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Abstract

Let G be a large-girthi-regular graph ang be a random process on the verticeg:gfroduced
by a randomized local algorithm. We prove the upper bauing 1 — 2k /d) (ﬁ)k for the (ab-
solute value of the) correlation of values on pairs of vediof distancé& and show that this bound
is optimal. The same results hold automatically for facfarial processes on théregular tree. In
that case we give an explicit description for the (closufedliopossible correlation sequences. Our
proof is based on the fact that the Bernoulli graphing of ttimite d-regular tree has spectral radius
2v/d — 1. Graphings with this spectral gap are infinite analoguesnitefiRamanujan graphs and

they are interesting on their own right.

1 Introduction

Randomized local algorithms are special type of parabelizlgorithms that can be used to produce

various important structures in graphs (independent sletsiinating sets, matchings, colorings,

local samples, etc.) in constant running time (§ée[[4I6R][8], [9], [LO], [L3], [18]).
Letd € N be afixed number. The input of the algorithm is a gr&pbf maximal degree at most

arxXiv:1305.6784v1 [math.PR] 29 May 2013

d. The first step of the algorithm puts labels on the vertice§ aidependently from a probabiliy
space. The second step evaluates a functidinule of the algorithm) at each vertexhat depends
on the isomorphism type of the labeled neighborhoodaffradiusr. (If 2 is an infinite probability
space therf is assumed to be measurable.)

In this paper we focus on the case of large-giftregular graphs. We give a rather explicit
description for the (pointwise closure) of all possibleretation sequences in a local algorithm.
Moreover, we obtain that the absolute value of the cor@fatif the values on two vertices of
distancek is at most(k + 1 — 2k/d)(d — 1)~%/? provided that the girth of the graph is at least
k + 2r + 2. Surprisingly, the bound itself does not depend on the sadinhich is related to the

complexity of the algorithm. Furthermore, we show that goper bound is essentially optimal.
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In our proof we make use of infinite measurable graphs caiteghings It turns out that many
properties of local algorithms on large-gidkregular graphs can be studied through the properties
of a single objectB, calledBernoulli graphing For example our result on the correlation decay
relies on the fact thaB,; is a Ramanujan graphing Ramanujan graphs were introduced in the
seminal papef[14] by Lubotzky, Phillips and Sarnakd-fegular graph is Ramanujan if its second
largest eigenvalue (in the absolute value) is at @&t — 1. The analogue of the second largest
eigenvalue can easily be defined for graphings by the speattias on the orthogonal complement
of the constant function. In the infinite ca&¢/d — 1 is the smallest possible value. (Note (Se€ [12])
that this value is also equal to the spectral radius of thacaaicy operator of the infiniiéregular
tree.) Ramanujan graphings (and more generally graphiitsspectral gap) are interesting on
their own right. (Note that M. Abért has a different, morengeal definition for the notion of a
Ramanujan graphing)

Last but not least, our results can also be interpreted frorargodic theoretic point of view.
As we will see in Sectiof]3/-regular graphings can be used to produce random processhs o
d-regular infinite tred; that are invariant under the full automorphism group. Coselg, automor-
phism invariant processes can be used to prodtregiular graphings. Processes that come from the
Bernoulli graphing are usually callddctor of i.i.d processes [15]. Our result on the possible cor-
relation sequences and the correlation decay naturallgrgépes to “Ramanujan processes” (i.e.,
processes that come from Ramanujan graphings).

To broaden the view on the topic, the last section discussége@resting connection to the rep-
resentation theory ohut(7};). There is a triple correspondence between spherical repiasons,

correlation sequences, and invariant Gaussian procesges o
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2 Ramanujan and Bernoulli graphings

Definition 2.1 Let X be a Polish topological space and lebe a probability measure on the Borel
sets inX. Agraphingis a graphg onV(G) = X with bounded maximal degree and Borel measur-
able edge seE/(G) C X x X such that
/ e(z, B)dv(x) = / e(z, A)dv(x) 1)
A B

for all measurable setd, B C X, wheree(z, S) is the number of edges frome X to S C X.
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Note that finite graphs are special graphings defined on fmdbability spaces with uniform
distribution. LetG be as in Definitiod Z]1. Iff : X — C is a measurable function then we define
Gf by

Gfx)="Y, [f(v). @)

(z,0)EE(G)
A short calculation shows (see [10]) thatis a self-adjoint operator oh?(X) of norm at most
whered is the maximal degree i@.
To keep our notation simple, in this paper we will only comsid-regular graphings (every
vertex has degred). In this case we say tha! = G/d is the Markov operator correspondingdo
We have that forf € L?(X) the value of M* f)(x) is equal to the expected value pfat the end

of a random walk of length started at:. Furthermore ifd C X is a positive measure set then
pe(H) == (1g, M* 1) /v(H)

is the probability that a random walk of lengttstarted at a random point &f ends inH.

Let L2(X) denote the subspace Irf (X) consisting of functions with integral equal to zero. If
G is ad-regular graphing then the constanfunction is an eigenfunction @f with eigenvaluel
and so its orthogonal complemelii}(X) is invariant under the action ¢f. We denote the norm of
GonL3(X)byp(G). If p(G) < dthen we say thaf has spectral gapNote that the spectral gap is
closely related to return probabilities and mixing ratesasfdom walks org;.

The graphingj is calledergodicif there is no measurable connected comportent X of G
such tha0 < v(S) < 1. Graphings are typically not connected as abstract grapksgodicity is
a good substitute for the notion of connectivity. It is easpée that if al-regular graphin@ has
spectral gap then it has to be ergodic. Furthermore, an ergoaphing is either a finite connected
graph or its probability space has no atoms.

The following statement op(G) is a modification of well-known facts about finite graphs (see

e.g. [, Theorem 7.1.]) for graphings.

Lemma 2.2 If G is an arbitraryd-regular graphing then

~dsu pe(H) —v(H) |1/k
pl9) =d H,E 1-v(H)

whereH runs through all positive measure setsihandk € N.
We prove the following theorem.

Theorem 2.1 LetG be ad-regular graphing on an atomless probability spacé, v). Thenp(G) >
2v/d — 1.

Motivated by the previous theorem we will use the followirgfidition.



Definition 2.3 A d-regular graphingg is Ramanujan ip(G) < 2v/d — 1.

It follows from Theoreni 211 that a Ramanujan graphéhig either a finite Ramanujan graph or
p(G) =2Vd—1.

We continue with the definition of the Bernoulli graphing b&ti-regular tree. Lefy; denote
thed-regular infinite tree and I€&E; denote the version df, in which a special vertex calledroot
is distinguished. The s&t = [0, 1]74 is a probability space with the product measure. The group of
root preserving automorphismsBf is also acting oft” by the permutation of the coordinates. This
action is obviously measure preserving. We denot@pyhe spac&”/Aut(7;) with the inherited
probability measure,. We connect two elements {; by an edge if one can be obtained from the
other by replacing the root to a neighboring vertex. The lgi@pconstructed this way isé&regular
graphing (se€ [10]) that is called the Bernoulli graphinggf Note that with probability one the
connected component of a random elemei§ jris isomorphic tol .

The following theorem seems to have been known for a while [£#] or [15] Theorem 2.1.)

We include a simple proof for completeness.
Theorem 2.2 For everyd > 2 the Bernoulli graphingB, is Ramanujan.

To prove Theorem 211 and Theoréml2.2 we will need some prépard he next lemma is an

easy consequence of the spectral theorem.

Lemma 2.4 Let F be a bounded, self-adjoint operator on the Hilbert spatand assume thaf

spansH. Then _
(v, F'v) 1/1')

(v,0)

Using this lemma we are ready to prove Lenima 2.2.

| F|| = sup (hm sup

veG N i—o0

Proof of Lemm&2Z]For a positive measure sét C X let gy = ﬁlfl — V(H)1x. We will
use thayy € LZ(X). Then for everys € N we have that

@ = p(M) > |(gr, M*gr)/(grr, gr)|M* = |(pr(H) — v(H))/(1 — v(H))|**.

To verify the above calculation note thatl is a self-adjoint operator and thisx, M*1) =
(MF1x,15) = (1x,15) = v(H). The other inequality follows from Lemnia2.4 and the fact tha
functions of the fornyz span the spack?(X). O

The next lemma is well known from probability theory [17].

Lemma 2.5 LetS C T} be afinite subset and le},(S) denote the probability that a random walk
started at the root ends if. Thenlimy_, . 721 (S)1/2¢ = 2¥4=L i S contains vertices at even
distance from the root. Moreoveimy,_, e rop1(S)Y/ 1) = 2/4=1 1if § contains vertices at

odd distance.



Proof of Theorerh 211SinceT}; covers everyl-regular graph it is clear that for every positive mea-
sure setd C X we have thap,(H) > r(0). The fact thatX is atomless implies that(H) can
be arbitrary small in Lemma 2.2 and thus we obtain #hdb)'/* < p(G)/d. By LemmaZb this

completes the proof. O

Proof of Theoreri 212t follows from Theoreni 21 that(B,) > 2v/d — 1. Thus by Lemm&az2l4 it
remains to show that for some spanning@et L2(Q,) the inequalityim sup,_, .. |(v, Bjv)|*/* <
2v/d — 1 holds whenever € G. LetG be the set of all functions with integral and normi on ),
that depend only on the labels in a bounded neighborhoodeabibt.

Forr € N let S, denote the neighborhood of the rootiij of radiusr. Assume thaff € G
is a function which depends only on the labelsSin Using the notation of Lemnia 2.5 we claim
thate, = [(MF* f, f)| < rx(Sa,) whereM = Bgy/d is the Markov operator. This fact together with
LemmdZ.b will complete the proof.

To prove the claim observe that is equal to the correlation of the values pfat the two
endpoints of a random walk of lengkhstarted at a random poimte X. Using the construction of
Q4 we lift the situation to the probability spad@ 1)7«. By abusing the notation we assume tliat
is defined or{0, 1)74 and it is invariant undeAut (7). For an element € [0,1]7¢ andv € T} let
g(v,w) denote the value of when the root is replaced to (The fact thay (v, w) is well-defined
relies on the fact thaf is invariant undeAut(7’;).) The value ok, has the following description.
We choose a random labelingof the verticesI; with [0, 1], start a random walk of lengthat the
root of 7); and on this probability space we take the correlation betwg¢e, w) andg(v, w) where
v is the endpoint of the walk. Conditioned on the fact that tnedom walk ends outsids,,. it is
clear thaty(o,w) andg(v,w) are independent and so the correlatiof.idt follows that the return

probability to.Ss, is an upper bound faf. O

We finish this section with an observation on the spectrgbgriies ofB;. We will use a general
fact about operators. Assunféis a bounded self-adjoint operator on a Hilbert spicef € H
andp € R[z]. Furthermore lef’ denote the projection valued measure corresponditfgtised in

the spectral theorem. Then
(FpF)f) = [ pdoy ®)

whereo (M) = || P(M)f||3 for M C R measurable. Note that|iff||» = 1 theno is a probability

measure and we say thaf is the spectral measure gfcorresponding tor.

Lemma 2.6 Leth : Q, — {—1,1} be the function such thdt(w) = —1 if the label on the root
isin[0,1/2] andh(w) = 1 otherwise. Then the spectral measureiaforresponding ta3 is the
Plancherel measure df}, i.e. it is concentrated ofi-2v/d — 1,2v/d — 1], and its density is the
following: % V-~ (it is also called the Kesten—McKay measure, see E.g. [17]).

d2—2



Proof. Leto}, be the spectral measurefotorrespondingtd,/d. We use the proof of Theordm2.2
for the specific functioh. The argumentyields théb, (B,/d)*h) is equal to the return probability
of a random walk of length started at the root. On the other hand By ((3)(B./d)*h) is equal to

the k-moment ofo,. This completes the proof. O

Corollary 2.7 The set{o¢|f € L3(), ||f||2 = 1} corresponding taB, is dense in the set of all
probability measures op-2+v/d — 1, 2v/d — 1] with respect to the weak topology.

Proof. For the specific functioh defined in Lemm&2]6 we have that the supportis the full
interval [-2v/d — 1,2v/d — 1]. The existence of one such function (using the spectralrémsp
implies the statement. Indeed, for smallthe uniform measure on the internal « + ¢] can be

approximated by py, /1,(»), WwhereP is the spectral projection to the interval = + ¢]. O

3 Random processes on the tree

In this section we describe how to produce random processésedreel,; from graphings. Fur-
thermore, the correlation decay of the process can be bdund&function of the largest eigenvalue

of the graphing.
Definition 3.1 LetG be ad-regular graphing on the spadeX, ). We denote b¥om (7}, G) the
set of map® : V(Ty;) — X with the following two properties:

e the image of an edge ifi; is an edge ir7,

e ¢ is injective on the neighborhood of any vertexin

The seftlom (T}, G) is basically the set of covering maps frafiato G. Note that if P is a path

of length% in T, then the image oP under anyy € Hom(7y, G) is a non-backtracking walk on
g.

Lemma 3.2 There is a unique probability measut®n Hom (T}, G) satisfying the following prop-
erties:
o for every vertexw € V(T}) the distribution of the image ef under ax-random function is,

e £ is invariant under the action of the automorphism grouf¥pf

Proof. We can uniquely bulid up this probability measure in thedaihg way. Let us start with
an arbitrary fixed vertex of Ty. By the first requirement the image otas distribution.. Once
the image ofv is determined, say(v) = z, the remaining vertices d¢f,; have to be mapped to

the connected component of The second requirement guarantees thagas to be a randomly



chosen covering of this connected component. Note thatridgehgng axioms imply that the first
requirement holds for every vertex Bf. O
Using the previous lemma we can create probability distidims of R-valued functions on the
vertices ofT’; in the following way. A similar construction was used |in [$§e Lemmas 35 and 36.
Let f : X — R be a function inL?(X). Then the compositioif o ¢ is anRR valued process on
the vertices off; where¢ is chosen randomly frorilomg (7, G). We denote this process .
An important special case is whéh= Bj. In this case processes of the fopp are calledfactor
of i.i.d processesThese processes can be equivalently defined without grgphirthe following
way. Letf : [0,1]7¢ — R be a measurable function that is invariant under the naaatin of
Aut(T%) on[0,1]%4. Then we construct a probability measurelof¥ such that first we put uniform
independent labels on the verticesigfand then at each vertexwe evaluatef by putting the root

onw. (Note that this is well-defined singkis automorphism invariant.)

Theorem 3.1 Let G be a Ramanujan graphing ofX,») and letf : X — R be a function in
L?(X). Then, in the process;, the absolute value of the correlation of the values on twtices

v,w € Ty is at most

(k+1 —2k/d)(\/dlj)k

wherek is the distance of andw.

The rest of the section is the proof of the above theorem. Vilatienthe proof from the paper
[2] in the infinite setting. The main idea is that the corrielatdecay in.; can be expressed in terms
of non-backtracking random walks ¢h

We define a graphing™®) on (X, v); two vertices are connected §*) if and only if their
distance is exactly in G. More precisely, we need weighted graphings. That is, &usté subsets
of X x X, we label the edges with nonnegative integers in a Borel urebke way. These will be
the multiplicities of the edges in the graphing. Otherwise definition is the same as the original
one. Ifv,w € T, with distancek, and f € LZ(X) with ||f||> = 1, then by the definition ofi the

reader can easily check that

(k)
gy ) @

conug(0) g ) = (£, s

The arguments in the proof of Theorem 1.1. [df [2] are validdaegular graphings as well.

Therefore fork > 1 we have

d(d—1)*1 " Jd(d— 1)k71qk (2\/m)’ ®)
where
Qk(ZC) = %Uk(f) - ﬁ[]}c_g(x); Uk(COSﬁ) — W’



i.e.,Uy is thekth Chebyshev polynomial of the second kind k0¥ 0, andU_; = 0.
The spectral mapping theorem implies thafif: # — H is a bounded self-adjoint operator
on a Hilbert spacé{, andp is a polynomial, thefip(F)|| < max e[ 7|, 7 [P(z)]. Sinceg is a

Ramanujan graphing, its norm ds3 is 2v/d — 1. Hence in our case this yields that
Gg» |qk (2)|
_ < .
Q<d(d )R 1) T el A — DR T

We claim that

max qp(z) = /d/(d—1)(k+ 1 — 2k/d).

z€[—1,1]
To see this leT},(cos(#)) = cos(k0) be the defining equation for thieth Chebyshev polynomial of

the first kind. It is easy to see that
d(d = 1)qr(z) = (d = 2)Ur(x) + 2T ().

Both |U| and|T}| have their maximal values atandUj (1) = k + 1, Ty(1) = 1. By substituting

1 into ¢, we get the claim.

G+ 1 \* 2k
— < (—= -=.
Q(d(d—l)kl)—(ﬁd—l) (’”1 d)
This finishes the proof. O

We obtain that

4 Randomized local algorithms

As it was described in the introduction, a randomized lotgd@thm produces a random labeling
of the vertices of a bounded degree graph using an initidllabeling and a local rule denoted by
f. To give a precise definition we will need the following natat

Let S be an arbitrary set. Af-labeled graplt is a graph together with a functidn: V(G) —

S. Arooted graph is a graph in which a special vertex denoteddnd called root is distinguished.
Assume that, d € N. We denote byV(r, d, S) the set of isomorphism types of rooteft abeled
graphs of maximum degreksuch that each vertex is of distance at mosbm the root. (Isomor-
phisms are assumed to be root and label preserving.)

Arule of radiusr and degred is a functionf : N'(r,d, S) — Ss whereS, is some set. Assume
thatG is a graph of maximal degree at masand thath : V(G) — S is some labeling. Then we
can usef to produce a new labelinig, : V(G) — S3 such thaths(v) is equal to the value of on
the S-labeled rooted neighborhood of radiu®f v where the root is placed an We denote the
labelinghs by h7.



Definition 4.1 A randomized local algorithm of radius and degreel is given by a measurable
functionf : N'(r,d, Q) — L (called rule of the algorithm) wher® is a probability space and is
a measure space. The input of the algorithm is a graph of mebdegree at mosf and the output

is the random labeling/ whereh is a labeling ofG with independent, random elements frim

Note that local algorithms can also be computed on infinieglgs if they have bounded maxi-
mum degree. The next example produces independent sethi3].

Let f : M(1,4d,[0,1]) — {0,1} be the rule such that the value ¢fis 1 if and only if the
label on the root is the smallest among all labels. It is cteat if » : V(G) — [0,1] is an
arbitrary injective function then the supportiof is an independent set @. Since random labelings
h : V(G) — [0,1] are injective with probabilityl we have that the local algorithm with rule

produces a random independent set with probalility

In the rest of this section we focus on the case whigs ad-regular graph with girth more than
twice the radius of . In this case it is enough to defirffeon Q-labeled versions of the neighborhood
S, of the root inT); of radiusr. In other words we can assume thjats a function of the form
f: Q% — L thatis invariant under the automorphismspf

We can also represefitas a functiory : 0; — L on the vertex set of the Bernoulli graphifiyy.
Let¢ : [0,1] — € be an arbitrary measure preserving map and2; — Q°- be the map defined
by deleting the vertices outsidg. and taking the) images of the original labels. Lgt= f o 1.

It is clear that the procegs, on T} is the same as the process produced by the local algorithm on
T, with rule f. On the other hand i€7 is anyd-regular graph of girth at leagt(k + r + 1) then

the distribution of the local algorithm in any ball of radikgs the same as its distribution @y

in a similar ball. It follows for example that to analyze lbpgaoperties (such as correlation decay)
of local algorithms in the large-girth setting, it is enoughconsider the algorithm on the tré&e.

This creates the connection between Bernoulli graphingsl@al algorithms. As a corollary of
Theoreni 3.1 and Theordm P.2 we obtain the following.

Theorem 4.1 Assume that, k € N and thatf € L?(Q°") is invariant underAut(S,). LetG be
a d-regular graph of girth at leask + 2r + 2. If v, w are two vertices of distandein G then the
absolute value of the correlation of the valueswandw in the local algorithm given by is at
most(k + 1 — 2k/d)(d — 1)7*/2.

5 Characterization of correlation sequences

Our goal is to give an algebraic characterization (up touresvith respect to pointwise conver-

gence) for possible correlation sequences in factor af piocesses. We return to the proof of



Theoreni311. Let us applil(3) thandG/(2+v/d — 1) in the calculation. We obtain that the value of

(@) for two vertices of distanckis equal to

=
- o dos
-1,1] \/d(d — 1)’“*1% !

whereo is the spectral measure gfwith respect toG/(2v/d — 1). The next theorem follows

immediately from Corollar{ 217.

Theorem 5.1 Let X, denote the set of all sequences with= [ d='/2(d — 1)1 =%)/2¢,, dn where
7 is a probability measure of-1, 1]. Then the closure of possible correlation sequences imfact

of i.i.d processes is equal t&,.

We finish with an example for a local algorithm on the tiiee We start with the intitial i.i.d
labeling{ X, }..c1, whereX,, = 1 with probabilityl/2 andX,, = —1 otherwise. For > 0 denote
by S,.(v) the neighborhood of radiusaroundv € T;;. Note that

(d—1)—1

forr > 1.

For everyw € T, we define the random variablg, = X,. ltis clear that

S S 3
|5 (w)] €S (w)

{Yu }wer, is the output of a local algorithm. Furthermore we have that

1
wn@w@»uﬂw»:ngmuw( Y ox, ¥ x@)

u€Sy(v) ueSy(w)
1 IS, (v) N Sp(w)|  d(d—1)""F2 -2
= var Xu | = =
5.0)] (%&2;&W> ) 5.0)] ad-1 -2

if kis even andk < 2r. For the last equation we use the fact tSafv) N S, (w) is equal to
Sr_k/2(2) wherez is the middle point of of the path connectingndw. Now, asr goes to infinity,
the lower bound for the correlation convergegdo- 1)/,
For oddk with £ < 2r 4+ 1 we have two points in the middle and so
1S, (v) N Sp(w)| 2[4+ (d—1)+... 4 (d— 1)~ k+D/2] (d—1)r=(=1/2 1

|iSy-(v)] |S,-(v)] - dd—1)"—2

This convergestg(d — 1)~ 2" asr — oo,

This shows that the correlation decay is close to be optimtdis simple example.

6 Semi-definite functions, spherical representations and &us-
sian processes

The goal of this section is to show how correlation sequendesvariant processes of; can

be viewed from a representation theoretic perspective.eblar, every such correlation sequence
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produces a unique invariant Gaussian proceskomhich is interesting on its own right.

Let P, denote the set of all positive semi-definite functignsT; x T; — [—1, 1] such that
p(v,v) = 1 and the value op(v, w) depends only on the distancewéndw for every pairv, w €
T,. Itis clear that the correlation structure of an arbitrasa( valued) invariant process @iy is
an element iP;. On the other hand any element®Bf defines a symmetric representationigf
in some real Hilbert space. To be more precise, there is gitum¢ from 7,; to some separable
Hilbert spaceX such thaip(v, w) = (¢(v), (w)) and that{¢(v)|v € Ty} generate${. Itis clear
that ¢ is unique up to orthogonal transformations and that the@ni®rthogonal representation
¥ Aut(Ty) — O(H) with the property that(a(v)) = () (4(v)) for everyv € T, anda €
Aut(Ty). In particularg(o) is fixed underAut (7)) whereo is any distinguished root iff;. Such
representations okut(7,) are calledsphericalin the literature. In other words, a representation
of Aut(Ty) is spherical if the subgrouput(T);) has a fixed vector: of length1 such that the
images ofr underAut(7,) generate the underlying Hilbert space. It is clear that esptterical
representationy of Aut(7}) gives rise to an element iRy by p(v, w) = (Y(aw) (), Y(ay)(x))
wherea, (o) = v,a,(0) = w. (The spherical property guarantees thas well-defined.) This
construction yields a one to one correspondence betweamisplrepresentations and elements in
Pa.

To complete the picture, for evegy € P, we construct an invariant process with correlation
structurep. The most natural choice is an infinite dimensional Gausdistnibution~, onR”¢ with
correlation structurg. The uniqueness of, guarantees that it is an invariant undert (7). If p
is any other invariant process with the same correlatiarcgirep then we can also obtaip, by
the central limit theorem in the following way. Assume thais already normalized in a way that
it has zero expectation and variance (at each vertex) equalltet [u:],, denote the distibution of
q1 + q2 + - - - + g, where eacly; is an independent elementRf« chosen with distributiop. It is
clear that the weak limit ofi—/2[1],, is a Gaussian process with correlation strucjuaad thus it
is equal toy,,. If in particulary is a factor of i.i.d process then soljg,, for everyn. It follows that

in this casey, is a weak limit of factor of i.i.d processes. Therefore weaibthe following.

Corollary 6.1 A Gaussian process is a limit of factor of i.i.d. processes only if its correlation
decay is as in Theorem5.1.
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