2013 UNIT VECTORS IN THE PLANE

IMRE BÁRÁNY, BORIS D. GINZBURG, AND VICTOR S. GRINBERG

ABSTRACT. Given a norm in the plane and 2013 unit vectors in this norm, there is a signed sum of these vectors whose norm is at most one.

Let B be the unit ball of a norm $\|.\|$ in \mathbb{R}^d , that is, B is an 0-symmetric convex compact set with nonempty interior. Assume $V \subset B$ is a finite set. It is shown in [1] that, under these conditions, there are signs $\varepsilon(v) \in \{-1, +1\}$ for every $v \in V$ such that $\sum_{v \in V} \varepsilon(v)v \in dB$. That is, a suitable signed sum of the vectors in V has norm at most d. This estimate is best possible: when $V = \{e_1, e_2, \ldots, e_d\}$ and the norm is ℓ_1 , all signed sums have ℓ_1 norm d.

In this short note we show that this result can be strengthened when d=2, |V|=2013 (or when |V| is odd) and every $v \in V$ is a unit vector. So from now onwards we work in the plane \mathbb{R}^2 .

Theorem 1. Assume $V \subset \mathbb{R}^2$ consists of unit vectors in the norm $\|.\|$ and |V| is odd. Then there are signs $\varepsilon(v) \in \{-1, +1\}$ $(\forall v \in V)$ such that $\|\sum_{v \in V} \varepsilon(v)v\| \leq 1$.

This result is best possible (take the same unit vector n times) and does not hold when |V| is even.

Before the proof some remarks are in place here. Define the convex polygon $P = \text{conv}\{\pm v : v \in V\}$. Then $P \subset B$, and P is again the unit ball of a norm, V is a set of unit vectors of this norm. Thus it suffices to prove the theorem only in this case.

A vector $v \in V$ can be replaced by -v without changing the conditions and the statement. So we assume that $V = \{v_1, v_2, \ldots, v_n\}$ and the vectors $v_1, v_2, \ldots, v_n, -v_1, -v_2, \ldots, -v_n$ come in this order on the boundary of P. Note that n is odd. We prove the theorem in the following stronger form.

Theorem 2. With this notation $||v_1 - v_2 + v_3 - \cdots - v_{n-1} + v_n|| \le 1$.

Proof. Note that this choice of signs is very symmetric as it corresponds to choosing every second vertex of P. So the vector $u = 2(v_1 - v_2 + v_3 - \cdots - v_{n-1} + v_n)$ is the same (or its negative) when one starts with another vector instead of v_1 . Define $a_i = v_{i+1} - v_i$ for

²⁰¹⁰ Mathematics Subject Classification. Primary 52A10, Secondary 15A39. Key words and phrases. unit vectors, norms, signed sum.

 $i=1,\ldots,n-1$ and $a_n=-v_1-v_n$ and set $w=a_1-a_2+a_3-\cdots+a_n$. It simply follows from the definition of a_i that

$$w = -2(v_1 - v_2 + v_3 - \dots - v_{n-1} + v_n) = -u.$$

Consequently ||u|| = ||w|| and we have to show that $||w|| \le 2$.

Consider the line L in direction w passing through the origin. It intersects the boundary of P at points b and -b. Because of symmetry we may assume, without loss of generality, that b lies on the edge $[v_1, -v_n]$ of P. Then w is just the sum of the projections onto L, in direction parallel with $[v_1, -v_n]$, of the edge vectors $a_1, -a_2, a_3, -a_4, \ldots, a_n$. These projections do not overlap (apart from the endpoints), and cover exactly the segment [-b, b] from L. Thus $||w|| \leq 2$, indeed.

Remark. There is another proof based on the following fact. P is a zonotope defined by the vectors a_1, \ldots, a_n , translated by the vector v_1 . Here the zonotope defined by a_1, \ldots, a_n is simply

$$Z = Z(a_1, \dots, a_n) = \left\{ \sum_{1}^{n} \alpha_i a_i : 0 \le \alpha_i \le 1 \ (\forall i) \right\}.$$

The polygon $P = v_1 + Z$ contains all sums of the form $v_1 + a_{i_1} + \cdots + a_{i_k}$ where $1 \le i_1 < i_2 < \cdots < i_k \le n$. In particular with $i_1 = 2, i_2 = 4, \ldots, i_k = 2k$

$$v_1 + a_2 + a_4 + \dots + a_{2k} = v_1 - v_2 + v_3 - \dots - v_{2k} + v_{2k+1} \in P.$$

This immediately implies a strengthening of Theorem 1 (which also follows from Theorem 2).

Theorem 3. Assume $V \subset \mathbb{R}^2$ consists of n unit vectors in the norm $\|.\|$. Then there is an ordering $\{w_1, \ldots, w_n\}$ of V, together with signs $\varepsilon_i \in \{-1, +1\}$ $(\forall i)$ such that $\|\sum_1^k \varepsilon_i w_i\| \leq 1$ for every odd $k \in \{1, \ldots, n\}$.

Of course, for the same ordering, $\|\sum_{i=1}^{k} \varepsilon_{i} w_{i}\| \leq 2$ for every $k \in \{1, \ldots, n\}$. We mention that similar results are proved by Banaszczyk [2] in higher dimension for some particular norms.

In [1] the following theorem is proved. Given a norm $\|.\|$ with unit ball B in R^d and a sequence of vectors $v_1, \ldots, v_n \in B$, there are signs $\varepsilon_i \in \{-1, +1\}$ for all i such that $\|\sum_1^k \varepsilon_i w_i\| \leq 2d - 1$ for every $k \in \{1, \ldots, n\}$. Theorem 1 implies that this result can be strengthened when the v_i s are unit vectors in \mathbb{R}^2 and k is odd.

Theorem 4. Assume $v_1, \ldots, v_n \in \mathbb{R}^2$ is a sequence of unit vectors in the norm $\|.\|$. Then there are signs $\varepsilon_i \in \{-1, +1\}$ for all i such that $\|\sum_{i=1}^k \varepsilon_i w_i\| \leq 2$ for every odd $k \in \{1, \ldots, n\}$.

The bound 2 here is best possible as shown by the example of the max norm and the sequence (-1, 1/2), (1, 1/2), (0, 1), (-1, 1), (1, 1).

The **proof** goes by induction on k. The case k = 1 is trivial. For the induction step $k \to k + 2$ let s be the signed sum of the first k vectors

with $||s|| \leq 2$. There are vectors u and w (parallel with s) such that s = u + w, ||u|| = 1, $||w|| \leq 1$. Applying Theorem 1 to u, v_{k+1} and v_{k+2} we have signs $\varepsilon(u), \varepsilon_{k+1}$ and ε_{k+2} with $||\varepsilon(u)u + \varepsilon_{k+1}v_{k+1} + \varepsilon_{k+2}v_{k+2}|| \leq 1$. Here we can clearly take $\varepsilon(u) = +1$. Then

$$||s + \varepsilon_{k+1}v_{k+1} + \varepsilon_{k+2}v_{k+2}|| \le ||u + \varepsilon_{k+1}v_{k+1} + \varepsilon_{k+2}v_{k+2}|| + ||w|| \le 2$$
 finishing the proof.

Acknowledgements. Research of the first author was partially supported by ERC Advanced Research Grant no 267165 (DISCONV), and by Hungarian National Research Grant K 83767.

References

- [1] I. Bárány, V. S. Grinberg. On some combinatorial questions in finite dimensional spaces, *Lin. Alg. Appl.* 41 (1981), 1–9.
- [2] W. Banaszczyk. On series of signed vectors and their rearrangements, *Random Structures Algorithms* **40** (2012), 301–316.

Imre Bárány

Rényi Institute of Mathematics Hungarian Academy of Sciences PO Box 127, 1364 Budapest Hungary and Department of Mathematics University College London Gower Street, London WC1E 6BT England e-mail: barany@renyi.hu

Boris D. Ginzburg

1695Betty Ct, Santa Clara, CA 95051

e-mail: boris.d.ginzburg@gmail.com

VICTOR S. GRINBERG

5628 Hempstead Rd, Apt 102, Pittsburgh, PA 15217 USA

e-mail: victor_grinberg@yahoo.com