Hi appears in
the 2|Hi|−1 ≤ 2k−1 sets S ⊆ Hi and further it also appears in the partite set TS of GS for
S = N+(v)∩Hj 6= ∅, another at most ⌈n/k⌉ graphs. This proves the first claim of the theorem.

For the second claim we ignore the orientation and work with the full neighborhood N(v) =
{w ∈ V : {v, w} ∈ E} of a vertex. We still use the same partition of the vertex set. For a
nonempty set S ⊆ Hi we define G′

S to be the complete bipartite graph with partite sets S and
T ′
S = {v ∈ V : N(v)∩Hi = S}. It is clear that these graphs are subgraphs of G, their number is

the same as the number of the graphs GS , and every edge {v, w} ∈ E appears in exactly two of
these graphs, namely if v ∈ Hi and w ∈ Hj , then {v, w} appears in G′

N(v)∩Hj
and in G′

N(w)∩Hi
.

Thus, assigning the weight 1/2 to each of these graphs we obtain a fractional CB-partition of
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G. The weight 1 will only show up if two of the complete bipartite graphs are the same with
the role of their partite sets reversed. As before, a vertex v ∈ Hi appears in at most 2k−1 sets
S ⊆ Hi and at most ⌈n/k⌉ sets T ′

S , where S = N(v) ∩Hj 6= ∅ for some j.

Fig. 1 A K3,3 subgraph with a 3-element S from the third class

4 Uniform hypergraphs

In this section we prove Theorem 3. We note that the out of the d partite sets of the d-cuphs
used in the CB-partition or fractional CB-partition constructed in the proof at least d − 2 are
singletons. The weight of any d-cuph in the fractional CB-partition is a multiple of 1/(d2 − d).

Proof (Proof of Theorem 3:) Let H = (V,E). We start with something similar to orientation:
we partition every edge e ∈ E into two sets A(e) and B(e) with |A(e)| = d− 2 and |B(e)| = 2.
For A ⊆ V , |A| = d − 2 we define a subset EA = {e ∈ E : A(e) = A} of E and a graph
GA = (V, {B(e) : e ∈ EA}). See Figure 2 for an example in a 6-uniform hypergraph. Clearly,
the sets EA partition E. We apply the claim on CB-partition in Lemma 1 separately to each of
the graphs GA using k = ⌈logn− 2 log logn⌉. This yields a partition of the edge set of GA into
the edge sets of the subgraphs GA,i. As calculated before the statement of the lemma, for every
A we have O(n2/ log3 n) graphs GA,i and the load of any vertex is at most (1 + o(1))n/ logn.

Fig. 2 A 6-uniform hypergraph with GA = K2,1

Let SA,i and TA,i be the partite sets of GA,i and let us define HA,i to be the d-cuph with
partite sets SA,i, TA,i and the d − 2 singleton sets contained in A. For a fixed A the edge sets
of the d-cuphs HA,i partition EA. Thus, all the hypergraphs HA,i give a CB-partition of H.

Let us now fix a vertex v ∈ V and estimate its load. The vertex v appears in all HA,i with
v ∈ A: this contributes O(nd−3 · n2/ log3 n) to the load. We further have

(

n−1
d−2

)

sets A that
do not contain v and at most (1 + o(1))n/ logn graphs GA,i for each such set A in which v



Erdős-Pyber theorem for hypergraphs and secret sharing 7

appears making v also appear as a vertex of HA,i. This brings the total load on v up to at most
(1/(d− 2)! + o(1))nd−1/ logn proving the first statement of the theorem.

To obtain a good fractional CB-partition of H we disregard the partition e = A(e) ∪ B(e)
created earlier. For A ⊆ V with |A| = d − 2 we define E′

A = {e ∈ E : A ⊆ e} and the graph

G′
A = (V, {e \ A : e ∈ E′

A}). Every edge e ∈ E appears in exactly
(

d
2

)

of the sets E′
A. Now we

apply the claim on fractional CB-covering in Lemma 1 for each of the graphs G′
A with the same

choice of k as before. We obtain a fractional CB-partition of G′
A with the complete bipartite

graphsG′
A,i with weight wA,i such that the total number of these graphs is O(n2/ log3 n) and the

maximum load does not exceed (1/2+ o(1))n2/ logn. We define the d-cuphs H′
A,i as before: its

partite sets are the partite sets of G′
A,i plus the singleton sets contained in A. We set the weight

of H′
A,i to be wA,i/

(

d
2

)

. This gives a fractional CB-partition of H. Calculating the maximum
load of this fractional CB-partition as before finishes the proof of the theorem.

5 Very dense graphs

In this section we prove Theorem 4. S. Jukna in [10, Theorem 1] proves similar results for
bipartite graphs with the difference that he bounds the total number of covering bipartite
graphs rather than the maximum load. The first part of Theorem 4 will follow from the following
lemma, which will also be used to bootstrap the proof for the d-uniform case.

Lemma 2 Let G be a graph on n vertices such that every vertex has degree at least n−m. For
each 0 < p < 1 we have

vp∗(G) ≤
1

2

(

p−1 + (1− p)−m
)

. (2)

Moreover, the total weight of all graphs taking part in the fractional partition is 1/(2p(1−p)m).

Proof The proof uses some ideas from [2, Lemma 3.7]. Let V be the vertex set of G. Choose
the random complete bipartite subgraph H0 of G as follows. The partite sets of H0 are A and
B0. Construct A by adding each vertex v of G to the set independently with probability p.
Let B0 consists of all vertices in V \ A which are connected to all elements in A. Clearly, H0

is a subgraph of G. Now let H be a random subgraph of H0, a complete bipartite graph with
partite sets A and B, where B is a subset of B0 that contains the vertex v ∈ B0 with probability
(1 − p)dv−n+m independently from each other, where dv is the degree of v in G. Note that we
assumed that dv ≥ n − m, so this selection makes sense. This two-step process produces a
random complete bipartite subgraph H of G.

Let us fix a vertex v ∈ V . We have v ∈ B0 if and only if the vertices not adjacent to v
(including v itself) are not in A, thus Pr(v ∈ B0) = (1 − p)n−dv . By our construction, v ∈ B
implies v ∈ B0 and we have Pr(v ∈ B|v ∈ B0) = (1 − p)dv−n+m. Thus, overall, we have
Pr(v ∈ B) = (1− p)m. Note also, that v ∈ B is independent of u ∈ A for all vertices u adjacent
to v. Thus, for every uv edge of G we have Pr(u ∈ A, v ∈ B) = p(1 − p)m. The same uv edge
is also contained in H if u ∈ B and v ∈ A, thus the total probability of an edge uv of G to be
covered by H is exactly 2p(1− p)m.

Let us associate with each complete bipartite subgraph H∗ of G the weight Pr(H =
H∗)/(2p(1 − p)m). The calculation above verifies that this is a fractional CB-partition. The
load of every vertex v is exactly

Pr(v ∈ A ∪B)

2p(1− p)m
=

p+ (1− p)m

2p(1− p)m
=

1

2

(

p−1 + (1− p)−m
)

,

as was required. The total weight of the complete bipartite subgraphs is 1/(2p(1− p)m) as the
sum of probabilities is exactly 1.
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Proof (of Theorem 4.) We choose p−1 = m log e/(logm− 2 log logm) where e is the base of the
natural logarithm. With this choice the right hand side of (2) is

( log e

2
+ o(1)

) m

logm
<

(

0.722 + o(1)
) m

logm
,

which proves the first claim of Theorem 4. Note that the total weight of all graphs taking part
of the fractional partition is 1/(2p(1− p)m) = O(m2/ log2 m).

To turn this fractional partition result on graphs to one on hypergraphs we do the same as
in the proof of Theorem 3. Let H = (V,E) be a d-uniform hypergraph. For a (d − 2)-set A of
vertices consider the edge set EA = {e ∈ E | A ⊆ e} and the graph GA = (V, {e \A | e ∈ EA}).
Ignoring the isolated vertices in G we get a graph on less than n vertices and with minimum
degree at least n − m. Applying our result above we obtain a fractional CB-partition of GA

with complete bipartite graphs GA,i with weight wA,i. The claimed fractional CB-partition of

H is formed by the hypergraphs HA,i with weights wA,i/
(

d
2

)

, where the partite sets of HA,i are
those of GA,i and the singleton sets contained in A. Calculation of the load of this partition
finishes the proof of the theorem.

6 Lower bound for the load of fractional covers

To show Theorem 6 and see that the fractional results in Theorems 2 and 3 are optimal within a
factor of less than 2 we turn to random hypergraphs. Let Hd(n, p) denote the random d-uniform
hypergraph on n vertices in which each d-subset of the vertices is an edge with probability p and
these events are independent. For a d-uniform hypergraph H = (V,E) we write ρ(H) = |E|/|V |
and call it the density of H. Note that dρ(H) is the average degree in H.

Lemma 3 Let d ≥ 2 be an integer and 0 < p < 1. With probability tending to 1 as n goes to
infinity the maximum density of a (d, k)-cuph subhypergraph of Hd(n, p) (for any k) is at most
− logn/ log p.

Proof We use the first moment method. LetH = (V,E) a (d, k)-cuph with ρ(H) > − logn/ log p.
We can get rid of the empty partite sets and assume that all k partite sets of H is non-empty.
For a fixed size s = |V | and k we have

(

n
s

)

possibilities to choose V as a subset of the fixed
vertex set of Hd(n, p) and less than sk/k! ways split it into the partite sets that determine H.
For a fixed H the chance that it is a subhypergraph of Hd(n, p) is p|E| = pρ(H)s < n−s. Thus
the probability of the existence (in fact the expected number) of suitably dense (d, k)-cuph
subhypergraph (for any k) can be estimated as less than

∑

s,k

(

n

s

)

sk

k!
n−s <

∑

s,k

sk

s!k!
.

Note that this estimate is a convergent sum. If summed for all s, k ≥ 0 we obtain ee, where e
is the base of the natural logarithm. However d-uniform hypergraphs of any given fixed size s
have a bounded density, so as n increases and our threshold − logn/ log p passes this density
we can ignore small values of s. This yields a sum that tends to zero as claimed.

Theorem 7 Let d ≥ 2 be an integer, 0 < p < 1 and ǫ > 0. With probability tending to 1 as n
goes to infinity we have vc∗

CM
(Hd(n, p)) ≥ (−p log p/d!− ǫ)nd−1/ logn.

Proof Let Hd(n, p) = (V,E) and let the hypergraphs Hi = (Vi, Ei) with the weights wi form
a fractional CM-cover of Hd(n, p). By Lemma 3 we may assume that ρ(Hi) = |Ei|/|Vi| ≤
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− logn/ log p for all i. This means wi|Ei| ≤ −wi logn|Vi|/ log p. Summing these inequalities we
get

|E| ≤
∑

e∈E

∑

i:e∈Ei

wi =
∑

i

wi|Ei| ≤ −
logn

log p

∑

i

wi|Vi| = −
logn

log p

∑

v∈V

lv,

where lv is the load of the vertex v. Thus, for the maximum load l we have

l ≥ −
log p

logn
ρ(Hd(n, p)).

Here the expectation of ρ(Hd(n, p)) is Exp[|E|]/n = p
(

n
d

)

/n = (p/d! + o(1))nd−1. Note further
that the distribution of |E| is binomial, and therefore it is concentrated around its expectation.
That is, with probability tending to 1 we have ρ(Hd(n, p)) ≥ (p/d! + ǫ/ log p)nd−1. This gives
l ≥ (−p log p/d!− ǫ)nd−1/ logn. As we proved this bound for the maximal load of an arbitrary
fractional CM-cover of Hd(n, p) it also applies to vc∗

CM
(Hd(n, p)) (still with probability tending

to 1), and finishes the proof of the theorem.

Proof (Proof of Theorem 6:) By Theorem 7 for any p and ǫ > 0 and large enough n there exists
a hypergraph H on n vertices with vc∗

CM
(H) ≥ (−p log p/d!− ǫ)nd−1/ logn, namely the random

graph Hd(n, p) works with high probability. Here −p log p is maximized for p = 1/e, where e is
the base of the natural logarithm. This choice for p proves the theorem.
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