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ON A CONJECTURE OF GLUCK

JAMES P. COSSEY, ZOLTAN HALASI, ATTILA MAROTI, AND HUNG NGOC NGUYEN

Dedicated to Professor Nguyén H. V. Hung on the occasion of his sixtieth birthday.

ABSTRACT. Let F(G) and b(G) respectively denote the Fitting subgroup and the
largest degree of an irreducible complex character of a finite group G. A well-known
conjecture of D. Gluck claims that if G is solvable then |G : F(G)| < b(G)%. We
confirm this conjecture in the case where |F(G)| is coprime to 6. We also extend
the problem to arbitrary finite groups and prove several results showing that the
largest irreducible character degree of a finite group strongly controls the group
structure.

1. INTRODUCTION

For a finite group G, let Irr(G) denote the set of irreducible (complex) characters
of G, and write

b(G) := max{x(1) | x € Irr(G)},

so that b(G) is the largest irreducible character degree of G. Also, let F(G) denote
the Fitting subgroup of G. In an old paper, D. Gluck [8] proved that |G : F(G)| <
b(G)'3/? and further conjectured that |G : F(G)| < b(G)? for every solvable group G.
Although Gluck’s conjecture is still open, various partial results have been obtained
by many authors. For instance, A. Espuelas [1] verified the conjecture for groups
of odd order and this was extended later by S. Dolfi and E. Jabara [3] to (solvable)
groups with abelian Sylow 2-subgroups. Recently, Y. Yang [31] has confirmed the
conjecture for solvable 3'-groups. The best general bound is due to A. Moret6 and
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T.R. Wolf in [22] where it was proved that |G : F(G)| < b(G)? for every solvable
group G.

We have seen that all the up-to-date partial results on Gluck’s conjecture have been
obtained with an additional condition on the order of G or G/F(G). In this paper
we establish the conjecture with a numerical restriction only on the order of F(G).
Our first result may be considered not only as a generalization of the aforementioned
theorem of Moret6é and Wolf but also as an important step towards the solution of
Gluck’s conjecture. (As usual, F*(G) and ®(G) respectively denote the generalized
Fitting subgroup and the Frattini subgroup of a finite group G.)

Theorem 1. Let G be a finite w-solvable group where 7 is the set of the prime
divisors of |F*(G/®(G))|. Then |G : F(G)| < b(G)’. Furthermore if |F(G/®(G))]| is
not divisible by 64 nor 81 then |G : F(G)| < b(G)>.

Combining the second part of Theorem 1 with the results of Dolfi, Jabara and
Yang mentioned above, we obtain

Corollary 2. Gluck’s conjecture is true unless possibly if |G /F(G)| is divisible by 6
and |F(G/®(Q))| is divisible by 64 or 81.

Proof. This follows from [3, Theorem 3|, [31, Theorem 2.5, and Theorem 1. O

We believe that the following result, which is a consequence of a theorem of Dolfi [2],
will also be useful in a future general attack on Gluck’s conjecture.

Theorem 3. Let G be a finite solvable group with G/F(G) acting primitively on
F(G)/®(G). Then Gluck’s conjecture is true for G.

Note that in Theorem 3 the factor group G/F(G) always acts completely re-
ducibly and faithfully on F(G)/®(G), whenever G is solvable. This is a theorem
of W. Gaschiitz [13, III. 4.2, 4.4, 4.5].

While the problem of bounding the index of the Fitting subgroup of a finite group
by its largest character degree has been studied extensively for solvable groups, not
much has been done for arbitrary groups. We are aware of only one known result
which is due to Gluck and is in the same paper mentioned above. That is, there
exists a constant ¢ such that |G : F(G)| < b(G)° for every finite group G. Another
goal of this paper is to find an explicit polynomial bound for |G : F(G)| in terms
of b(G) for an arbitrary group G. Surprisingly, by using a result of R. M. Guralnick
and G.R. Robinson [I1] on the so-called commuting probability of finite groups, we
easily deduce that this unspecified constant ¢ can be taken to be 4.

Theorem 4. For every finite group G, we have |G : F(G)| < b(G)*.

One might ask for the best possible bounding constant c¢. We have observed that
|G| < b(G)? for all non-abelian finite simple groups G (see Theorem 12) and the
bounding constant 3 cannot be lowered as the simple linear groups SL(2,27/) show.
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(Recall that [SL(2,27)| = 2/(4/ — 1) and b(SL(2,27)) = 2/ +1.) As we know of no
finite group G with |G : F(G)| > b(G)? we put forward the following

Question 5. Is it true that |G : F(G)| < b(G)? for every finite group G ?

Indeed, Theorem 1 already answers Question 5 affirmatively in the case where G is
a finite m-solvable group where 7 is the set of the prime divisors of |F*(G/®(G))|. To
further support this question, we answer it in the case where G /F(G) has no abelian
composition factor.

Theorem 6. Let G be a finite group. Then the product of the orders of the non-
abelian composition factors of G is at most b(G)3.

Gluck’s conjecture and Question 5 suggest that it would be interesting to find lower
bounds for b(G) in terms of indices of distinguished subgroups of G. Let k(G) denote
the number of conjugacy classes of G. Since |G|/k(G) < b(G)?, we see that an upper
bound for k(G) provides the corresponding lower bound for b(G) (see Section 7).
In fact, the problem of finding upper bounds for k(G) in terms of distinguished
subgroups of G' has been studied considerably in the literature. One of the notable
results, motivated by a question of J. G. Thompson on bounding k(G) by the order
of a so-called nilpotent injector of (the solvable group) G, is due to Robinson [20]
who proved (among other results) that there is a well determined function f such
that k(G) < f(|JF(G)]) for every solvable group G. We exploit Robinson’s ideas (see
also [11, Theorem 13 (ii)]) to obtain the following theorem whose consequence can
be viewed as a weak form of Gluck’s conjecture.

Theorem 7. Let G be a finite w-solvable group where m is the set of the prime divisors
of |F*(G)|. Then k(G) < |G|, and consequently, if H is a Hall w-subgroup of G then
|G : H| < b(G)?. In particular, if G is a solvable group and H is a Hall 7-subgroup
of G where T is the set of the prime divisors of |F(G)|, then |G : H| < b(G)?.

I. M. Isaacs and D.S. Passman [10] proved a Jordan-type theorem which says that
there exists a real-valued function f(z) so that every finite group G has an abelian
subnormal subgroup of index at most f(b(G)) (and at least b(G)). As a consequence
of Theorem 4, we show that f(z) can be taken to be z®. We combine this with a
result of M. W. Liebeck and L. Pyber [20, Theorem 3| on bounding the class number

of a finite group in terms of the order of a solvable subgroup to obtain

Theorem 8. Fvery finite group G contains an abelian subnormal subgroup of index
at most b(G)® and a solvable subgroup of index at most b(G)?,

Since this paper was written L. Pyber informed us that in fact Gluck [8] has shown
that there exists a universal constant K so that in any finite group G there exists
an abelian subgroup of index at most b(G)X. Pyber also pointed on a result of
A. Chermak and A. Delgado [15, Theorem 1.41] saying that if a finite group contains
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an abelian subgroup of index n then it also contains a characteristic abelian subgroup
of index at most n%. Using this result and the proof of Theorem 8, we see that every
finite group G contains a characteristic abelian subgroup of index at most b(G)'2%.
This and our Question 5 motivated Pyber [25] to ask the following question. Is it
true that for a finite group G there exists an abelian normal subgroup of index at
most b(G)3?

The paper is organized as follows. In Section 2 we introduce bases and state two
background results. In Section 3 we translate some information about bases to ‘large’
orbits. Theorems 1 and 3 are proved in Section 4. In Section 5, we prove that every
non-abelian finite simple group S has an irreducible character that is extendible to
Aut(S) of degree at least |S|'/3 - a crucial result that will be used in Section 6 to
prove Theorem 6. Finally, Theorems 4, 7, and 8 are proved in Section 7.

2. BASES

The notion of a base is fundamental in permutation group theory and also in
computational group theory. For a finite permutation group H < Sym(f2), a subset
of the finite set (2 is called a base for H if its pointwise stabilizer in H is the identity.
A base of minimal size is called a minimal base.

There are a number of results on minimal base sizes of linear groups. One of these
is the following.

Theorem 9 ([12], Theorem 1.1). Let V' be a finite vector space over a field of char-
acteristic p. If G < GL(V) is a p-solvable group which acts irreducibly on V', then
the minimal base size for G is at most 2 unless p = 2 or 3, when the minimal base
size for G is at most 3.

Let us remark that Theorem 9 is best possible. There are infinitely many solvable
linear groups G < GL(V) acting irreducibly on V with |G| > |V|* for p = 2 or 3 (see
[24, Theorem 1] or [30, page 1097]).

To state the most general form of the next theorem we introduce yet another
definition. Two bases By and By for H < GL(V) are said to be non-equivalent if
there is no h € H with B" = B,. The next result concerns such bases in the case
where H is a solvable primitive linear group.

Theorem 10 (Dolfi [2], Theorem 3.4). Let G be a solvable primitive subgroup of
GL(V) = GL(n, q) where V is a vector space of dimension n over a field of order q
and characteristic p. Then G has at least p pairwise non-equivalent bases each of size
2 unless one of the following cases holds for G.

(1) GL(2,2);

(2) SL(2,3) or GL(2,3);

(3) 3172.SL(2,3) or 3'72.GL(2,3) < GL(6,2);
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(4) (QsoQs)H < GL(4,3) where H is isomorphic to a subgroup of index 1, 2, or
4 of O7(4,2).

3. LARGE ORBITS

In this section we translate the results in the previous section to results about ‘large’
orbits. By a ‘large’ orbit of a finite group G on a vector space V' (possibly of mixed
characteristic) we mean an orbit of length at least |G|"* or |G|'/®. The existence of
such an orbit is equivalent to the existence of a vector v € V with the property that
|Cq(v)| < |G|? or |Ce(v)] < |G|?3. This occurs for example if G admits a base of
size at most 2 or 3 on V. Our method below is part of Gluck’s strategy [8] to produce
an irreducible character of large degree (for this see Section 4).

Lemma 11. Let G be a finite group acting completely reducibly and faithfully on a
finite module V', possibly of mized characteristic. Suppose that G is w-solvable where
7 is the set of prime divisors of |V|. Then we have the following.

(1) There exists a vector v in V such that |Cg(v)| < |G*/5.

(2) If |V] is not divisible by 64 nor 81 then there ezists a vector v in V such that
[Ca(v)] < |G]'2.

(3) If V is a primitive G-module and G is solvable, then there exists a vector v
in' V such that |Cq(v)| < |G|Y/? unless |V| = 3* and G is a unique subgroup
(up to conjugacy) in GL(V') of order 1152.

Proof. Let us first prove parts (1) and (2) of the lemma. We use induction on the
size of V. (If |V| is a prime then the result is clear.)

Suppose that V' is reducible. Put e = 1/2 if |V/| is not divisible by 64 nor 81 and
2/3 otherwise. We have V. = U @& W where U and W are non-zero G-modules of
possibly mixed characteristic. Then G/N acts faithfully and completely reducibly
on U, a module of size smaller than |V|, where N = Cg(U). So by the induction
hypothesis, there exists a vector v in U with |Cq/n(u)| < |G/N|°. Note that N acts
faithfully and completely reducibly on W and thus by induction, there exists a vector
w in W with |Cy(w)| < |N|°. Put v =« 4+ w. Then Cg(v)N/N < Cg/n(u) and so

|Cq(v) : NN Cg(v)| < |G/NI.
But
[N N Ce(v)| = |Cn(v)] = [Cn(w)| < [N
These yield
[Ca(v)] <G

Thus we may assume that V' is irreducible of characteristic p. Then by Theorem 9

there exists a base of size at most 3 and, in case p > 5, a base of size at most 2. In

particular there exists a vector v in V with the property that |Cq(v)| < |G|*? and
a vector v in V with the property that |Cg(v)| < |G|2, in case p > 5. This proves
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part (1) and also part (2) of the lemma in case p > 5. Suppose that the conditions
of part (2) hold with p =2 or 3. Then |V| < 32 or |V| < 27 in the respective cases.
But in these cases one can check the validity of the lemma by GAP [7].

Let us now turn to the proof of part (3) of the lemma. Suppose that V' is a primitive
G-module and that G is a solvable group. We may also assume that the minimal
base size for G on V is at least 3. By Theorem 10 this happens only if case (3) or
(4) of Theorem 10 holds. But in these cases one can check by GAP [7] that there
always exists a vector v in V with |Cg(v)| < |G|Y/?, except when |V| = 3 and G is
a unique subgroup (up to conjugacy) in GL(V') of order 1152. O

Remark. Notice that G = GL(2,2) ¢ Sym(3) and GL(2,3) ? Sym(2) are imprimitive
linear groups acting on a vector space V of size 64 and 81 respectively with the
property that there does not exist a vector v € V with |Cg(v)| < |G|'/2. Therefore
the second and third statements of Lemma 11 are best possible in some sense.

4. PROOFS OF THEOREMS 1 AND 3

Let G be a finite m-solvable group where 7 is the set of the prime divisors of
|F*(G/®(G))|. Then F*(G/P(G)) = F(G/P(G)) and so F(G/P(G)) = F(G)/P(G)
is a faithful G/F(G)-module. By Gaschiitz’s theorem (see [13, III. 4.5]) we also have
that F(G)/®(G) is a completely reducible G /F(G)-module. Therefore Irr(F(G)/®(G))
is a completely reducible and faithful G/F(G)-module as well. By applying Lemma 11,
we have an irreducible character A of F(G)/®(G) (and thus of F(G)) whose stabilizer
in G/F(G) has size at most |G : F(G)|* where a = 1/2 if the conditions of the second
or third statements of Lemma 11 are satisfied and a = 2/3 otherwise. This means
that A lies in a G-orbit of size at least |G : F(G)|'*™®. Theorem 1 now follows by
Clifford’s theorem.

Now we turn to the proof of Theorem 3. Let GG be a finite solvable group with
G/F(G) acting faithfully and primitively on F(G)/®(G). Then G/F(G) also acts
faithfully and primitively on Irr(F(G)/®(G)). By the previous paragraph we arrive to
a conclusion unless the G/F(G)-module Irr(F(G)/®(G)) has size 3* and |G/F(G)| =
1152. This happens only if the faithful, primitive G/F(G)-module V = F(G)/®(G)
has size 3.

As mentioned in the introduction, for a finite group 7' let k(7") be the number of
conjugacy classes of T'. The group T' = G/®(G) has the form HV | a split extension
of H and V, where H is isomorphic to G/F(G) and it acts the same way on V' as
G/F(G) does (apply [13, III. 4.4] to the group T with a trivial Frattini subgroup).
Thus k(G/®(G)) = k(HV). But by GAP [7] we have k(HV) < |V| which gives
kE(G/®(G)) < |F(G)/®(G)|. This and Nagao’s result [23] then gives

k(G) < k(G/2(G)k(2(G)) < [F(G)].
But then the inequality |G|/k(G) < b(G)? yields the desired conclusion.
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5. EXTENDIBLE CHARACTERS OF LARGE DEGREE IN SIMPLE GROUPS

Our proof of Theorem 6 relies on the classification of finite simple groups. The
specific consequence of the classification is the following result, which may have other
applications.

Theorem 12. Let S be a finite non-abelian simple group and let d(S) denote the
largest degree of an irreducible character of S that extends to Aut(S). Then we have
d(S) > |S|'5.

The proof of Theorem 12 is fairly straightforward for sporadic simple groups and
simple groups of Lie type. So most of this section is devoted to the proof for the
alternating groups. We first recall some basic combinatorics connecting partitions,
Young diagrams, and representation theory of the alternating and symmetric groups.

Let n be a natural number. It is well-known that there are bijective correspon-
dences between the partitions of n, the Young diagrams of cardinality n, and the
irreducible complex characters of S,,. Let A be a partition of n. That is, X is
a finite sequence (Aj, Ag,..., \g) for some k such that Ay > Ay > .-+ > A\, and
A+ A+ -+ A\, =n. Each ) is called a part of A.

The Young diagram corresponding to A, denoted by Y, is defined to be the finite
subset of N x N such that

(i,7) € Yy if and only if i < A;.

Two partitions of n whose associated Young diagrams transform into each other
when reflected about the line y = z are called conjugate partitions. The partition
conjugate to A is denoted by A. If A = X then Y, is symmetric and we say that \ is
self-conjugate. For each node (7, ) € Y), we define the so-called hook length h(i, j)
to be the number of nodes that are directly above it, directly to the right of it, or
equal to it. More precisely,

h(i,j) =1+ X+ X\ —i— j.

We denote by x» or xy, the irreducible character of S,, corresponding to A and Y.
The degree of y, is given by the hook-length formula of J.S. Frame, G.B. Robinson,
and R. M. Thrall, see [0]:

n!
H(i,j)GYA h(Z, .]) ‘

The irreducible characters of A,, can be obtained by restricting those of S,, to A,,.
More explicitly, xx da,= X3 4a, is irreducible if A is not self-conjugate. Otherwise,
Xx da, splits into two different irreducible characters of the same degree. In short,
the degrees of the irreducible characters of A,, are labelled by partitions of n and are

Ho=xa) =xn 1) =
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given by

/2 A=

Given a partition A of n, we define A(\) and R(\) to be the sets of nodes that
can be respectively added or removed from Y, to obtain another Young diagram
corresponding to a certain partition of n + 1 or n — 1 respectively. It is known
(see [19, §2] for instance) that

AN < V2n + 1 and |R(\)| < V2n.

The branching rule [17, §9.2] asserts that the restriction of x, to S,_; is a sum
of irreducible characters xy,\{¢ )} as (4,7) goes over all nodes in R(X). Also, by
Frobenius reciprocity, the induction of x, to S, is a sum of irreducible characters
Xvau{G)} as (4, 7) goes over all nodes in A(X).

~ [ f if A\,
f)\—{ A X

Lemma 13. Theorem 12 is true for the simple alternating groups.

Proof. The validity of the lemma can be checked by computer for all values of n
in the range 5 < n < 30. We will prove by induction on n > 30 that d(A,1) >
(n + 1)/3d(A,). This then implies the inequality d(A,) > (n!/2)/3 immediately.

Let 0 be an irreducible character of A,, with n > 30 such that 6 is extendible to S,,
and 0(1) = d(A,,). Assume that 6 extends to y € Irr(S,,). Let A and Y be respectively
the partition and Young diagram corresponding to x. Consider the induction of x to
S,11. We have

(5.1) X (1) = (n+ 1)x(1) = (n + 1)d(A,)
and
(52> il = Z XYU{(i,5)}

(i,5)€A(N)

by the branching rule. There are two cases arising.

(1) None of the Young diagrams in {Y U {(4,75)} | (¢,7) € A(\)} are symmetric.
Then the irreducible characters xyuy,j)) restrict irreducibly to A, so that

Xyuf(iy (1) < d(Antq)
for every (i,7) € A(\). We therefore deduce that
X (1) < JAN)d(Anga).
Since |A(N)| < v2n + 1 and x>+ (1) = (n + 1)d(A,,), it follows that
(n+1)d(A,) < [V2n]d(Ant),
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where [z]| denotes the smallest integer not smaller than z. Thus as n > 30 we

conclude that
n+1

n 1/3
A NeTl d(A,) = (n+1)""d(A),

d(An+1)

as desired.

(2) There is a symmetric Young diagram in {Y U {(i,5)} | (¢,5) € A(\)}. Then
there is exactly one such diagram and at most [v/2n — 1] non-symmetric diagrams
in {YU{(i,7)} | (4,7) € A(N)}. Let Y’ be that symmetric Young diagram and u be
the corresponding partition. By the branching rule, we have

v ls, = D Xyniagy-
(1.3)ER (k)
Now there are two subcases arising.

(a) None of the Young diagrams of the form Y'\{(i, )} where (i,j) € R(u) are
symmetric. Then the characters associated to these diagrams restrict irreducibly to
A,, and thus their degrees are at most d(A,,). As |R(u)| < v/2n + 2, we deduce that

Xy (1 Z Xy (1) < [v2n 42 — 11d(A,).
(i,5)€R(1)
Combining (5.1), (5.2), and the last inequality, we have

(n + 1 Z XY U{(,5)}

(6,3)€AN)
= xy/(1) + Z Xy ui(igy (1)
(6,3)€AN), Y U{(4,5)} £Y"
< [V2n+2 = 1]d(A,) + (|AN)] = 1)d(Ant1)
< [V2n +2 —1]d(A,) + [V2n — 1]d(A,41).
Thus as n > 30 we deduce that

n+2—[v2n+ 2]

1/3
[\/ﬁ — 1_| d(An) > (n + 1) d(An)a

d(Ans1) >

as wanted.

(b) There is a symmetric Young diagram in {Y'\{(¢,7)} | (¢,7) € R(x)}. Then
there is exactly one such diagram and at most [v/2n + 2—2] non-symmetric diagrams
in {Y"\{(4,7)} | (4,7) € R(u)}. Let Y” be that symmetric Young diagram and v be
the corresponding partition. So we have two symmetric Young diagrams Y’ and
Y” and Y is obtained from Y’ by removing a node. Therefore, if another node is
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removed from Y to get a Young diagram (of size n — 1), the resulting diagram can
not be symmetric. Therefore, again by the branching rule,

\yr(1) < V20— 1]d(A, 1),
It follows that
Xy (1) < [V2n — 17d(A,—1) + [V2n + 2 — 2]d(A,).
Therefore, as in subcase (a),
(n+1)d(A,) = xy (1) + > Xyu{(i3 (1)
(1,7)€AN),Y U{(,7) } Y’
< [V2n — 17d(A,_1) + [V2n + 2 — 2]d(A,) + [V2n — 1]d(A,11).

Using the induction hypothesis that d(A,_1) < n~'/3d(A,) and noting n > 30, we
obtain

n+3—[vV2n+2] —[vV2n—1]n"3
d(ATH-l) > [m - 1—|

as wanted. The proof is complete. O

d(A,) > (n+1)"2d(A,),

Remark. 1t can be shown by viewing Young diagrams of rectangular shapes that for
any 0 > 0 there exists an N > 0 such that whenever n > N we have d(A,,) > n!1/?=?,

Proof of Theorem 12. If S is a simple sporadic group or the Tits group, the proof is a
routine check from the Atlas [1]. As the alternating groups have been already handled
in Lemma 13, we can assume that S is a simple group of Lie type in characteristic p.
We then realize that S has the so-called Steinberg character Stg of degree Stg(1) =
|S|p, the p-part of the order of S, and Stg is extendible to Aut(S) (see [5]). Now we
can check the inequality |S|, > |S|*/? easily by consulting the list of simple groups
and their orders, see [1, p. xvi| for instance. O

Remark. The bounding constant 1/3 in Theorem 12 is tight since the order of PSLa(q)
is q(¢*—1)/ ged(2,q—1) and the largest degree of an irreducible character of PSLy(q)
extendible to Aut(PSLy(q)) is either ¢ or g + 1.

6. BOUNDING THE PRODUCT OF THE ORDERS OF NON-ABELIAN COMPOSITION
FACTORS

In this section we prove Theorem 6. To do that, we first apply the main result of
the previous section to obtain the following.

Proposition 14. Let N be a non-abelian minimal normal subgroup of a finite group
G. Then

b(G)? > b(G/N)|N].
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Proof. Since N is a non-abelian minimal normal subgroup of the finite group G, we
know that N = S x --- x S, a direct product of say k copies of a non-abelian simple
group S. By Theorem 12, we know that there exists a non-principal character o €
Irr(S) such that a extends to Aut(S) and «(1) > |S|*/3. In particular, the product
character ¢ := a X -+ X « is invariant under Aut(N) = Aut(S) ¢ Sx. By [21], the
character ¢ extends to Aut(/N). Since N is embedded into G/Cg(N) and G/Cg(N)
embeds into Aut(N), the character ¢ extends to G/Cq (V) and therefore ¢ extends
to a character y of G.

Applying Gallagher’s Theorem [14, Corollary 6.17], we deduce that there is a bi-
jection A — Ay between Irr(G/N) and the set of irreducible characters of G lying

above 9. In particular, by taking A to be an irreducible character of largest degree,
we deduce that b(G/N)x(1) = b(G/N)¥(1) is a character degree of GG. It follows that

b(G) = b(G/N)(1).

Recall that ¢ := a x --- x a and (1) > |S|*/3. Thus (1) > |N|*/3. It follows by
the above inequality that

b(G) = b(G/N)IN|"?,
and this completes the proof. U

Theorem 6 now is a consequence of Proposition 14.

Proof of Theorem 6. In light of Proposition 14, we see that if /N is a minimal normal
subgroup of a finite group X, then

b(X) > b(X/N) if N is abelian, and

b(X) > b(X/N)|N|? if N is non-abelian.

Let 1 = My < My < -+- < My, = G be a chief series of G. That is, M; /M, is a
minimal normal subgroup of G/M; for every i =0, 1,...,k—1. Arguing by induction
on the number of chief factors of GG, we deduce that the product of the orders of all
non-abelian chief factors of G is at most b(G)?3, which also means that the product
of the orders of all non-abelian composition factors of G is at most b(G)?. The proof
is complete. O

7. DISTINGUISHED SUBGROUPS AND THE LARGEST CHARACTER DEGREE

We need two preliminary lemmas to prove Theorem 7.

Lemma 15. Let G be a finite p-solvable group and V' an elementary abelian normal
p-subgroup of G for some prime p. Suppose that G/V acts faithfully on V. Then
kE(G) < |G|p.
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Proof. The hypothesis implies that O, (G) = 1. But then Theorem 2.6(a) of [28]
states that G has a unique p-block, the principal block. The defect group of the

principal block is a Sylow p-subgroup of G. Hence by the p-solvable case of Brauer’s
k(B)-problem (see [9]) we obtain k(G) < |G|,. O

Lemma 16. Let G be a w-solvable finite group, where w is the set of prime divisors of
|F*(G)|. Then F*(G/®(G)) = F*(G)/®(G). In particular, the set of prime divisors
of |F*(G/®(G))| is a subset of 7.

Proof. Let G = G/®(G) and let N be the inverse image of F*(G) in G, that is,
N/®(G) = F*(G/®(q)). Then F*(G) = E(G) o F(G), the central product of E(G),
the subgroup generated by all the quasisimple subnormal subgroups of G and F(G),
the Fitting subgroup of G. Moreover, E(G) is itself a central product of subnormal
quasisimple subgroups of G. Here Z(E(G)) < F(G). As F(G) = F(G)/®(G), we
have that N/F(G) is a direct product of some non-abelian simple groups. (Unless,
N = F(G), in which case we are done.) Since N/F(G) is a m-solvable group, we
have that it is a 7’-group. As F(G) is a m-group, (|F(G)|,|N : F(G)|) = 1, so the
Schur-Zassenhaus theorem can be applied. We get N = F(G) x K for some 7'-group
K <@.

Now, we prove that we can assume that ®(F(G)) = 1. Assuming the converse,
let 7: G — G/®(F(G)) be the natural homomorphism. Then ®(F(G)) < ®(G), so
O(7(G)) = 7(®(G)) holds. Furthermore, 7(F(G)) = F(7(G)), and F*(7(G)) < 7(N)
also follows.

We claim that K acts faithfully on 7(F(G)). Indeed, let L < K be the kernel of
this action and let P be the Sylow p-subgroup of F(G) for some p € w. Then L acts
trivially on the vector space P/®(P) ~ 7(P). Now, we use the idea of the proof of
[13, III. Satz 3.17|, which we recall here only for completeness. Let {ai,...,qa;} be
a basis of P/®(P). Then the set X = {(ait1,...,aqit;) |t1,..., 4 € ®(P)} is fixed
by L, and L/Cp(P) acts semiregularly on X, since every element of X provides a
(minimal) generating set of P. It follows that |L/Cr(P)| | |X| = |®(P)[". But L is a
p'-group, while ®(P) is a p-group. So L/Cp(P) = 1. As this holds for every Sylow
subgroup of F(G) we get L < Ck(F(G)) = 1.

As E(1(G)) < 7(K) centralizes F(7(G)), we get E(r(G)) = 1, so F*(7(G)) =
F(7(G)) = 7(F(GQ)) is a m-group and we can use an induction argument on the order
of the finite group.

Now, let ®(F(G)) = 1. Then F(G) is a direct product of elementary abelian
groups, and it is completely reducible as a K-module by Maschke’s theorem. As

F*(G) = K x F(G), we get F(G) = ®(G)® U as a K-module, where U is centralized
by K and K acts faithfully on ®(G) by conjugation.

Let now M = Ng(K) > UK. We claim that G = M®(G). Notice that this is
sufficient to prove the lemma, since G = M implies that K is normal in G and so

K < F*(G).
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To prove that G = M®(G), let g € G be arbitrary. Then K9 < N < G, and K9 is
also a complement of F(G) in N. Thus, there is an n € N such that K9 = K™ by the
second part of the Schur-Zassenhaus theorem. So g = myn for some m; € M. But
N = ®(G)UK, where UK < M, so N = (M N N)®(G). Thus, n = msyt for some
me € M, t € ®(G). It follows that g = mqn = mymot € M®P(G), and the proof is
complete. 0

Proof of Theorem 7. Suppose that we have the result for groups in consideration with
a trivial Frattini subgroup. Then for an arbitrary finite 7-solvable group G where 7 is
the set of the prime divisors of |F*(G)|, we see that G/®(G) is p-solvable where p is
the set of the prime divisors of |[F*(G/®(G))|, a subset of 7 by Lemma 16. Therefore

k(G/O(G)) < [G/2(G)], < |G/2(G)]x = |Gl/|2(G)];
since every prime divisor of |®(G)| is in 7. Using Nagao [23], we then deduce that
k(G) < k(B(G)K(G/0(G)) < [@(G)] - (|Gl2/|2(G)]) = [Gla,

as wanted. Thus we may assume that ®(G) = 1.

Notice that the hypothesis on G implies that F*(G) = F(G) and thus F(G) is
a direct product of elementary abelian groups and X := G/F(G) acts faithfully on
V = F(G). Moreover by [13, III. 4.4], we may also assume that G is the split
extension XV of a subgroup X of G and V.

We now proceed by induction on the size n of the set 7.

Let n = 1. Then V is an elementary abelian p-group for some prime p and X acts
faithfully on V. Thus by Lemma 15 we have k(G) < |G|,, as desired.

So suppose that n > 1 and that the theorem is true forn — 1. Let V =W @ U
where W is the maximal elementary abelian p-subgroup of V' for some prime divisor
pof V.

Put Y := XU = G/W so that G = YW. Put N := Cy(W). Then N contains
U as a normal subgroup and N is normal in G. In particular, F*(N) = F(N) (since
a component in N is also a component in G). Now notice that N/U acts faithfully
on U. From this it follows that the sets of the prime divisors of |F(N)| and |U| are
the same and equal to p:= w\{p}. As it is clear that N is u-solvable, the induction
hypothesis implies that k(N) < |N|,, which in turn implies that k(N) < |N|.

Now G/N = (Y/N)W and Y/N acts faithfully on W. It follows that |F(G/N)|
has exactly one prime divisor, which is p. As G is w-solvable, the quotient G/N is p-
solvable. Hence by Lemma 15, we have k(G/N) < |G/N|,. Thus k(G/N) < |G/N|,.

Using Nagao [23] again, we deduce that

k(G) < k(N)E(G/N) < [Nz - [G/N|x = |Glr.

This completes the proof of the first part of the theorem. The second part follows
readily as

G = H| = |G|/|G] < |G|/k(G) < b(G)*.
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For the last part, we just note that if G is solvable then the set of the prime divisors
of |F*(G)| is precisely that of |F(G)|. O

Remark. Notice that the inequality k(G) < |F(G)| implies Gluck’s conjecture for
the solvable group G. However this inequality does not always hold by considering
G = AGL(2,3), as kindly pointed out to us by Robinson [27].

As mentioned in the introduction, Theorem 4 is a consequence of results on the
so-called commuting probability of finite groups. The commuting probability of a
finite group G, denoted by cp(G), is the probability that a randomly chosen pair of
elements of G commute. That is,

ep(G) = @H(x,y) € G x G|y =y}l

It is well-known that cp(G) = k(G) /|G| where k(G) denotes the number of conju-
gacy classes in G.

Using the classification of finite simple groups and early work of R. Knorr [18] on
the coprime k(GV)-problem, Guralnick and Robinson [I1] obtained a quite strong
bound for the commuting probability, namely cp(G) < |G : F(G)|7/2.

Proof of Theorem /. The result [11, Theorem 10] implies that

k(G) . 1
WSIG-F(GN 2

which in turn implies that

G . F(G)]'V? < u

G RO < 1
Since the right-hand side of the previous inequality is no greater than b(G)?, we
deduce that

G F(G)'? < b(G),
and the theorem follows. O

Remark. Since the proof of the inequality cp(G) < |G : F(G)|~Y/2 by Guralnick and
Robinson depends on the classification of finite simple groups, the above proof of
Theorem 4 depends on the classification as well.

Proof of Theorem 8. Using the result [16, Theorem D] of Isaacs and Passman, we
have that the nilpotent group F(G) has a subnormal abelian subgroup, say A, of
index at most b(F(G))*. Combining this with Theorem 4, we have

G A= |G F(G)] - [F(G) : Al < b(G)'B(F(G))" < b(G)",

which proves the first part of the theorem.
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The result [20, Theorem 3] of Liebeck and Pyber is that every finite group G
contains a solvable subgroup S with k(G) < |S|. This implies that

|G+ S| < [GI/K(G) <B(G)*
and we have proved the second part of the theorem. 0

We remark here that it is asked in [20, page 539] whether in fact any finite group
G contains a nilpotent subgroup N with k(G) < |N|. It would be interesting if one
could answer the following weaker question, which seems nontrivial to us.

Question 17. Is it true that every finite group G has a nilpotent subgroup of index
at most b(G)*?
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