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2013 UNIT VECTORS IN THE PLANE

IMRE BÁRÁNY, BORIS D. GINZBURG, AND VICTOR S. GRINBERG

Abstract. Given a norm in the plane and 2013 unit vectors in
this norm, there is a signed sum of these vectors whose norm is at
most one.

Let B be the unit ball of a norm ‖.‖ in R
d, that is, B is an 0-

symmetric convex compact set with nonempty interior. Assume V ⊂ B
is a finite set. It is shown in [1] that, under these conditions, there are
signs ε(v) ∈ {−1,+1} for every v ∈ V such that

∑

v∈V
ε(v)v ∈ dB.

That is, a suitable signed sum of the vectors in V has norm at most d.
This estimate is best possible: when V = {e1, e2, . . . , ed} and the norm
is ℓ1, all signed sums have ℓ1 norm d.

In this short note we show that this result can be strengthened when
d = 2, |V | = 2013 (or when |V | is odd) and every v ∈ V is a unit
vector. So from now onwards we work in the plane R

2.

Theorem 1. Assume V ⊂ R
2 consists of unit vectors in the norm ‖.‖

and |V | is odd. Then there are signs ε(v) ∈ {−1,+1} (∀v ∈ V ) such

that ‖
∑

v∈V
ε(v)v‖ ≤ 1.

This result is best possible (take the same unit vector n times) and
does not hold when |V | is even.

Before the proof some remarks are in place here. Define the convex
polygon P = conv{±v : v ∈ V }. Then P ⊂ B, and P is again the unit
ball of a norm, V is a set of unit vectors of this norm. Thus it suffices
to prove the theorem only in this case.

A vector v ∈ V can be replaced by −v without changing the con-
ditions and the statement. So we assume that V = {v1, v2, . . . , vn}
and the vectors v1, v2, . . . , vn,−v1,−v2, . . . ,−vn come in this order on
the boundary of P . Note that n is odd. We prove the theorem in the
following stronger form.

Theorem 2. With this notation ‖v1 − v2 + v3 − · · · − vn−1 + vn‖ ≤ 1.

Proof. Note that this choice of signs is very symmetric as it cor-
responds to choosing every second vertex of P . So the vector u =
2(v1 − v2 + v3 − · · · − vn−1 + vn) is the same (or its negative) when
one starts with another vector instead of v1. Define ai = vi+1 − vi for
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i = 1, . . . , n− 1 and an = −v1 − vn and set w = a1− a2+ a3 − · · ·+ an.
It simply follows from the definition of ai that

w = −2(v1 − v2 + v3 − · · · − vn−1 + vn) = −u.

Consequently ‖u‖ = ‖w‖ and we have to show that ‖w‖ ≤ 2.
Consider the line L in direction w passing through the origin. It in-

tersects the boundary of P at points b and−b. Because of symmetry we
may assume, without loss of generality, that b lies on the edge [v1,−vn]
of P . Then w is just the sum of the projections onto L, in direc-
tion parallel with [v1,−vn], of the edge vectors a1,−a2, a3,−a4, . . . , an.
These projections do not overlap (apart from the endpoints), and cover
exactly the segment [−b, b] from L. Thus ‖w‖ ≤ 2, indeed. �

Remark. There is another proof based on the following fact. P is
a zonotope defined by the vectors a1, . . . , an, translated by the vector
v1. Here the zonotope defined by a1, . . . , an is simply

Z = Z(a1, . . . , an) =

{

n
∑

1

αiai : 0 ≤ αi ≤ 1 (∀i)

}

.

The polygon P = v1+Z contains all sums of the form v1+ai1+ · · ·+aik
where 1 ≤ i1 < i2 < · · · < ik ≤ n. In particular with i1 = 2, i2 =
4, . . . , ik = 2k

v1 + a2 + a4 + . . . a2k = v1 − v2 + v3 − · · · − v2k + v2k+1 ∈ P.

This immediately implies a strengthening of Theorem 1 (which also
follows from Theorem 2).

Theorem 3. Assume V ⊂ R
2 consists of n unit vectors in the norm

‖.‖. Then there is an ordering {w1, . . . , wn} of V , together with signs

εi ∈ {−1,+1} (∀i) such that ‖
∑

k

1
εiwi‖ ≤ 1 for every odd k ∈ {1, . . . , n}.

Of course, for the same ordering, ‖
∑

k

1
εiwi‖ ≤ 2 for every k ∈

{1, . . . , n}. We mention that similar results are proved by Banaszczyk [2]
in higher dimension for some particular norms.

In [1] the following theorem is proved. Given a norm ‖.‖ with unit
ball B in Rd and a sequence of vectors v1, . . . , vn ∈ B, there are signs
εi ∈ {−1,+1} for all i such that ‖

∑

k

1
εiwi‖ ≤ 2d − 1 for every k ∈

{1, . . . , n}. Theorem 1 implies that this result can be strengthened
when the vis are unit vectors in R

2 and k is odd.

Theorem 4. Assume v1, . . . , vn ∈ R
2 is a sequence of unit vectors in

the norm ‖.‖. Then there are signs εi ∈ {−1,+1} for all i such that

‖
∑

k

1
εiwi‖ ≤ 2 for every odd k ∈ {1, . . . , n}.

The bound 2 here is best possible as shown by the example of the
max norm and the sequence (−1, 1/2), (1, 1/2), (0, 1), (−1, 1), (1, 1).

The proof goes by induction on k. The case k = 1 is trivial. For the
induction step k → k + 2 let s be the signed sum of the first k vectors
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with ‖s‖ ≤ 2. There are vectors u and w (parallel with s) such that
s = u+ w, ‖u‖ = 1, ‖w‖ ≤ 1. Applying Theorem 1 to u, vk+1and vk+2

we have signs ε(u), εk+1 and εk+2 with ‖ε(u)u+εk+1vk+1+εk+2vk+2‖ ≤
1. Here we can clearly take ε(u) = +1. Then

‖s+ εk+1vk+1 + εk+2vk+2‖ ≤ ‖u+ εk+1vk+1 + εk+2vk+2‖+ ‖w‖ ≤ 2

finishing the proof. �
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