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Typical curvature behaviour of bodies of constant width

Imre Bárány and Rolf Schneider

Abstract

It is known that an n-dimensional convex body which is typical in the sense of Baire
category, shows a simple, but highly non-intuitive curvature behaviour: at almost all of its
boundary points, in the sense of measure, all curvatures are zero, but there is also a dense
and uncountable set of boundary points at which all curvatures are infinite. The purpose
of this paper is to find a counterpart to this phenomenon for typical convex bodies of
given constant width. Such bodies cannot have zero curvatures. A main result says that
for a typical n-dimensional convex body of constant width 1 (without loss of generality),
at almost all boundary points, in the sense of measure, all curvatures are equal to 1. (In
contrast, note that a ball of width 1 has radius 1/2, hence all its curvatures are equal to
2.) Since the property of constant width is linear with respect to Minkowski addition, the
proof requires recourse to a linear curvature notion, which is provided by the tangential
radii of curvature.

AMS 2010 Mathematics subject classification: Primary 52A20, Secondary 53A07, 54E52

1 Introduction

A general convex body in R
n shows, even without differentiability assumptions, a rather

regular curvature behaviour at almost all of its boundary points. According to a well-known
theorem of Aleksandrov [1], almost all boundary points of a convex body, in the sense of
(n − 1)-dimensional Hausdorff measure Hn−1, are normal points. At a normal point, all
sectional curvatures exist, and they satisfy the theorems of Euler and Meusnier. From the
generic viewpoint, the picture becomes partially simpler, partially more irregular. While a
typical convex body, in the Baire category sense (the definition will be recalled in Section
2), is strictly convex and smooth (its boundary is C1), it was proved by Zamfirescu [12]
that at almost all of its boundary points the curvatures are zero. This was recently [10]
supplemented by the observation that the boundary of a typical convex body contains an
uncountable, dense set of points where all curvatures are infinite, and the set of these points
has a spherical image of full Hn−1 measure in the unit sphere S

n−1.

An interesting and intensively studied subclass of the convex bodies are the bodies of
constant width. It suffices to consider those of constant width 1. A convex body K has
constant width 1 if each two distinct parallel supporting hyperplanes of K have distance 1,
equivalently, if the Minkowski sum of K and its reflected image −K is the unit ball. It follows
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from the latter fact that 0 ≤ ̺ ≤ 1 if ̺ is a principal radius of curvature of K, taken at the
(unique) boundary point with a given outer normal vector u. As shown by Aleksandrov [1],
the radii of curvature exist for Hn−1-almost all unit vectors u ∈ S

n−1. In analogy to the
Baire category type results for general convex bodies, it is to be expected that for a typical
convex body of constant width 1, the radii of curvature exhibit a preference for attaining the
values 0 and 1. Indeed, it was shown by Zamfirescu [13] that a for a typical convex domain
of constant width 1 in the plane, the radii of curvature attain only the values 0 and 1.

The first of the following theorems can be regarded as a higher-dimensional extension of
this result.

Theorem 1.1. A typical convex body K of constant width 1 in R
n has the property that for

Hn−1-almost all u ∈ S
n−1, either all radii of curvature of K at the normal vector u are equal

to 1 or at least one radius of curvature at u is equal to 0.

It makes a difference whether we consider radii of curvature at given normal vectors or
at given boundary points.

Theorem 1.2. A typical convex body K of constant width 1 in R
n has the property that for

Hn−1-almost all x ∈ bdK, all radii of curvature of K at x are equal to 1.

Moreover, K has an uncountable, dense set of boundary points at which all radii of cur-

vature are zero.

In the plane, the Reuleaux polygons of width 1 are dense in the set of all convex bodies
of constant width 1, and they have the property that their radius of curvature is everywhere
either 0 or 1. This makes them a useful tool for the proof of the mentioned Baire category type
result in the plane. In higher dimensions, there is no similar construction known. Therefore,
the proof of the preceding theorems requires a more elaborate approximation procedure.

After collecting some notation and basic notions in the next section, we use Section 3 to
explain the tangential radii of curvature, which are fundamental for our investigation, and
to provide some results pertaining to them which will be needed later. Section 4 prepares
the proof of an approximation theorem for bodies of constant width, which is crucial for the
proof of the main results; this theorem is then proved in Section 5. In Section 6 we prove
a more general version of Theorem 1.1, involving tangential radii of curvature, from which
Theorems 1.1 and 1.2 will then be deduced.

2 Preliminaries

We work in R
n with scalar product 〈·, ·〉 and induced norm ‖ · ‖. We write B(z, r) := {x ∈

R
n : ‖x − z‖ ≤ r} for the closed ball and S(z, r) := {x ∈ R

n : ‖x − z‖ = r} for the sphere
with centre z and radius r > 0. As usual, we write B(o, 1) = Bn and S(o, 1) = S

n−1, where
o denotes the origin of Rn.

The distance of a point z from a set A will be denoted by dist (z,A).

Kn is the set of convex bodies (nonempty, compact, convex subsets) of Rn. It is equipped
with the Hausdorff metric, denoted by δ. The support function of the convex body K ∈ Kn

is defined by h(K,u) = max{〈x, u〉 : x ∈ K} for u ∈ R
n. A convex body K is of constant
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width d > 0 if h(K,u) + h(K,−u) = d for all u ∈ S
n−1. We denote by Wn

1 the set of convex
bodies of constant width 1 in R

n. We recall that every convex body K of constant width is
strictly convex.

A support element of the convex body K is a pair (x, u) where x is a boundary point of K
and u is an outer unit normal vector to K at x. The boundary point x is smooth or regular
if at x there is only one outer unit normal vector. The vector u ∈ S

n−1 is a regular normal
vector of K if it is a normal vector of K at a unique boundary point of K, which is then
denoted by xK(u). The support element (x, u) is called regular if x and u are both regular.
If a convex body K is strictly convex, then each u ∈ S

n−1 is a regular normal vector of K.
The supporting hyperplane of K with outer normal vector u is denoted by H(K,u), and
F (K,u) = H(K,u) ∩K is the corresponding support set. The (n− 1)-dimensional subspace
u⊥ = T (K,u) parallel to H(K,u) is called the tangent space of K at u. If x is a smooth
boundary point of K and u is the unique outer unit normal vector of K at x, then we write
T (K,u) = TxK.

We refer to [10] for notions from the theory of convex bodies that are not explained here.

We recall the notion of a ‘typical convex body’. The space Kn with the Hausdorff metric,
being a complete metric space, is a Baire space. A subset of such a space is called meagre if
it is a countable union of nowhere dense sets, and comeagre (or residual ) if its complement
is meagre. The essential property of a Baire space is that the intersection of countably many
comeagre subsets is still dense; therefore, comeagre subsets of a Baire space deserve the
attribute of being ‘large’. One says that a typical n-dimensional convex body has a property
P (or that most bodies in Kn have property P ) if the set of convex bodies having property
P is comeagre in Kn. The same notions can be applied to the space of convex bodies in R

n

of constant width 1, since also this space, with the Hausdorff metric, is a complete metric
space.

3 Tangential radii of curvature

The defining relation for a convex bodyK to be of constant width 1 is the equation h(K,u)+
h(K,−u) = 1 for u ∈ S

n−1. In order to be able to exploit this for curvature investigations,
we need a curvature notion for convex bodies that depends linearly on the support function.
Tangential radii of curvature are appropriate in this respect. We introduce them in this
section, study their relation to the usual sectional curvatures, and prove some results that
will be needed in the proofs of our theorems. Since there seems to be no convenient reference
for tangential radii of curvature, we give a slightly extended introduction.

We begin with a general notion of curvature of a planar convex body and follow Jessen
[8] in its introduction. Let n = 2. Let K ∈ K2 be a two-dimensional convex body and let
(x, u) be a support element of K. Let t ⊥ u be a unit vector. We denote by R−u and Rt the
closed rays with endpoint x spanned by −u and t, respectively, and define the open halfplane

E := {x+ λu+ µt : λ ∈ R, µ > 0}.

We assume that the set E∩bdK is not empty and also assume at first that Rt∩E∩bdK = ∅.
Let z ∈ E ∩ bdK. Let r(z) be the radius of the unique circle C(z) with centre on R−u that
passes through x and z. Any limit circle (possibly degenerate) of a sequence of circles C(z)
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for a sequence of points z converging to x is called an osculating circle of K at (x, u) in
direction t. The radii of all osculating circles in direction t fill a closed interval in [0,∞],
which we denote by

[̺i(K,x, u, t), ̺s(K,x, u, t)].

If (what was excluded at first) there is a point z ∈ Rt ∩ E ∩ bdK, then the halfplane
{y ∈ R

2 : 〈y − x, u〉 ≤ 0} is considered as a degenerate osculating circle of K at (x, u) in
direction t, and we put r(z) = ∞ and ̺i(K,x, u, t) = ̺s(K,x, u, t) = ∞. Thus, in either case
we have

̺i(K,x, u, t) = lim inf
z→x

r(z), ̺s(K,x, u, t) = lim sup
z→x

r(z).

The (extended real) numbers ̺i(K,x, u, t), ̺s(K,x, u, t) are called, respectively, the lower

radius of curvature and the upper radius of curvature of K at (x, u) in direction t. If
̺i(K,x, u, t) = ̺s(K,x, u, t), then this (extended real) number is denoted by ̺(K,x, u, t)
and called the radius of curvature of K at (x, u) in direction t. If K is clear from the context,
we simply write ̺i(x, u, t), ̺s(x, u, t), ̺(x, u, t).

There is a second way of introducing radii of curvature, using normal vectors instead
of boundary points. Again we assume that E ∩ bdK 6= ∅. Let w be a unit vector with
〈w, t〉 > 0. At first, we assume that the support line H(K,w) does not pass through x. Let
r(w) be the radius of the unique circle C ′(w) with centre on R−u that passes through x and
is tangent to H(K,w). Any limit circle (possibly degenerate) of a sequence of circles C ′(w)
for a sequence of vectors w (with 〈w, t〉 > 0) converging to u is called (for the moment) an
osculating circle of the second kind of K at (x, u) in direction t. In contrast, we say that
the previously defined osculating circles are of the first kind. If x ∈ H(K,w) for some w
with 〈w, t〉 > 0, then {x} is considered as a degenerate osculating circle of the second kind of
K at (x, u) in direction t. There is, however, no difference between osculating circles of the
first and the second kind. Consider, for example, a circle C ′(w) as just constructed. Then
H(K,w) is a common support line of K and C ′(w). Let p be a point where H(K,w) touches
K and let q be a point where H(K,w) touches C ′(w). Then at least one of the following
occurs: the boundary arc of K between p and x has a point z in common with C ′(w), or the
arc of C ′(w) between q and x has a point z in common with the boundary of K. Therefore,
the circle C ′(w) coincides with a circle C(z) constructed in the first procedure. If a sequence
of vectors w converges to u, the corresponding sequence of points z converges to x or to a
point of Rt ∩ E ∩ bdK. We conclude that every osculating circle of the second kind is also
one of the first kind. A similar argument (roughly, interchanging the roles of boundary points
and support lines) shows that every osculating circle of the first kind is also one of the second
kind. Thus, we need not distinguish between the two kinds, and the lower and upper radii
of curvature can be defined in either of the two ways.

We still assume that (x, u) is a support element of K. If x is a smooth boundary point
of K, then the outer unit normal vector u of K at x is uniquely determined, and we briefly
write ̺i(x, t), ̺s(x, t), ̺(x, t) for the introduced numbers. The reciprocal values (possibly ∞)

κi(x, t) := 1/̺s(x, t), κs(x, t) := 1/̺i(x, t), κ(x, t) := 1/̺(x, t)

are, respectively, the lower curvature, upper curvature and, if it exists, the curvature of K at
x in direction t. If u is a regular normal vector of K, then the point x in F (K,u) is uniquely
determined, and we write ̺i(u, t), ̺s(u, t), ̺(u, t).
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At regular boundary points or normal vectors, the radii of curvature can be expressed in
terms of functions locally representing the convex body. Let K ∈ K2 and a support element
(x, u) of K be given, and assume that x is a smooth boundary point of K. Let t ⊥ u be a
unit vector. We can choose a number ε > 0 and a neighbourhood U of x such that U ∩ bdK
can be described in the form

U ∩ bdK =
{

z + τt− f(τ)u : τ ∈ (−ε, ε)
}

, (1)

where f : (−ε, ε) → R is a convex function which satisfies f ≥ 0, f(0) = 0 and f ′(0) = 0.
An elementary calculation of the radii of the circles C(z) used in the definition of osculating
circles then gives

̺i(K,x, t) = lim inf
τ↓0

τ2

2f(τ)
, ̺s(K,x, t) = lim sup

τ↓0

τ2

2f(τ)
. (2)

Instead of using a local representation (1) of bdK, we can also represent K by its support
function h(K, ·). Then, under the assumption that u is a regular normal vector of K and
x = xK(u), the second approach above (for introducing radii of curvature), together with an
elementary calculation, shows that, for a unit vector t ⊥ u,

̺i(K,u, t) = lim inf
w→u, 〈w,t〉>0

h(K,w) − 〈x,w〉
1− 〈u,w〉 , (3)

̺s(K,u, t) = lim sup
w→u, 〈w,t〉>0

h(K,w) − 〈x,w〉
1− 〈u,w〉 . (4)

Now we turn to general dimensions n ≥ 2. Let K ∈ Kn be an n-dimensional convex body,
let (x, u) be a support element of K and let t ⊥ u be a unit vector. The notion of curvature
of K at (x, u) in direction t can be reduced to the two-dimensional case, either by section or
by projection. We consider first the case of sections, which leads to sectional curvatures.

For this, we define the two-dimensional subspace

Lx,u,t := x+ lin{u, t}

and the two-dimensional convex body

Kx,u,t := K ∩ Lx,u,t

and then simply define
̺i(K,x, t) := ̺i(Kx,u,t, x, u, t),

and similarly for ̺s, ̺ and the curvatures. We shall talk of sectional radii of curvature and
sectional curvatures, but often delete ‘sectional’ if there is no danger of ambiguity. The
convention about dropping the argument K is as in the two-dimensional case.

Sectional curvatures at smooth boundary points can be interpreted with the aid of the
curvature indicatrix, which we now introduce. Let x be a smooth boundary point of K and
u the unique outer normal vector of K at x. For η > 0 we consider the set

Dx(K, η) := (2η)−1/2 {[K ∩ (H(K,u) − ηu)] + ηu− x} , (5)
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which lies in the tangent space TxK and contains o if η is sufficiently small (what we assume
in the following). It is a suitable homothet of the intersection of K with a hyperplane parallel
to the supporting hyperplane at x and at distance η from it. If the radial limit

r- lim
η↓0

Dx(K, η) = Dx(K) (6)

exists, it is called the curvature indicatrix, or briefly the indicatrix, of K at x. Here (6) means
that Dx(K) is a closed set in TxK containing o and

lim
η↓0

ρ(Dx(K, η), t) = ρ(Dx(K), t) for t ∈ TxK \ {o}

where ρ denotes the radial function (as defined in [10, p. 57]). The set Dx(K) is then
necessarily convex.

Let t ∈ TxK ∩ S
n−1. If we represent Lx,u,t ∩ bdK in a neighbourhood of x in the form

(1), then the number τ > 0 for which f(τ) = η satisfies

τ√
2η

= ρ(Dx(K, η), t),

hence (2) gives

̺i(x, t) = lim inf
η↓0

ρ2(Dx(K, η), t), ̺s(x, t) = lim sup
η↓0

ρ2(Dx(K, η), t). (7)

Therefore, if the radius of curvature in direction t exists, then

̺(x, t) = lim
η↓0

ρ2(Dx(K, η), t), (8)

and if it exists for all t, then

̺(x, t) = ρ2(Dx(K), t) for t ∈ TxK ∩ S
n−1. (9)

A second kind of radii of curvature, called tangential, can be introduced by using projec-
tions. Let K ∈ Kn. We assume now that u is a regular unit normal vector of K, and we
write xK(u) = x. We consider the two-dimensional convex body

Kx,u,t := K|Lx,u,t.

where | denotes orthogonal projection, and then define

¯̺i(K,u, t) := ̺i(Kx,u,t, x, u, t),

and similarly ¯̺s and ¯̺ are defined. We call these the (lower, etc.) tangential radii of curvature

of K at u in direction t. Again, we drop the argument K if there is no danger of ambiguity.

For later use, we observe that from K ∩ Lx,u,t ⊂ K|Lx,u,t it follows easily that at regular
support elements (x, u) of K we have

̺s(K,x, t) ≤ ¯̺s(K,u, t). (10)

We represent K|Lx,u,t in a neighbourhood of x in the form (1). Let τ > 0 be the number
for which f(τ) = η. The point ȳ := x+ τt− ηu is the image of a point y ∈ bdK under the
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orthogonal projection, Π, from R
n to Lx,u,t. The (n − 2)-plane Π−1(ȳ) lies in the (n − 1)-

dimensional space H(K,u)−ηu and is, in this space, a supporting plane of K∩(H(K,u)−ηu)
at the point y. Therefore, the distance of ȳ from the line x+ Ru, which is τ , is equal to the
value of the support function of [K ∩ (H(K,u) − ηu)] + ηu − x at t. According to (5), this
yields

τ√
2η

= h(Dx(K, η), t)

(recall that h denotes the support function). Consequently, (2) gives

¯̺i(u, t) = lim inf
η↓0

h2(Dx(K, η), t), ¯̺s(u, t) = lim sup
η↓0

h2(Dx(K, η), t). (11)

Hence, if the tangential radius of curvature in direction t exists, then

¯̺(u, t) = lim
η↓0

h2(Dx(K, η), t). (12)

If the tangential radius of curvature and thus the limit (12) exists for all t, then there is a
closed convex set Du(K) ⊂ u⊥ with

s- lim
η↓0

Dx(K, η) = Du(K) (13)

(this convergence is defined by pointwise convergence of support functions) and thus

¯̺(u, t) = h2(Du(K), t) for t ∈ u⊥ ∩ S
n−1. (14)

We call Du(K) the tangential curvature indicatrix of K at u. In general, one cannot deduce
the existence of Du(K) from the existence of Dx(K), nor vice versa, but the following holds.

Lemma 3.1. Let (x, u) be a regular support element of K ∈ Kn. Then the following condi-

tions (a) and (b) are equivalent.

(a) The sectional radii of curvature of K at x exist and are positive and finite.

(b) The tangential radii of curvature of K at u exist and are positive and finite.

If (a) or (b) holds, then Dx(K) = Du(K).

Proof. By (7) and (9), property (a) holds if and only if limη↓0 ρ(Dx(K, η), ·) exists pointwise
and is positive and bounded. Similarly, by (11) and (14), property (b) holds if and only if
limη↓0 h(Dx(K, η), ·) exists pointwise and is positive and bounded. Therefore, the assertion
of the lemma follows from Lemma 7.1 in the Appendix.

We shall need some second-order differentiability properties of the boundaries of convex
bodies, which in dimension n = 3 were established by Busemann and Feller [6] and for general
n by Aleksandrov [1]. A convex function f : D → R, where D ⊂ R

n is open and convex, is
said to have a strong second-order Taylor expansion at x ∈ D if f is differentiable at x and
there exists a symmetric linear map A : Rn → R

n such that

f(y) = f(x) + 〈∇f(x), y − x〉+ 1

2
〈A(y − x), y − x〉+ o(‖y − x‖2)

for y ∈ D and y → x (where ∇ denotes the gradient). If this holds, then A is uniquely
determined, and f is said to be twice differentiable at x. The theorem of Busemann–Feller–
Aleksandrov says that f is twice differentiable at Hn-almost every point in D. For a modern
proof, we refer to Borwein and Vanderwerff [3, Thm. 2.6.4].
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Let K ∈ Kn be a convex body with interior points and let x ∈ bdK. The point x is
said to be a normal point of K if at x all sectional curvatures exist (in R) and the function
q defined by

q(t) := ρ−2(Dx(K), t) = κ(K,x, t), t ∈ TxK ∩ S
n−1, (15)

(see (9) for the last equality) and homogeneous extension of degree two is a quadratic form. By
applying the Busemann–Feller–Aleksandrov theorem to convex functions locally representing
the boundary of K, it can be deduced that Hn−1-almost all boundary points of K are normal
(Aleksandrov [1], see also Busemann [5]). If (15) holds with a quadratic form q, then (by
transforming q to principal axes) there is an orthornormal basis (e1, . . . , en−1) of TxK and
there are numbers k1, . . . , kn−1 such that

κ(K,x, t) = k1〈t, e1〉2 + · · ·+ kn−1〈t, en−1〉2 for t ∈ TxK ∩ S
n−1. (16)

This is known as (the generalized version of) Euler’s formula. The numbers k1, . . . , kn−1 ≥ 0
are called the principal curvatures of K at x.

Similarly, a unit vector u is called an ordinary normal vector of K if all tangential radii
of curvature of K at u exist (in R) and the function q̄ defined by

q̄(t) := h2(Du(K), t) = ¯̺(K,u, t), t ∈ u⊥ ∩ S
n−1, (17)

(see (14) for the last equality) and homogeneous extension of degree two is a quadratic form.
By applying the theorem on the twice differentiability of convex functions to the support
function, Aleksandrov [1] has deduced (though not with this terminology) that Hn−1-almost
all u ∈ S

n−1 are ordinary normal vectors of K. If (17) holds with a quadratic form q̄, then
there is an orthornormal basis (e1, . . . , en−1) of u

⊥ and there are numbers r1, . . . , rn−1 such
that

¯̺(K,u, t) = r1〈t, e1〉2 + · · ·+ rn−1〈t, en−1〉2 for t ∈ u⊥ ∩ S
n−1. (18)

This is sometimes called Blaschke’s formula, since a special case appears in [2, §24, III]. The
numbers r1, . . . , rn−1 ≥ 0 are called the principal tangential radii of curvature of K at u.

Suppose now that (x, u) is a regular support element of K, u is an ordinary normal
vector of K and (18) holds with r1, . . . , rn−1 > 0. Then it follows from Lemma 3.1
that x is a normal point of K and that Dx(K) = Du(K). In particular, we can choose
(e1, . . . , en−1) as the same orthonormal basis in (16) and (18). The curvature indicatrix
Dx(K) is an ellipsoid, and ±e1, . . . ,±en−1 are the directions of its principal axes. Therefore,
ρ(Dx(K), ei) = h(Dx(K), ei) and hence ri = 1/ki for i = 1, . . . , n − 1. Thus, the principal
tangential radii of curvature at u are equal to the principal sectional radii of curvature, that
is, the reciprocal sectional curvatures, at x (but each tangential radius of curvature in a
non-principal direction is strictly larger than the sectional radius of curvature in the same
direction).

4 An approximation result for bodies of constant width

In this section, we formulate an approximation result for bodies of constant width. It serves
as a higher-dimensional substitute for the denseness of the set of Reuleaux polygons in the
set of planar convex bodies of constant width. The particular curvature properties that we
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need are only obtained on part of the boundary, but even this restricted approximation result
will be sufficient for our purpose.

For z ∈ S
n−1 we define the open halfsphere

S(z) := {u ∈ S
n−1 : 〈u, z〉 > 0} (19)

(to be used later) and the closed spherical cap

C(z) := {u ∈ S
n−1 : 〈u, z〉 ≥ 1/2} (20)

(the number 1/2 could be replaced by any positive number less than 1).

Theorem 4.1. Let W0 ∈ Wn
1 and v ∈ S

n−1 be given, let ε > 0. Then there exists a convex

body Q ∈ Wn
1 with

δ(W0, Q) ≤ ε

and having the following property. For each u ∈ C(v), either

¯̺(Q,u, t) = 1 for all t ∈ u⊥ ∩ S
n−1 (21)

or

¯̺(Q,u, t) = 0 for at least one t ∈ u⊥ ∩ S
n−1. (22)

The proof of this theorem requires a number of preparations.

Let K ∈ Kn be a convex body. We denote by dK = diamK its diameter and by rK its
inradius. Any closed segment [x, y] ⊂ K with ‖x − y‖ = dK is called a diameter segment of
K. A boundary point x of K is a diameter endpoint if it is an endpoint of a diameter segment
of K. If each boundary point of K is a diameter endpoint, then K is of constant width dK ;
this is well known and easy to see.

A convex body K ′ is called a tight cover of K if it contains K and has the same diameter
as K.

According to [7, (7.3)], every convex body W ∈ Wn
1 contains a ball of radius cn > 0,

where cn is an explicit constant that depends only on the dimension. We define

K• := {K ∈ Kn : dK = 1, rK ≥ cn}.

Let K ∈ Kn and ω ⊂ S
n−1. The set τ(K,ω) is the reverse spherical image of K at ω (see

[10, p. 88]), that is, the set of points x ∈ bdK at which there exists an outer normal vector
falling in ω. If K is strictly convex, then τ(K,ω) = {xK(u) : u ∈ ω}. Let v ∈ S

n−1. Then
τ(K,S(v)) is the set of points x ∈ bdK at which there exists an outer normal vector u with
〈u, v〉 > 0. We call τ(K,S(v)) the upper boundary of K, with respect to v; correspondingly,
τ(K,S(−v)) is the lower boundary of K.

In addition, let L ∈ Kn and K ⊂ L. A point x ∈ bdL is called (K, v)-directed if x+λv /∈ L
for all λ > 0 and x−λv ∈ intK for some λ > 0. The body L is called (K, v)-complete if each
of its (K, v)-directed boundary points is a diameter endpoint of L.

Further, we define
Z+(K, v) := {x+ λv : x ∈ K, λ ≥ 0},

which is the cylinder above K in direction v, and

βv(K) := Z+(K, v) ∩
⋂

x∈K

B(x, dK).

The following was proved in [9] (Lemma 4; the proof holds for general convex bodies K).
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Lemma 4.2. Let K ∈ Kn and v,w ∈ S
n−1. Then βv(K) is a tight cover of K, and it is

(K, v)-complete.

Moreover, the body βw(βv(K)) is (K, v)-complete and (K,w)-complete. Every diameter

endpoint of βv(K) is a diameter endpoint of βw(βv(K)).

The last assertion (in [9] only mentioned in the proof of Lemma 4) is clear, since βw(βv(K))
is a tight cover of βv(K).

The next lemma introduces the ‘generalized Bückner completion’ (now denoted by β),
which was established in [9] for finite-dimensional normed spaces. We require it here only for
Euclidean spaces (where some of the estimates could be improved, but that is irrelevant).

Lemma 4.3. There are a number p ∈ N, vectors v1, . . . , vp ∈ S
n−1 and constants ε0 > 0,

ℓ > 0, all depending only on the dimension, such that the following holds.

Let K ∈ K• and define

K0 := K, Ki := βvi(Ki−1) for i = 1, . . . , p, Kp =: β(K).

Then every boundary point of β(K) is a diameter endpoint of β(K), hence β(K) is a body of

constant width 1 (containing K, by Lemma 4.2).

If also L ∈ K• and

δ(K,L) ≤ ε ≤ ε0,

then

δ(βv1(K), βv1(L)) ≤ ℓε, δ(β(K), β(L)) ≤ ℓε.

This is proved in [9]. The first assertion is found on pp. 264–265 (the operator β0
appearing there can now be chosen as the identity, since we have assumed that K ∈ K•).
The second assertion follows from Lemma 5 and the proof of Theorem 6 in [9].

We state an elementary geometric fact about balls, needed later to guarantee the quality
of approximations.

Let Br be a ball of radius r, 0 < r < 1, let y ∈ bdBr and let v be a unit tangent vector
to Br at y. Let B1 be a unit ball such that Br ⊂ B1 and y+ λv ∈ bdB1 for some λ > 0. Let
u1 be the outer unit normal vector of B1 at y+ λv. Then it is easy to see that there exists a
number α(r) > 0 with the property that

λ ≤ α(r) ⇒ 〈v, u1〉 ≤ 1/4. (23)

5 Proof of Theorem 4.1

After all these preparations, we can finish the proof of Theorem 4.1. Let W0 ∈ Wn
1 , v ∈ S

n−1

and ε > 0 be given, without loss of generality ε < ε0, where ε0 is the number appearing in
Lemma 4.3. In a first step, we replace W0 by the Minkowski combination

W := (1− σ)W0 + σ
1

2
Bn,
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where we choose 0 < σ < 1 so small that

δ(W,W0) ≤ ε/2. (24)

The body W is again of constant width 1. It has the ball (σ/2)Bn as a summand; in
particular, it is smooth.

We define ε′ via
ℓε′ := min{ε/2, α(σ/2)}, (25)

where ℓ is given in Lemma 4.3 and α(·) appears in (23).

In a second step, we change W to a convex body nearby, which is still of diameter 1, but
no longer of constant width. We choose a finite set M ⊂ τ(W,S(−v)) and define the convex
body

K := conv(M ∪ τ(W, cl S(v))}.
Then K ⊂ W , but K has still diameter 1, since it contains a pair of antipodal points of W
with outer normal vectors ±u ⊥ v. By a proper choice of M we achieve that

δ(W,K) < ε′. (26)

Since rW > cn, we can further have rK > cn and thus

K ∈ K•. (27)

Let v1, . . . , vp be the vectors provided by Lemma 4.3. Since the assumptions and assertions
of that lemma are invariant under rotations, we can assume, without loss of generality, that
v1 = v. The body β(K) constructed according to that lemma is a body of constant width
1, and since W is of constant width 1, we have βv(W ) = β(W ) = W . According to (26),
Lemma 4.3 and (25), we get

δ(W,βv(K)) ≤ ℓε′ ≤ α(σ/2) (28)

and
δ(W,β(K)) ≤ ℓε′ ≤ ε/2. (29)

Together with (24), the latter gives

δ(W0, β(K)) ≤ ε. (30)

By Lemma 4.2, the body βv(K) is (K, v)-complete (with v = v1). We state that

τ(βv(K), C(v)) ⊂ bdβ(K). (31)

For the proof, let x ∈ τ(βv(K), C(v)). Then there is an outer unit normal vector u of βv(K)
at x with 〈u, v〉 ≥ 1/2. We assert that x ∈ intZ+(K, v). Otherwise, x is in the boundary
of Z+(K, v), and in fact in the boundary of the cylinder {y + λv : y ∈ K, λ ∈ R}. Since
〈u, v〉 > 0, x is of the form x = y + λv with λ > 0 and a point y ∈ bdK, in fact y ∈ bdW .
Since the ball (σ/2)Bn is a summand of W , there is a translate Bσ of this ball contained in
W with y ∈ Bσ. The distance of x from W is at most α(σ/2) by (28), hence λ ≤ α(σ/2).
The point x is not a boundary point of W (since y ∈ bdW and W is strictly convex), hence
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the normal cone of βv(K) at x is the positive hull of finitely many vectors uj , where uj is
the outer unit normal vector at x of some sphere S(zj, 1) with zj ∈ M and x ∈ S(zj , 1). It
follows from (23) that 〈uj , v〉 ≤ 1/4. Since u is a positive linear combination of the vectors
uj , we deduce that 〈u, v〉 ≤ 1/4. This is a contradiction, which proves that x ∈ intZ+(K, v).
But then x is a (K, v)-directed boundary point of βv(K). Since βv(K) is (K, v)-complete,
the point x is a diameter endpoint of βv(K). By Lemma 4.2 and induction, it is then also
a diameter endpoint, in particular a boundary point, of β(K). This completes the proof of
(31).

By (31) and the construction of βv(K), β(K) we have

τ(β(K), C(v)) = τ(βv(K), C(v)) ⊂
⋃

z∈M

S(z, 1). (32)

Now let u ∈ C(v), and let x ∈ τ(β(K), C(v)) be the point where u is attained as outer
normal vector. There is at least one point z ∈ M for which x ∈ S(z, 1). Suppose, first, that
there is only one such point. Then ‖x − zi‖ > 1 for all zi ∈ M \ {z}. Therefore, there is a
neighbourhood U of x such that U ∩ bdβ(K) = U ∩ S(z, 1). This implies that

¯̺(β(K), u, t) = 1 for each t ∈ u⊥ ∩ S
n−1. (33)

Now suppose that x ∈ S(zi, 1) for (at least) two distinct points zi ∈ M , i = 1, 2. Then each
of the vectors x − z1, x − z2 is an outer normal vector of β(K) at x. At least one of them,
say x − z2, is linearly independent from u, and 〈u, x − z2〉 > 0. Then there is a unit vector
t ⊥ u such that x− z2 ∈ pos{u, t}, which implies that

¯̺(β(K), u, t) = 0.

This completes the proof of Theorem 4.1 (with Q = β(K)).

6 Proofs of the main results

To prove our main results, we need one more piece of preparation. Let K ∈ Kn. For u ∈ S
n−1

and o 6= t ⊥ u we write x := xK(u) and define the two-dimensional plane

L(K,u, t) := x+ lin{u, t}

and the two-dimensional closed halfplane

D(K,u, t) := {x+ λu+ µt : λ ∈ R, µ ≥ 0}.

Let
P (K,u, t) := D(K,u, t) ∩ relbd (K|L(K,u, t)),

where | denotes orthogonal projection.
For α > 0, we say that K is α-wide at (u, t) if

P (K,u, t) ∩ intB(x− αu, α) = ∅.

In the following lemma, we may write ρi(K,u, t) for ρi(K,x, u, t), since each K ∈ Wn
1 is

strictly convex.

12



Lemma 6.1. Let K ∈ Wn
1 , let u ∈ S

n−1 and t ∈ u⊥ ∩ S
n−1.

(a) ¯̺i(K,u, t) > 0 holds if and only if K is α-wide at (u, t) for some α > 0.

(b) ¯̺s(K,u, t) < 1 holds if and only if K is α-wide at (−u,−t) for some α > 0.

(c) ̺i(K,u, t) > 0 for all t ∈ u⊥ ∩ S
n−1 holds if and only if B(xK(u)− αu, α) ⊂ K for some

α > 0.

Proof. Let x := xK(u). Suppose that ¯̺i(K,u, t) > r > 0. Then there is some α, 0 < α < r,
such that

P (K,u, t) ∩B(x, 2α) ∩ intB(x− ru, r) = ∅.
It follows that P (K,u, t) ∩ intB(x− αu, α) = ∅, thus K is α-wide at (x, t). The converse is
clear.

Assertion (b) follows from (a) and the relation

¯̺s(K,u, t) + ¯̺i(K,−u,−t) = 1. (34)

In the plane, this was proved by Zamfirescu [13]. The general case follows from this, since
tangential radii of curvature are defined via orthogonal projections to two-dimensional planes,
and constant width 1 is preserved under such projections.

Alternatively, (34) follows from the representation of upper and lower tangential radii of
curvature in terms of the support function (see (3) and (4)), namely

¯̺s(K,u, t) = lim sup
β↓0

h(K,wβ)− 〈x,wβ〉
1− 〈u,wβ〉

, wβ = u cos β + t sin β,

and a similar relation for ¯̺i. Since K is of constant width 1, we have h(K,w)+h(K,−w) = 1
for any unit vector w and xK(−u) = xK(u)− u, which gives

h(K,w) − 〈xK(u), w〉
1− 〈u,w〉 +

h(K,−w) − 〈xK(−u),−w〉
1− 〈u,w〉 = 1

and hence (34).

To prove (c), suppose that ̺i(K,u, t) > 0 for t ∈ u⊥ ∩ S
n−1. For given t ∈ u⊥ ∩ S

n−1, it
follows from (7) that there are positive numbers ηt and rt such that ρ(Dx(K, η), t) ≥ rt, and
hence rtt ∈ Dx(K, η), for 0 < η ≤ ηt. We choose t1, . . . , tn ∈ u⊥ ∩ S

n−1 which positively span
u⊥. Then there are numbers η0, r0 > 0 such that ρ(Dx(K, η), ti) ≥ r0 for 0 < η ≤ η0 and
i = 1, . . . , n. We have

o ∈ int conv{r0t1, . . . , r0tn} ⊂ Dx(K, η)

for 0 < η ≤ η0, hence there is a number r > 0 such that

Bu(o, r) ⊂ Dx(K, η), Bu(o, r) := B(o, r) ∩ u⊥.

By (5), this implies that
√

2ηBu(o, r) + x− ηu ⊂ K

for 0 < η ≤ η0. It follows that, in a neighbourhood of x, the body K contains a paraboloid
of revolution which contains x. From this, it follows that B(x− αu, α) ⊂ K for some α > 0.
The converse assertion of (c) is clear.

Now we are in a position to prove a Baire category result, from which Theorems 1.1 and
1.2 can be deduced.
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Theorem 6.2. A typical convex body K of constant width 1 in R
n has the following property.

Let (x, u) be a support element of K; then (x, u) is regular and either

¯̺s(K,u, t) = 1 for all t ∈ u⊥ ∩ S
n−1

or

̺i(K,u, t) = 0 for at least one t ∈ u⊥ ∩ S
n−1.

Proof. First we remark that a convex body of constant width is strictly convex, and a typical
convex body of constant width is smooth (the proof is the same as for general convex bodies;
see [10, Thm. 2.7.1]); hence it has only regular support elements.

We define the set

A :=
{

K ∈ Wn
1 : For each u ∈ S

n−1,

either ¯̺s(K,u, t) = 1 for all t ∈ u⊥ ∩ S
n−1

or ̺i(K,u, t) = 0 for some t ∈ u⊥ ∩ S
n−1

}

.

Then we choose finitely many points p1, . . . , pm0
∈ S

n−1 such that
⋃m0

m=1
C(pm) = S

n−1, and
for k ∈ N and m = 1, . . . ,m0 we define

Bk,m :=
{

K ∈ Wn
1 : There exists u ∈ C(pm) such that

there exists t ∈ u⊥ ∩ S
n−1 such that K is k−1-wide at (−u,−t)

and B(xK(u)− k−1u, k−1) ⊂ K
}

.

Let K ∈ Wn
1 \ A. Then there exists a vector u ∈ S

n−1 such that

¯̺s(K,u, t) < 1 for some t ∈ u⊥ ∩ S
n−1 (35)

and
̺i(K,u, t) > 0 for all t ∈ u⊥ ∩ S

n−1. (36)

The vector u is contained in a suitable set C(pm). By Lemma 6.1, (35) implies thatK is α-
wide at (−u,−t) for some α > 0. Also by Lemma 6.1, (36) implies that B(xK(u)−αu, α) ⊂ K
for some α > 0. Thus, K ∈ Bk,m for suitable k ∈ N, m ∈ {1, . . . ,m0}. Conversely, if
K ∈ Bk,m, then K /∈ A. Thus

Wn
1 \ A =

⋃

k∈N

m0
⋃

m=1

Bk,m. (37)

The strategy is now clear: we show that each set Bk,m is closed and without interior
points, hence nowhere dense in Wn

1 .

Lemma 6.3. For k ∈ N, m ∈ {1, . . . ,m0} the set Bk,m is closed.

14



Proof. Let (Kj)j∈N be a sequence in Bk,m that converges to a convex body K. Then K is also
of constant width 1. For each j ∈ N we can choose a vector uj ∈ C(pm) with the following
properties. We can choose a vector tj ∈ u⊥j ∩ S

n−1 such that Kj is k−1-wide at (−uj ,−tj),
and B(xKj

(uj)−k−1uj , k
−1) ⊂ Kj . Since C(pm) is compact, we can assume (after selecting a

subsequence and changing the notation) that the sequence (uj)j∈N converges to some vector
u ∈ C(pm). Again choosing a subsequence and changing the notation, we can assume that
also the sequence (tj)j∈N converges to a vector t.

We claim that K is k−1-wide at (−u,−t). Suppose that this is false. Then there exist a
point z ∈ P (K,−u,−t) and a ball B with center z such that

B ⊂ intB(xK(−u) + k−1u, k−1). (38)

Now Kj → K and uj → u implies that xKj
(−uj) → xK(−u) and hence

L(Kj ,−uj ,−tj) → L(K,−u,−t), D(Kj,−uj ,−tj) → D(K,−u,−t) for j → ∞.

We conclude that

Kj |L(Kj ,−uj ,−tj) → K|L(K,−u,−t) for j → ∞.

But then (38) implies that

P (Kj ,−uj,−tj) ∩ intB(xKj
(−uj) + k−1uj, k

−1) 6= ∅

for sufficiently large j, which contradicts the fact that Kj is k−1-wide at (−uj ,−tj). Thus,
K is k−1-wide at (−u,−t).

Further, from B(xKj
(uj)− k−1uj , k

−1) ⊂ Kj it follows that B(xK(u) − k−1u, k−1) ⊂ K.
Thus, K ∈ Bk,m, which shows that the latter set is closed.

Lemma 6.4. For k ∈ N, m ∈ {1, . . . ,m0}, the set Bk,m is nowhere dense.

Proof. Since Bk,m is closed by Lemma 6.3, it suffices to prove that Bk,m has empty interior.
Let W0 ∈ Wn

1 and a number 0 < ε ≤ ε0 be given (the number ε0 appears in Lemma 4.3).

According to Theorem 4.1 (with v = pm) there exists a convex body Q ∈ Wn
1 with

δ(W0, Q) ≤ ε

and with the property that, for each u ∈ C(pm), either

¯̺(Q,u, t) = 1 for all t ∈ u⊥ ∩ S
n−1

or
¯̺(Q,u, t) = 0 for at least one t ∈ u⊥ ∩ S

n−1.

By (10), the latter implies

̺(Q,u, t) = 0 for at least one t ∈ u⊥ ∩ S
n−1.

By Lemma 6.1, we obtain for each u ∈ C(pm) that either

K is not k−1-wide at (−u,−t), for all t ∈ u⊥ ∩ S
n−1
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or
B(xK(u)− k−1u, k−1) 6⊂ K.

Thus, Q /∈ Bkm. Since W0 ∈ Wn
1 was arbitrary and ε > 0 can be arbitrarily small, this shows

that Bk,m has empty interior.

Since Bk,m is nowhere dense, (37) shows that A is comeagre in Wn
1 . This completes the

proof of Theorem 6.2.

Proof of Theorem 1.1

A typical convex bodyK in Wn
1 has the property stated in Theorem 6.2. As mentioned in

Section 3, Hn−1-almost all vectors u ∈ S
n−1 are ordinary normal vectors of K. At an ordinary

normal vector u, all tangential radii of curvature exist and are finite, hence by Lemma 3.1 the
same holds for the sectional radii of curvature. Hence, at almost all u, either the curvature
indicatrix is a unit ball, or at last one radius of curvature is zero.

Proof of Theorem 1.2

A typical convex body K in Wn
1 has the property stated in Theorem 6.2. As mentioned

in Section 3, Hn−1-almost all boundary points of K are normal points. Let x be a normal
boundary point of K, and let u be the outer unit normal vector to K at x (it is unique
for typical convex bodies in Wn

1 ). For t ∈ u⊥ ∩ S
n−1 we have κ(K,u, t) = 1/̺(K,u, t) and

̺(K,u, t) ≤ ¯̺s(K,u, t) by (10), further ¯̺s(K,u, t) ≤ 1 since K is of constant width 1. Hence,
the curvatures of K at x are positive. Since x is a normal point, they are also finite. Now it
follows from Lemma 3.1 that at u all the tangential radii of curvature exist and are positive
and finite. Since K has the property stated in Theorem 6.2, they can only be 1. This means
(also by Lemma 3.1) that the curvature indicatrix of K at x is a unit ball, hence all radii of
curvature at x are equal to 1.

A body of constant width is strictly convex, and a typical convex body of constant width
1 is smooth. Hence, we can assume that K is smooth and strictly convex. Therefore,
the antipodal map ψ of K, which associates with every boundary point x of K with outer
unit normal vector u the unique boundary point ψ(K) with outer normal vector −u, is a
homeomorphism. It maps the set bdnK of normal boundary points, which has full measure
and hence is uncountable and dense in bdK, to a set which is also uncountable and dense in
bdK. Let x ∈ bdnK, let u be the outer unit normal vector at x and let t be a unit tangent
vector at x. As shown above, ¯̺(K,u, t) = 1. From (34) (and the existence of the tangential
radii of curvature at u) it follows that ¯̺(K,−u,−t) = 0. Thus, all radii of curvature at ψ(x)
are zero, from which the last assertion of Theorem 1.2 follows.

7 Appendix

Here we provide an auxiliary result on convergence of convex sets, which has been used in the
proof of Lemma 3.1. For non-empty closed convex sets Ki,K ⊂ R

n, i ∈ N, the limit relation
s-limi→∞Ki = K is defined by

lim
i→∞

h(Ki, u) = h(K,u) for u ∈ S
n−1,
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where h denotes the support function, and if o ∈ Ki,K, then the limit relation r-limi→∞Ki =
K is defined by

lim
i→∞

ρ(Ki, u) = ρ(K,u) for u ∈ S
n−1,

where ρ denotes the radial function. In the general case, where the sets Ki need not be
bounded or o need not be an interior point of K, none of these types of convergence implies
the other. This is different for convex bodies containing o in the interior.

In the proof of the following lemma, we denote by K◦ the polar body of a convex body
K with o ∈ intK, and we make use of the fact that

ρ(K,u) =
1

h(K◦, u)
for u ∈ S

n−1, (39)

see [10, (1.52)].

Lemma 7.1. Let Ki,K ∈ Kn and suppose that o ∈ intK and o ∈ Ki for i ∈ N. Then the

relations

s- lim
i→∞

Ki = K (40)

and

r- lim
i→∞

Ki = K (41)

are equivalent.

Proof. Suppose that (40) holds. Then Ki → K in the Hausdorff metric, by [10], Thm.
1.8.15 and Lemma 1.8.14. Since o ∈ intK, there are numbers r,R > 0 such that B(o, r) ⊂
Ki ⊂ B(o,R) for almost all i. For these i, the polar sets K◦

i are convex bodies satisfying
B(o, 1/R) ⊂ K◦

i ⊂ B(o, 1/r). On the space of convex bodies containing o in the interior, the
polarity mapping is continuous, hence we conclude that K◦

i → K◦ in the Hausdorff metric,
thus s- limi→∞K◦

i = K◦, which implies r- limi→∞Ki = K by (39). Thus (41) holds.

Suppose that (41) holds. Let fixed vectors x1, . . . , xm ∈ S
n−1 be given. Since

limi→∞ ρ(Ki, ·) > 0, there is a number ε > 0 such that ρ(Ki, xr) ≥ ε for r = 1, . . . ,m
and for all sufficiently large i. If x1, . . . , xm are suitably chosen, this together with the con-
vexity of the sets Ki implies the existence of a number r > 0 such that B(o, r) ⊂ Ki for
almost all i. Now (41) and (39) yield that s- limi→∞K◦

i = K◦. As already shown, this
implies r- limi→∞K◦

i = K◦, which in turn implies (40).
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