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Abstract

Combinatorial batch codes provide a tool for distributed data stor-
age, with the feature of keeping privacy during information retrieval.
Recently, Balachandran and Bhattacharya observed that the problem
of constructing such uniform codes in an economic way can be formu-
lated as a Turdn-type question on hypergraphs. Here we establish gen-
eral lower and upper bounds for this extremal problem, and also for its
generalization where the forbidden family consists of those r-uniform
hypergraphs H which satisfy the condition k > |E(H)| > |V(H)|+ ¢
(for k > ¢+ r and ¢ > —r fixed). We also prove that, in the
given range of parameters, the considered Turan function is asymp-
totically equal to the one restricted to |E(H)| = k, studied by Brown,
Erdés and T. Sés. Both families contain some r-partite members
— often called the ‘degenerate case’, characterized by the equality
lim,, 00 €x(n, F)/n" = 0 — and therefore their exact order of growth
is not known.
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1 Introduction

In this paper we study a Turan-type problem on uniform hypergraphs, which
is motivated by optimization of distributed data storage enabling secure data
retrieval under a certain protocol.

1.1 Terminology

Hypergraphs. A hypergraph H is a set system with vertex set V(H) and
edge set F(H) where every edge e € F(H) is a nonempty subset of V(H).
The number of its vertices and edges is the order and the size of H, re-
spectively. A hypergraph H is called r-uniform if each edge of it contains
precisely r vertices. For short, sometimes we shall use the term r-graph
for r-uniform hypergraphs. Graphs without loops are just 2-uniform hyper-
graphs. A hypergraph H; is a subhypergraph of Hy if V(H;) C V(H,) and
E(H,) C E(H,) holds, moreover we say that H; is an induced subhypergraph
of Hy if also E(Hy) ={e: e C V(H;) N e € E(Hy)} holds. In this paper
graphs and hypergraphs are meant to be simple, that is without loops and
multiple edges, unless stated otherwise explicitly.

Turan numbers. Given hypergraphs H and F', H is said to be F'-free
if H has no subhypergraph isomorphic to F. Similarly, if F is a family of
hypergraphs, H is F-free if it contains no subhypergraph isomorphic to any
member of F. In the problems considered here, the family F contains 7-
graphs for a fixed » > 2 and the property to be F-free is considered only for
r-graphs.

In a Turdn-type (hypergraph) problem there is a given collection F of
r-uniform hypergraphs and the main goal is to determine or to estimate the
Turdn number ex(n, F) which is the maximum number of edges in an F-free
r-uniform hypergraph on n vertices. In 1941 Turdn [24] determined ex(n, K;),
that is the maximum size of a graph G of order n such that G contains no
complete subgraph on t vertices. (The spacial case of k = 3 was already
solved in 1907 by Mantel [19].) Since then lots of famous results have been
proved (see the recent surveys [15], [I8]), but many problems especially among
the ones concerning hypergraphs seem notoriously hard.



Combinatorial batch codes. The notion of batch code was introduced
by Ishai, Kushilevitz, Ostrovsky and Sahai [I7] to represent the distributed
storage of m items of data on n servers such that any at most k data items are
recoverable by submitting at most ¢ queries to each server[] In its combinato-
rial version [20], ‘encoding’ and ‘decoding’ mean simply that the data items
are stored on and read from the servers. Its basic case, when the parameter
t equals 1, can be defined as follows

e A combinatorial batch code (CBC-system) with parameters (m, k,n) is
a multihypergraph H of order n and size m, such that the union of
any 7 edges contains at least i vertices for every 1 < ¢ < k. For given
parameters r, k,n, satisfying r > 2 and r+ 1 < k < n, let m(n,r, k)
denote the maximum number m of edges such that an r-uniform CBC-
(m, k,n)-system exists.

Optimization problems on combinatorial batch codes (mainly for the non-
uniform case and under the condition ¢t = 1) were studied in [3], 6] [7, [8, [ 10,
20]. Recently, Balachandran and Bhattacharya [2] formulated the problem
of determining the maximum size of r-uniform CBC-systems as a Turan
multihypergraph problem. Clearly, an r-uniform multihypergraph H is a
CBC-system with parameter k£ if and only if it has no subhypergraph of
order ¢ — 1 and size exactly ¢ for all r +1 < i < k.

A problem of Brown, Erdos and T. Sés. Brown, Erdos and T. Sés
started to study the problems where, for fixed integers 2 < r < wv and k > 2,
all r-graphs on v vertices and with at least k£ edges are forbidden to occur
as a subhypergraph of an r-graph [5]E The maximum size of such an -
graph of order n is denoted by f)(n,v,k) — 1. A general lower bound on
f™)(n,v, k) was proved in [5] and later further famous results were given for
the cases v > k (see, e.g., [21] 12, 22 23] [1]). In this paper, motivated by

'In the main part of the literature notations n and m are used in reversed role. Here
the usual notation of hypergraph Turdn problems is applied for CBCs (as done also in [2]).
2In this definition the vertices of the hypergraph represent the n servers, the edges
represent the m data items, and an edge contains exactly those vertices which correspond
to the servers storing the data items represented by the edge. Parameters k£ and ¢t =
1 express the condition that every family of at most k edges has a system of distinct
representatives. Applying Hall’s Theorem we obtain the definition in the form given here.
30n graphs, the problem was first studied by Dirac in [I1].



the optimization problem on uniform CBCs, we will study a problem closely
related to the case v < k.

Our problem setting. We shall consider Turan-type problems for the
following families of forbidden subhypergraphs. The upper index ‘(r)’ in the
notation indicates that the family consists of r-graphs.

o H(k,q)={H: |[EH)| - |V(H)|=q+1 A |E(H) <k}

To study H ) (k, q)-free hypergraphs, we put the following restrictions
on the parameters:

o 7 >2 (The problem would be trivial for the 1-uniform case.)

ok>q+r+1 (JE(H)| <q+r would imply |V(H)| <r—1 and
hence H") (k,q) = 0.)

o g>—r+1 (Negative values can be allowed for q. But if ¢ < —r,
the family H () (k, q) contains an r-graph with 1 edge and with at
least 7 vertices, and hence ex(n, H™ (k,q)) = 0 would follow.)

o FO(k,q) = {H: |E(H)| - |V(H)|=q+1 N |E(H)| =k}

In general, r > 2, k > q+r+1and k > 2 are assumed. Here we restrict
ourselves to the cases with ¢ > —r + 1. Note that F™)(k,q) contains
exactly those r-graphs which are forbidden in the Brown-Erd6s-Sos
problem with v = k — ¢ — 1, while H)(k,q) = UL, F© (i, q).

Moreover, for H") (k,q) and F)(k,q), the family of multihypergraphs with
the same defining property is denoted by ”Hg\?(k;, q) and F. Jﬁf])(k, q), respec-
tively. When the Turan number relates to the maximum size of a multihy-
pergraph, the lower index M is used, as well. For instance, ex);(n, Hﬁ\z)(k, q))
denotes the maximum number of edges in a multihypergraph such that every
1 edges cover at least i — g — 1 vertices subject to ¢+r+1 < i < k. Note that
if g = —r + 1, already the presence of edges with multiplicity 2 is forbidden
and consequently exy;(n, ng)(k, —r + 1)) = ex(n, HO (k, —r + 1)).

The next facts follow immediately from the definitions:

m(n,r k) = expy(n, Hg\? (k,0))



ex(n, H(k, q)) < ex(n, FO(k,q)) = [fO(nk—q—1k) —1<exy(n, F(k q))
ex(n, HO (k,q)) < exp(n, HY) (k. q))

1.2 Preliminaries and our results

The following general lower bound was proved by Brown, Erdés and T. Sés
[5] for F)(k, q)-free r-graphs under the previously given conditions (r > 2,
k>q+r+1and k> 2).

qtr

f(T) (nv k— q— 17 k) = Q(nT_1+k71>‘ (1>

Paterson, Stinson and Wei [20] proved that if ¢ = 0 but all the r-graphs from
H") (k,0) are forbidden, the lower bound (1) still remains validd:

m(n,r.k) = ex(n, HO)(k,0)) = Qn’ " FT),

We prove in Section 2 that the lower bound (1) can be extended also to our
general case:

atr

ex(n,?—[(’")(k:,q)) = Q(n" T, (2)

Concerning upper bounds, our main result proved in Section 4 says that

r—1+4 ;

ex(n, H" (k,q) = O(n  Le==1) (3)

for every fixed r > 2 and kK > ¢+ r + 1. The basis of the proof is r = 2
(graphs), for which the order of the upper bound follows already from a
theorem of Faudree and Simonovits [I3]; in fact they only forbid a subfamily
of F@(k,q). Under the stronger condition of excluding H®(k,q) instead
of F®(k,q), however, a better and explicit constant can be derived on the
former; and this can in turn be proved to be valid on the latter as well.
For this reason, we do not simply derive the result from the one in [13] but
prove the new upper bound in our Theorem Bl The more general result for
hypergraphs is given in Theorem [7l In Section 4 we also prove that the same
upper bound (3) is valid for multihypergraphs, in fact not only the orders of

4For the cases with k — [logk] < r < k— 1, Balachandran and Bhattacharya [2] proved
the better lower bound m(n,r, k) = Q(n")



these upper bounds are equal but also the relatively small leading coefficients
are the same.

Section 5 is devoted to exploring the connection between the Turan num-
bers of H")(k, q) and F™(k,q). The general message there is that any later
improvement in the estimates concerning H " (k, ¢) will automatically yield
an improvement for F")(k,q) as well, and vice versald By Theorem [} if
r = 2 and the parameters k£ and ¢ are fixed, the difference is bounded by a
constant d(k, q):

f(z)(nv k — q— 17 k) - eX(an(2)(k7 q)) S d(kv q)
For r» > 3, by Theorem [13 we obtain the upper bound
fOn,k—q—1,k) —ex(n, H") (k, q)) = O(n" ™),

which is somewhat weaker but still strong enough to prove that the Turan
numbers ex(n, F(k, ¢)) and ex(n, H™(k, ¢)) have the same order of growth.
On the other hand, the question of sharpness of Theorem [I3] remains open:

Problem 1 For the triplets (r,k,q) of integers in the range r > 2, q >
—r+1, and k > q+r+1, determine the infimum value s(r, k,q) of constants
s > 0 such that

f(r)(na k— q— 1a k) - eX(na %(T)(ka q)) = O(ns)
as n — o0.

Conjecture 2 The infimum s(r, k,q) in Problem[d is attained as minimum.

Our Theorem [l shows that s(2, k, q) = 0 holds for all pairs (k,q) in the
given range, and so Conjecture 2 is confirmed for r = 2.

At the end of this introductory section, we return to uniform combinato-
rial batch codes. The previous upper bound given for m(n,r, k) in [20] was
improved recently by Balachandran and Bhattacharya [2]:

m(n,r,k) = O " 77) if 3<r<k—1-/logkl. (4)

5Obviously, by this principle, one should seek upper bounds for H()(k,q) and lower
bounds for F")(k, q).



Our Corollary [ yields a further improvement in the range r < k/2 — 1.
Especially, we have

mn,r k) = O (ﬁuHLilJ) . (5)

Comparing (4) and (5), the difference is significant already for parameters
complying with 3 < r = k/2—1. For these cases, (4) gives exponent r—1/2"!
whilst our bound (5) yields exponent r — 1/2.

2 Lower bound

In this section we prove a lower bound on ex(n, H)(k, ¢)) whose order is the
same as proved in [B] for f(n,k—q—1,k); that is, for the case when only the
subhypergraphs on exactly k —q — 1 vertices and with %k edges are forbidden.

Theorem 3 For all fixed triplets of integers r,k,q with r > 2, ¢ > —r + 1
and k > 1r+q+ 1 we have

gtr kr—k+g+1

ex(n, HO(k,q)) = Q(n" " T571) = Q(n~ =1 ),

Proof. We apply the probabilistic method. Our proof technique is similar
to those in [5] and [20]. We let p = en™ 5T | where the constant ¢ = c(r k, q)
will be chosen later. Note that the lower bound —r 4+ 1 on ¢ implies pn >
cnﬁ, i.e. pn tends to infinity with n whenever r, k, ¢ are constants.

Let Hr(:;); be the random r-uniform hypergraph of order n with edge prob-
ability p. That is, HY) has n vertices, and for each r-tuple S of vertices the

)

probability that S is an edge is p, independently of (any decisions on) the
other r-tuples. We denote by E the number of edges in H,(ZI);, and by F' the
number of forbidden subhypergraphs in Hr(:;);; by ‘forbidden’ we mean that
for some 7 < k, some ¢ — ¢ — 1 vertices contain at least ¢ > 0 edges.

We will estimate the expected value of £ — F, more precisely our goal
is to show that the inequality E(E — F') > E(F)/2 on the expected values
is true for a suitable choice of the constant ¢. Once E(E — F') > E(E)/2 is
ensured, we obtain that there exists a (non-random) hypergraph with twice as
many edges as the number of its forbidden subhypergraphs, hence removing
one edge from each of the latter we obtain a hypergraph with the required
structure and with at least E(E)/2 = (") edges.

7



By the additivity of expectation we have
E(E - F)=E(FE) - E(F),
moreover it is clear by definition that

q+

E(E)=p- (Z) - (% +o(1)-p-n" = (% +o(1))-c- n e (6)

for any fixed r as n — oo. Hence we need to find an upper bound on E(F).

We consider the following set I of those values of i for which an (i —
q— 1)-element vertex subset is large enough to accommodate some forbidden
subhypergraph:

g1
I:{i: ig(Z ‘i ) A q+r+2§i§k}.

It should be noted first that if I = (), then also H")(k,q) = () holds and
hence ex(n, H"(k,q)) = (). In this case, the lower bound in the theorem is
trivially valid, as the condition k£ > r+¢+1 > 2 implies (¢+7)/(k—1) < 1.

From now on, we assume that / # (). Consider any i € I. On any
1 — q — 1 vertices the number of ways we can select i edges is (( % 1)), and
the probability for each of those selections to be a subhypergraph of Hr(f;,), is
exactly p’. Since there are (Z._Z_l) ways to select i — ¢ — 1 vertices, we obtain
the following upper bound:

o < £ () ()

el
)
< A p i—q—1
; (i—g—-1)
() i |
< (I?Ea}x ((i—qi—l)!) _pk nk—a-1. Z (pn)l_k
i=q+r+2

q+r
1)

< (Chygr +o0(1)) - ok opka1-k (1=
= (Crgrto(1)) - n" 1= (7)

i—q—1
T

()

where Cp g, abbreviates the maximum value of “z——=¢ taken over the range
I of 1.




Compare the rightmost formula of (@) with (7). The terms in parenthe-
ses containing o(1) are essentially constant, while the main part of (@) is
¢-n" T whereas that of (@) grows with c* - nT T Thus, choosing ¢
sufficiently small, the required inequality E(E — F') > E(F)/2 will hold for

n large. This completes the proof of the theorem. O

Remark 4 It can also be ensured (again by a suitable choice of c) that
E(E — F)/E(E) is arbitrarily close to 1. This is not needed for the proof
above, but it may be of interest in the context of batch codes with specified

rate (cf. e.g. [17]).

3 Upper bound for graphs

First we prove an upper bound on ex(n, H® (k, q)).

Theorem 5 For every three integers q > —1, k > 2q+ 6 and n > k, we
have

1+
7l 4 g+ 2)m,

ex(n, HP(k,q)) < C -n

where C' = (q + 2) L]

Proof. Introduce the notation h = L‘I%J and assume for a contradiction

that there exists a graph G of order n in which, for every ¢ +3 < 1 < k,
every 1 edges cover at least ¢ — ¢ vertices and the number of edges in G is
IE(G)| =m > C-n'*h + (g +2)n.
Thus, the average degree d(G) = d satisfies
- 2
d=""">90 . nt +2(q+2).
n

Moreover, every graph of average degree d has a subgraph of minimum degree
greater than d/2l9 Hence, we have a subgraph F' with minimum degree

d(F) = ¢ such that
§>C-ni+q+2. (8)

6 Just delete sequentially the vertices of degree smaller than or equal to d/2. After each
single step the average degree is greater than or equal to d. Hence, finally we obtain a
subgraph of minimum degree greater than d/2.

9



Claim A. The order of F' satisfies

(0—q=2"

V(F)| >
V) > =

Proof. Choose a vertex x of F' as a root and construct the breadth-first search
tree (BFS-tree) of F rooted in x. Let L; denote the set of vertices on the ith
level of the BFS-tree, and introduce the notation ¢; = |L;|. The edges of I’
not belonging to the BFS-tree will be called additional edges.

kqf_g 1
that each vertex v € L; is incident with at most ¢ + 1 additional edges, if
0 <i < h*—1. Assume to the contrary that there exist ¢+ 2 such additional
edges and consider the union of paths on the BFS-tree connecting the end-
vertices of these additional edges with the root vertex x. This means ¢ + 3
(not necessarily edge-disjoint) paths each of length at most h*, and at least
one of them (the path between v and x) is of length at most h* — 1. They
form a tree, let the number of its edges be denoted by p. Together with the
q + 2 additional edges we have

First we consider the vertices of the first h* = { J levels and prove

PHq+2<h =14+ (q+2)h"+q+2=(q+3)h" +q¢+1<k

edges, which cover only p+1 vertices. This contradicts the assumed property
of G. Therefore, we may have at most ¢ + 1 additional edges incident with
vertex v.

Now, we prove a bound on the number ¢; of vertices on the ith level if
2 < i < h*. The sum of the vertex degrees over the set L; ; cannot be
smaller than 6¢;_;. On the other hand, each of these ¢;_; vertices is incident
with at most ¢+ 1 additional edges, moreover there are ¢;_; + ¢; edges of the
BFS-tree each of them being incident with exactly one vertex from L; ;. As
follows,

00y
(5 —q— 2) Uiy

iy + 0+ (g + 1)y

<
S €i7

for every 2 < ¢ < h*. Since {1 > 0 — g — 2 is also true, the recursive formula
gives
(0—g—2)"

) >0.>(—qg—2)" >
\V(F)| 2l > (0 —q—2)" > P

(9)

10



If h =~h* that isif k =g+ 1 or ¢+ 2 (mod ¢+ 3), this already proves
Claim A.

In the other case we have h = h* + 1 and claim that every vertex u €
Ly is incident with at most ¢ + 1 additional edges whose other end is in
Lj_o U Ly_1. Then, assume for a contradiction that there are at least ¢ + 2
such edges. Again, take these ¢ + 2 additional edges together with the paths
in the BFS-tree connecting their ends with the root. In this subgraph we
have only at most (¢+3)(h—1)+¢+2 < k edges, which cover fewer vertices
by ¢+ 1 than the number of edges. Proved by this contradiction, we have at
most ¢ + 1 additional edges of the described type.

A similar argumentation shows that each w € Lj; might be incident with
at most ¢ + 1 additional edges whose other end is in Lj,_;. Assuming the
presence of ¢ + 2 such edges, we have at most h+ (¢+2)(h—1)+q+2 <k
edges together with the paths between their ends and the root. Moreover,
this cardinality exceeds the number of covered vertices by ¢ + 1. Thus, we
have a contradiction, which proves the property stated for w.

By these two bounds on the number of additional edges we can estimate
the sum s of vertex degrees over L;,_; as follows:

0l <5 <Up1+ly+ (q+ 1)l + (g + 1)
Together with (9) this implies
§—q—2 (6 —q—2)"
— b1 22—
q+2 q+2
and proves Claim A. O

V) = L

v

Y

Turning to graph G, inequality (8) and Claim A yield the contradiction

(c-ntm)"
n>|V(F)|>—=n
> V(F)| >
Therefore, in a H® (k, q)-free graph the number of edges must be smaller
than C - n'*Y/" 4 (¢ + 2)n, as stated in the theorem. O

Corollary 6 For every three integers ¢ > —1, k > 2q+6 and n > k, we

have )
2) I
exur(n, H2 (k,q)) < C-n Las) 4 (g +2)m,

1

where C' = (q + 2) Lats]

11



Proof. The BFS-tree of a multigraph G is meant as a simple graph. That is,
if an edge wv has multiplicity ¢ > 1 in GG, and wv is an edge in the BFS-tree,
then only one edge uv belongs to the tree, the remaining y — 1 copies are
additional edges. With this setting every detail of the previous proof remains
valid for multigraphs. O

4 Upper bound for hypergraphs

In this section we study the problem for hypergraphs. The upper bound on
ex(n, H") (k, q)) will be obtained by using Theorem [

Theorem 7 Let n, k, r and q be integers such that r > 2, ¢ > —r+1 and
1

n >k > 2q+ 2r+2, moreover let C' = (q+ ) [ avher . Then,

/ r—l4—t
2C (o] 207

k
n qFr+T
r! r!

ex(n, H"(k, q)) <

Proof. Consider an H")(k, q)-free r-graph H. Let its order and size be
denoted by n and m, respectively. For a set S C V(H) denote by d(S) the
number of edges of H which contain S entirely. By double counting we have

> as=n ().
r—2
SCV(H), |S|=r—2
and for the average value d,_, of d(S) over the (r — 2)-element subsets of

V(H)
7 (riZ)

dr—2 =m —
(7"—2)
holds. Thus, there exists an S* C V(H) of cardinality r — 2 satisfying

(ri2)
(rﬁ2)
Deleting the edges which do not contain S* entirely, in addition deleting

the r — 2 vertices of S* from the remaining edges, we obtain a graph G with
V(G)=V(H) and

d(s*) >m

E(G)={e\S":S"Ce N e€ E(H)}, |E(G)| >m

12



Since every 7 edges (i < k) cover at least i — ¢q vertices in H, every i edges
cover at least i — ¢ — r + 2 vertices in G. Moreover, the conditions given in
Theorem [ hold for n’ =n, ¥’ =k and ¢’ = ¢ +r — 2. Then, we obtain

() RGeS
m iy < 1EOI < @+l w4 g ern, o (0)
r—2
from which X )
! r—1+4 -
m < Cn Lﬁ—th—l—z(q—i_r)-n’"_l
7! r!
follows. This implies the same upper bound for ex(n, H" (k, q)). O

The above proof remains valid if the r-graph H is allowed to have multiple
edges. The only difference is that we must refer to Corollary [ instead of
Theorem Hence, for multihypergraphs the same upper bound can be
stated. In addition, since m(n,r k) = eXM(n,Hg\Z)(k,O)), we obtain a new
upper bound for the maximum size m(n, r, k) of r-uniform CBC-systems with
parameters n and k.

Corollary 8 Let n, k, r and q be integers such that r > 2, ¢ > —r+1 and
1

n >k > 2q+ 2r+ 2, moreover let C' = (q+ 1) larir] | Then,

! r—l4—1
2C -n |_q+’ﬁ+1J + 2((] _'__T) .nT’_l.

r! rl

eXM(na Hg\?(ka q)) <

Corollary 9 Let n, k, r be integers such that r > 2 and n > k > 2r 4 2,

1

moreover let C" = r L7H1] Then,

2C”. ’"_HL 5 ] 2 1

m(n,r k) < - e

5 Asymptotic equality of Turan numbers

Up to this point we were concerned with the problem of H™(k, ¢)-free hy-
pergraphs; it is different from the one studied by Brown, Erdos and T. Sos
[4, 5], where only the subhypergraphs with exactly k — ¢ — 1 vertices and
k edges are forbidden. In this section we show that ex(n, H™(k,q)) and
fT(n,k —q—1,k) — 1 are asymptotically equal. For graphs (r = 2), our

13



result is better as there exists a constant upper bound (depending only on k
and ¢) on their difference. As a consequence, we obtain a new upper bound
on f@(n,v, k) subject to v > (k +4)/2.

First we prove the following lemma. For fixed parameters k, ¢ and for
a given graph G, a subgraph G’ is said to be forbidden (for (k,q)) if G’ €
HP(k,q), moreover G’ is mazimal forbidden (for (k,q)), if it cannot be
extended into a forbidden subgraph of larger order.

Lemma 10 Let k and q be integers such that ¢ > —1 and k > q + 3, and
let G be a graph of order at least k —q — 1. If a subgraph G' C G is mazximal
forbidden for (k,q), then either G’ has k edges or it is the union of one or
more components of G.

Proof. Assume that G’ is a forbidden subgraph of G and |E(G")| < k. If
there exists an edge uv € E(G) such that u € V(G') and v € V(G) \ V(G'),
then the subgraph G” obtained by extending G’ with the vertex v and with
the edge wv satisfies |E(G”)| — |[V(G")| =g+ 1 and |E(G")| = |E(G")|+1 <
k. Hence G” is forbidden for (k,q) and consequently, G’ is not maximal
forbidden. On the other hand, if the subgraph of G which is induced by
V(G") contains some edge e not in G', then with any vertex v € V(G)\V(G'),
the subgraph G’ + e+ v is forbidden for (k, ¢) and again, G’ is not a maximal
forbidden subgraph. Therefore, if G’ is of order smaller than k and it is a
maximal forbidden subgraph for (%, q), then G’ is a component of G, or it is
the union of some components of G. ([l

Clearly, f@(n,k —q — 1,k) > ex(n, H?(k,q)). The following theorem
states that the difference between them is bounded by a constant, once the
parameters k and ¢ are fixed.

Theorem 11 For every pair k, q of integers satisfying g > —1 and k > q+3
there exists a constant d = d(k,q) such that for everyn >k —q—1,

fO(nk—q—1,k) —ex(n, HP(k,q)) < d.

Proof. For given parameters k and ¢ first define z := min{i: ¢+3 <i <

(i_%_l) }. If k > z, there is no forbidden subgraph for (k, ¢) and consequently,

fPn,k —q—1,k) = ex(n, H?(k,q)) = (}). Otherwise, z is the possible

minimum size of a subgraph forbidden for (k,q). By Theorem [3]
ex(n, H? (k, q)) = Q(n'*+T)

14



holds, thus there exists an ny (depending only on k& and ¢) such that for all
n > ng
ﬁ -n < ex(n, H (k, q)).

Consequently, the following finite maximum exists:

d = max ({ﬁ n—ex(n,HP(k,q))+1: ne N} U {1}) . (11)
We claim that d is a suitable constant for our theorem. To prove this, let us
consider an F(k, q)-free graph G on n vertices and with f®(n,k—q—1,k)—1
edges. If G is H®(k,q)-free as well, f@(n,k —q — 1,k) — 1 is equal to
ex(n, H®(k, q)), and since d > 1, the theorem holds for k, ¢ and n.

In the other case, G contains a subgraph G; maximal forbidden for (k, q).
Clearly, GG; has fewer than k edges, hence by Lemma [I0, G; is an induced
subgraph and there is no edge between V(G;) and V(G) \ V(G1). Then,
the remaining subgraph G — G| is either H®) (k, q)-free or contains a sub-
graph Gy of size smaller than &, which is maximal forbidden for (k,q). It-
eratively applying this procedure, finally we have vertex-disjoint maximal
forbidden subgraphs Gy, ...G; and the H®(k, q)-free subgraph G’ induced
by V(G) \ U_,V(G;), such that each edge of G is contained in exactly
one of G',G4,...Gj. As g+ 1 > 0 and for every 1 < i < j we have
z < |E(G;)| < k —1, applying Lemma [I0] we obtain

BG) _ IBG)
V(G| |E(G)—q—1] ~ z2—q—1

Using notations ny = >>7_, |V(G,)| and ny = |V(G")| = n —n,, moreover the
definition (11) of d

|E(G)]

f(2)(na k— q— ]-7 k) —1 S #1 “ny + eX(n2>H(2)(kaQ))

z2—q-—
ex(ny, H? (k, q)) +d — 1+ ex(ny, H) (k. q))
eX(nv H@)(kv Q)) +d— 17

IA A

which yields
f(2)(n> k —q— 17 k) - eX(n>H(2)(ka Q)) S d,
as stated. O
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Corollary 12 Let v and k be integers such that 2 < v < k and let C' =
1

(k—v+1) =218 Then, there exists a constant D such that for every n

+—
FOm,vk)<C-n Ltwl £ (k—v+1)n+D.

Proof. Let ¢ denote k — v — 1. Then, under the given conditions we have
1

—1<q¢<k—-3and C = (qg+2) l#5] . Theorems B and M1 immediately
imply the existence of a constant D such that for every n
41—
FOnk—q-1,k)<C-n Lo £ (g+2)n+D.

This is equivalent to the statement of the corollary. O

Theorem 13 For every four integers r,k,q and n satisfying r > 2 and
2<q+r+1<k<n,

FO b — g — 1,k) — ex(n, HO (k. g)) < (k — 1) (“ - 1)

r—1
holds. Hence, for every fixed r, k, and q we have

Ok —qg—1,k) = (14 o(1)) ex(n, K" (k, q)).

Proof. Consider any extremal r-graph H* for F)(k,q) on the n-element
vertex set V. By definition, H* is ) (k, q)-free. If H* is also H")(k, q)-free,
then f"(n,k —q— 1,k) = ex(n,H"(k,q)) holds and we have nothing to
prove. Otherwise we select the longest possible sequence of subhypergraphs
H;, C H* (i=1,2,...,¢) under the following conditions:

e Each H; is isomorphic to some member of H") (k, q) \ F")(k, q).
e Under the previous condition, H; is maximal in H*.

e Under the previous conditions, H; is maximal in H*\ U;_:ll H; for each
2<i <UL

16



Eventually we obtain an H")(k, ¢)-free hypergraph from H* by removing at
most (k — 1) - £ edges, because each H; has at most k — 1 edges. Thus, the
proof will be done if we prove that ¢ < (:fj) holds.

Let e; be an arbitrarily chosen edge of H; and let f; be an (r — 1)-element
subset of e;, which we fix (again arbitrarily) for ¢ = 1,2,...,¢. Should
fi C e; hold for some 1 < i < j </, the hypergraph H; U {e;} would also
be isomorphic to some member of H"(k,q). This contradicts the choice
(maximality) of H;. Consequently, for all i =1,2,...,¢ we have:

o |fil=r—1,
o [V\e|=n-—r,
o in(V\e)=0,
o fin(V\ej)#0 whenever 1 <i<j<{.
Thus, applying a theorem of Frankl [14]E] the number of set pairs (f;,V '\ &)

is at most ((T’_lf_r(ln_r)) = (:‘j)

O

Corollary 14 Let r, v, k be integers such that v > 2 and (k+2r)/2 < v <
1

kE+r—2 andletC:(k—l—r—v—l)tkﬁ*vj. Then,

r—1+ L
f(r)(n’/U’ k) S 2 n |_k+§7vJ
r

O(n™h).
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