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ANSWER TO A QUESTION OF KOLMOGOROV

RICHÁRD BALKA, MÁRTON ELEKES, AND ANDRÁS MÁTHÉ

Abstract. More than 80 years ago Kolmogorov asked the following question.
Let E ⊆ R

2 be a measurable set with λ2(E) < ∞, where λ2 denotes the two-
dimensional Lebesgue measure. Does there exist for every ε > 0 a contraction
f : E → R

2 such that λ2(f(E)) ≥ λ2(E)−ε and f(E) is a polygon? We answer
this question in the negative by constructing a bounded, simply connected
open counterexample. Our construction can easily be modified to yield the
analogous result in higher dimensions.

1. Introduction

The following question was posed by M. Laczkovich in [4]. Let λd stand for the
d-dimensional Lebesgue measure.

Question 1.1 (M. Laczkovich). Let E ⊆ R
d (d ≥ 2) be a measurable set with

λd(E) > 0. Does there exist a Lipschitz onto map f : E → [0, 1]d?

For d = 2 the positive answer to Question 1.1 follows from a result of N. X. Uy
[6], and D. Preiss also solved this partial problem by completely different methods.
J. Matoušek [5] proved the following stronger, ‘absolute constant’ version based on
a well-known combinatorial lemma due to Erdős and Szekeres. (For the definition
of 1-Lipschitz map see the Preliminary section.)

Theorem 1.2 (J. Matoušek). There exists a constant c > 0 such that for any

measurable set E ⊆ R
2 with λ2(E) = 1 there exists a 1-Lipschitz onto map f : E →

[0, c]2.

Question 1.1 is still open for dimensions d > 2. Theorem 1.2 states that we can
contract every set of the plane with positive measure onto a square such that it
‘does not lose too much from its measure’. Can we do this so that the loss of the
measure is arbitrarily small? It is easy to see that this is not possible if we require
the range to be a square, but how about polygons? Note that by polygons we mean
a wider class of objects than its standard definition does:

Definition 1.3. We say that P ⊆ R
2 is a polygon if ∂P can be covered by finitely

many line segments.

The next question is due to A. N. Kolmogorov, it was quoted by P. Alexandroff
in a letter written to F. Hausdorff, see [1] and [2].
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Question 1.4 (A. N. Kolmogorov). Let E ⊆ R
2 be a measurable set with λ2(E) <

∞, and let ε > 0. Does there exist a contraction f : E → R
2 such that λ2(f(E)) ≥

λ2(E)− ε and f(E) is a polygon?

The main goal of the paper is to answer Question 1.4 in the negative.

Theorem 1.5. There exist a bounded, simply connected open set U ⊆ R
2 and ε > 0

such that if f : U → R
2 is a contraction with λ2(f(U)) ≥ λ2(U) − ε then f(U) is

not a polygon.

In contrast to Question 1.1 the higher dimensional versions of Question 1.4 are
not more difficult than the original one. The analogue of Theorem 1.5 can be proved
similarly for every dimension d > 2 with the straightforward modifications.

The structure of the paper is as follows. In Section 2 we recall some notation
and definitions which we use in this paper. In Section 3 we prove Theorem 1.5.
Finally, in Section 4 we collect the open problems.

2. Preliminaries

Let B(x, r) stand for the closed ball of radius r centered at x. For a set A ⊆ R
2 we

denote by intA, clA and ∂A the interior, closure and boundary of A, respectively.
A function f : A → R

2 is said to be Lipschitz if there exists a constant c ∈ R such
that |f(x) − f(y)| ≤ c|x − y| for all x, y ∈ A. The smallest such constant c is
called the Lipschitz constant of f and denoted by Lip(f). If Lip(f) ≤ 1 then f
is a 1-Lipschitz map, if Lip(f) < 1 then f is a contraction. If A,B ⊆ R

2 then let
dist(A,B) = inf{|x− y| : x ∈ A, y ∈ B}.

For the sake of simplicity, let λ = λ2 stand for the two-dimensional Lebesgue
measure.

3. The proof

First we need the following lemma.

Lemma 3.1. Assume U ⊆ R
2 is a bounded, connected open set and f : U → R

2 is

a 1-Lipschitz map such that λ(f(U)) = λ(U). Then f is an isometry.

Proof. Recall that a map g : A → R
2 is an isometry if it preserves distances and

that this implies that g is a linear map restricted to the set A ⊆ R
2.

First we prove that f is locally an isometry at every point of U . Let z ∈ U be
arbitrary. Then there exists r > 0 such that B(z, 2r) ⊆ U . We prove that f is
isometry on B(z, r); that is, |f(x) − f(y)| = |x − y| for all x, y ∈ B(z, r). As f is
1-Lipschitz, we have |f(x)−f(y)| ≤ |x−y| for all x, y ∈ U . Assume to the contrary
that there are x, y ∈ B(z, r) such that |f(x) − f(y)| < |x− y|. Let

Cx,y = B(x, |x− y|/2) ∪B(y, |x− y|/2)

be the union of two closed discs of center x and y and radius equal to |x − y|/2.
Clearly, Cx,y ⊆ B(z, 2r) ⊆ U . Since f is 1-Lipschitz, f(Cx,y) is contained in the
union of two discs B(f(x), |x−y|/2)∪B(f(y), |x−y|/2). Since |f(x)−f(y)| < |x−y|,
the area of this union is smaller than the area of Cx,y, thus λ(f(Cx,y)) < λ(Cx,y).
Applying that λ is subadditive and f is 1-Lipchitz we obtain

λ (f(U)) ≤ λ (f(Cx,y)) + λ (f(U \ Cx,y)) < λ(Cx,y) + λ (U \ Cx,y) = λ(U),

which is a contradiction.
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Since f is locally an isometry at every point of the open and connected set U ,
all local isometries are restrictions of the same linear map R

2 → R
2. Hence f is an

isometry. �

Now we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let B be the closed unit ball centered at the origin and let
C ⊆ [0, 1] be a nowhere dense compact set with positive one-dimensional Lebesgue
measure. Set U = int(B) \ (C × [0, 1]). Clearly, U is open and path-connected. It
is easy to see that every simple closed curve can be shrunk to a point continuously
in U , so U is simply connected. Clearly, clU = B and λ(U) < λ(B).

It is enough to prove that there is an ε > 0 such that if f : U → R
2 is a contraction

with λ(f(U)) ≥ λ(U) − ε then λ (∂ (f(U))) > 0. Assume to the contrary that for
all n ∈ N

+ there are contractions gn : U → R
2 such that λ(gn(U)) ≥ λ(U) − 1/n

and λ (∂(gn(U))) = 0. Clearly, we may assume that
⋃

∞

n=1 gn(U) is bounded. Let
{zi : i ∈ N} be a dense set in U . By Cantor’s diagonal argument we can choose
a strictly increasing subsequence of the positive integers 〈nk〉 such that for every
i ∈ N the limit limk→∞ gnk

(zi) exists. Since the maps gnk
are contractions, the

sequence of functions 〈gnk
〉 is uniformly convergent on U . Therefore we may assume

that gn converges uniformly to g for a map g : U → R
2. The uniform convergence

implies that g is 1-Lipschitz.
First we prove that λ(g(U)) = λ(U). Since g is 1-Lipschitz, λ(g(U)) ≤ λ(U),

so it is enough to prove the opposite direction. As a continuous image of an open
set, g(U) is σ-compact, so measurable. Let δ > 0 be arbitrary. The regularity of
the Lebesgue measure implies that there is an open set V such that g(U) ⊆ V and
λ(V ) < λ(g(U)) + δ. Similarly, there exists a compact set K such that K ⊆ U and
λ(U \K) < δ. Since the maps gn are contractions, we obtain for all n ∈ N

+

(1) λ(gn(U))− λ(gn(K)) ≤ λ(gn(U \K)) ≤ λ(U \K) < δ.

The uniform convergence gn → g yields that there is an integer L such that for all
n > L we have gn(K) ⊆ V . Therefore (1) and the definition of the maps gn imply
that for all n > L we have

λ(g(U)) + δ > λ(V ) ≥ λ(gn(K)) > λ(gn(U))− δ ≥ λ(U)− 1/n− δ.

As δ > 0 is arbitrary, we obtain λ(g(U)) ≥ λ(U), so λ(g(U)) = λ(U). Then Lemma
3.1 implies that g is an isometry. We may assume that g is the identity, that is,
g = idU .

Since clU = B, one can extend the maps gn to contractions ĝn : B → R
2. Clearly,

ĝn → idB uniformly on B. Let D ⊆ B be a closed ball centered at the origin such
that λ(U) < λ(D) < λ(B). There exists M ∈ N such that for all n > M we have

(2) max
x∈B

|ĝn(x)− x| < dist(D, ∂B).

We prove that for all n > M ,

(3) D ⊆ cl(gn(U)).

Let us fix n > M . As gn(U) is dense in ĝn(B), we obtain cl(gn(U)) = ĝn(B).
Thus we need to prove D ⊆ ĝn(B) for (3). Assume to the contrary that there is
an x0 ∈ D such that x0 /∈ ĝn(B). Set r = dist(D, ∂B). Then B(x0, r) ⊆ B, so we
can define the map φ : B(x0, r) → R

2 by φ(x) = −ĝn(x) + x + x0. Inequality (2)
implies |φ(x)−x0| < r, so φ(B(x0, r)) ⊆ B(x0, r). Since x0 /∈ ĝn(B), we obtain that
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φ(x) 6= x for all x ∈ B(x0, r). Hence φ is a continuous self-map of the ball B(x0, r)
without any fixed points, which contradicts the Brouwer Fixed Point Theorem [3,
Proposition 4.4.]. Thus (3) holds.

As the maps gn are contractions, we have λ(gn(U)) ≤ λ(U). Therefore λ(U) <
λ(D) and (3) imply, for all n > M , that

λ(∂gn(U)) ≥ λ(cl(gn(U)) \ gn(U))

≥ λ(cl(gn(U))) − λ(gn(U))

≥ λ(D)− λ(U) > 0.

Thus λ(∂gn(U)) > 0, which contradicts the definition of gn. The proof is complete.
�

Remark 3.2. It is easy to see that for all Lebesgue null sets N ⊆ R
2 the sets U∆N

are also counterexamples to Question 1.4. On the other hand, one can show that
for all ε > 0 there exist a contraction f : U → R

2 and a Lebesgue null set N ⊆ R
2

such that λ2(f(U)) ≥ λ2(U) − ε and f(U)∆N is a polygon. Thus U will not be a
counterexample to Question 4.4 below.

4. Open Questions

The most important question is the following.

Question 4.1. Let K ⊆ R
2 be a compact set, and let ε > 0. Does there exist a

contraction f : K → R
2 such that λ2(f(K)) ≥ λ2(K)− ε and f(K) is a polygon?

In order to answer Question 4.1 we consider the next question.

Question 4.2. Let C ⊆ R
2 be a compact set with λ2(C) = 0, and let ε > 0. Does

there exist a contraction f : C → R
2 such that |f(x) − x| ≤ ε for all x ∈ C and

f(C) can be covered by finitely many line segments?

If the compact set C is a counterexample to Question 4.2 with ε > 0, then
consider K = C ∪R, where R is a closed ring such that the bounded component of
its complement contains C. Then K is a counterexample to Question 4.1, the sketch
of the proof is the following. Assume to the contrary that there are contractions
fn : K → R

2 (n ∈ N
+) such that λ(fn(K)) ≥ λ(K)− 1/n and fn(K) is a polygon,

that is, ∂fn(K) can be covered by finitely many line segments. Similarly as in the
proof of Theorem 1.5, one can show that fn converges uniformly to an isometry,
f . We may assume that f = idK . Let us fix n ∈ N

+ such that |fn(x) − x| ≤ ε
for all x ∈ C and fn(C) ∩ fn(R) = ∅. As fn is a contraction and C has zero
Lebesgue measure, fn(C) also has zero measure, so dist(fn(C), fn(R)) > 0 implies
fn(C) ⊆ ∂fn(K). Therefore fn(C) can be covered by finitely many line segments,
which contradicts the choice of C and ε.

Remark 4.3. We do not know whether the Sierpiński carpet is a counterexample
to Question 4.2.

Finally, our last question is the following.

Question 4.4. Let E ⊆ R
2 be a measurable set with λ2(E) < ∞, and let ε > 0.

Do there exist a contraction f : E → R
2 and a Lebesgue null set N ⊆ R

2 such that

λ2(f(E)) ≥ λ2(E)− ε and f(E)∆N is a polygon? Is this true at least for compact

sets?
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