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Abstract

LetG be a large-girthd-regular graph andµ be a random process on the vertices ofG produced

by a randomized local algorithm. We prove the upper bound(k + 1 − 2k/d)
(

1√
d−1

)k

for the (ab-

solute value of the) correlation of values on pairs of vertices of distancek and show that this bound

is optimal. The same results hold automatically for factor of i.i.d processes on thed-regular tree. In

that case we give an explicit description for the (closure) of all possible correlation sequences. Our

proof is based on the fact that the Bernoulli graphing of the infinited-regular tree has spectral radius

2
√
d− 1. Graphings with this spectral gap are infinite analogues of finite Ramanujan graphs and

they are interesting on their own right.

1 Introduction

Randomized local algorithms are special type of parallelized algorithms that can be used to produce

various important structures in graphs (independent sets,dominating sets, matchings, colorings,

local samples, etc.) in constant running time (see [4],[5],[6], [8], [9], [10], [13], [16]).

Let d ∈ N be a fixed number. The input of the algorithm is a graphG of maximal degree at most

d. The first step of the algorithm puts labels on the vertices ofG independently from a probabiliy

spaceΩ. The second step evaluates a functionf (rule of the algorithm) at each vertexv that depends

on the isomorphism type of the labeled neighborhood ofv of radiusr. (If Ω is an infinite probability

space thenf is assumed to be measurable.)

In this paper we focus on the case of large-girthd-regular graphs. We give a rather explicit

description for the (pointwise closure) of all possible correlation sequences in a local algorithm.

Moreover, we obtain that the absolute value of the correlation of the values on two vertices of

distancek is at most(k + 1 − 2k/d)(d − 1)−k/2 provided that the girth of the graph is at least

k + 2r + 2. Surprisingly, the bound itself does not depend on the radius r which is related to the

complexity of the algorithm. Furthermore, we show that our upper bound is essentially optimal.
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In our proof we make use of infinite measurable graphs calledgraphings. It turns out that many

properties of local algorithms on large-girthd-regular graphs can be studied through the properties

of a single objectBd calledBernoulli graphing. For example our result on the correlation decay

relies on the fact thatBd is a Ramanujan graphing. Ramanujan graphs were introduced in the

seminal paper [14] by Lubotzky, Phillips and Sarnak. Ad-regular graph is Ramanujan if its second

largest eigenvalue (in the absolute value) is at most2
√
d− 1. The analogue of the second largest

eigenvalue can easily be defined for graphings by the spectral radius on the orthogonal complement

of the constant function. In the infinite case2
√
d− 1 is the smallest possible value. (Note (see [12])

that this value is also equal to the spectral radius of the adjacency operator of the infinited-regular

tree.) Ramanujan graphings (and more generally graphings with spectral gap) are interesting on

their own right. (Note that M. Abért has a different, more general definition for the notion of a

Ramanujan graphing.1)

Last but not least, our results can also be interpreted from an ergodic theoretic point of view.

As we will see in Section 3,d-regular graphings can be used to produce random processes on the

d-regular infinite treeTd that are invariant under the full automorphism group. Conversely, automor-

phism invariant processes can be used to produced-regular graphings. Processes that come from the

Bernoulli graphing are usually calledfactor of i.i.dprocesses [15]. Our result on the possible cor-

relation sequences and the correlation decay naturally generalizes to “Ramanujan processes” (i.e.,

processes that come from Ramanujan graphings).

To broaden the view on the topic, the last section discusses an interesting connection to the rep-

resentation theory ofAut(Td). There is a triple correspondence between spherical representations,

correlation sequences, and invariant Gaussian processes on Td.

Acknowledgement. The authors are thankful to Miklós Abért for various prompting suggestions

and to Viktor Harangi for useful remarks about the manuscript.

2 Ramanujan and Bernoulli graphings

Definition 2.1 LetX be a Polish topological space and letν be a probability measure on the Borel

sets inX . A graphingis a graphG onV (G) = X with bounded maximal degree and Borel measur-

able edge setE(G) ⊂ X ×X such that

∫

A

e(x,B)dν(x) =

∫

B

e(x,A)dν(x) (1)

for all measurable setsA,B ⊆ X , wheree(x, S) is the number of edges fromx ∈ X to S ⊆ X .

1Personal communication.
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Note that finite graphs are special graphings defined on finiteprobability spaces with uniform

distribution. LetG be as in Definition 2.1. Iff : X → C is a measurable function then we define

Gf by

Gf(x) =
∑

(x,v)∈E(G)
f(v). (2)

A short calculation shows (see [10]) thatG is a self-adjoint operator onL2(X) of norm at mostd

whered is the maximal degree inG.

To keep our notation simple, in this paper we will only consider d-regular graphings (every

vertex has degreed). In this case we say thatM = G/d is the Markov operator corresponding toG.

We have that forf ∈ L2(X) the value of(Mkf)(x) is equal to the expected value off at the end

of a random walk of lengthk started atx. Furthermore ifH ⊆ X is a positive measure set then

pk(H) := (1H ,Mk1H)/ν(H)

is the probability that a random walk of lengthk started at a random point ofH ends inH .

LetL2
0(X) denote the subspace inL2(X) consisting of functions with integral equal to zero. If

G is ad-regular graphing then the constant1 function is an eigenfunction ofG with eigenvalued

and so its orthogonal complementL2
0(X) is invariant under the action ofG. We denote the norm of

G onL2
0(X) by ρ(G). If ρ(G) < d then we say thatG has spectral gap.Note that the spectral gap is

closely related to return probabilities and mixing rates ofrandom walks onG.

The graphingG is calledergodicif there is no measurable connected componentS ⊂ X of G
such that0 < ν(S) < 1. Graphings are typically not connected as abstract graphs so ergodicity is

a good substitute for the notion of connectivity. It is easy to see that if ad-regular graphingG has

spectral gap then it has to be ergodic. Furthermore, an ergodic graphing is either a finite connected

graph or its probability space has no atoms.

The following statement on̺(G) is a modification of well-known facts about finite graphs (see

e.g. [7, Theorem 7.1.]) for graphings.

Lemma 2.2 If G is an arbitraryd-regular graphing then

ρ(G) = d sup
H,k

∣

∣

∣

pk(H)− ν(H)

1− ν(H)

∣

∣

∣

1/k

whereH runs through all positive measure sets inX andk ∈ N.

We prove the following theorem.

Theorem 2.1 LetG be ad-regular graphing on an atomless probability space(X, ν). Thenρ(G) ≥
2
√
d− 1.

Motivated by the previous theorem we will use the following definition.
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Definition 2.3 A d-regular graphingG is Ramanujan ifρ(G) ≤ 2
√
d− 1.

It follows from Theorem 2.1 that a Ramanujan graphingG is either a finite Ramanujan graph or

ρ(G) = 2
√
d− 1.

We continue with the definition of the Bernoulli graphing of thed-regular tree. LetTd denote

thed-regular infinite tree and letT ∗
d denote the version ofTd in which a special vertexo calledroot

is distinguished. The setY = [0, 1]T
∗

d is a probability space with the product measure. The group of

root preserving automorphisms ofT ∗
d is also acting onY by the permutation of the coordinates. This

action is obviously measure preserving. We denote byΩd the spaceY/Aut(T ∗
d ) with the inherited

probability measureνd. We connect two elements inΩd by an edge if one can be obtained from the

other by replacing the root to a neighboring vertex. The graphBd constructed this way is ad-regular

graphing (see [10]) that is called the Bernoulli graphing ofTd. Note that with probability one the

connected component of a random element inΩd is isomorphic toTd.

The following theorem seems to have been known for a while (see [11] or [15] Theorem 2.1.)

We include a simple proof for completeness.

Theorem 2.2 For everyd ≥ 2 the Bernoulli graphingBd is Ramanujan.

To prove Theorem 2.1 and Theorem 2.2 we will need some preparation. The next lemma is an

easy consequence of the spectral theorem.

Lemma 2.4 LetF be a bounded, self-adjoint operator on the Hilbert spaceH and assume thatG

spansH. Then

‖F‖ = sup
v∈G

(

lim sup
i→∞

∣

∣

∣

(v,F iv)

(v, v)

∣

∣

∣

1/i)

.

Using this lemma we are ready to prove Lemma 2.2.

Proof of Lemma 2.2For a positive measure setH ⊆ X let gH = 1√
ν(H)

1H −
√

ν(H)1X . We will

use thatgH ∈ L2
0(X). Then for everyk ∈ N we have that

ρ(G)
d

= ρ(M) ≥ |(gH ,MkgH)/(gH , gH)|1/k = |(pk(H)− ν(H))/(1 − ν(H))|1/k.

To verify the above calculation note thatM is a self-adjoint operator and thus(1X ,Mk1H) =

(Mk1X , 1H) = (1X , 1H) = ν(H). The other inequality follows from Lemma 2.4 and the fact that

functions of the formgH span the spaceL2
0(X). �

The next lemma is well known from probability theory [17].

Lemma 2.5 LetS ⊂ T ∗
d be a finite subset and letrk(S) denote the probability that a random walk

started at the root ends inS. Thenlimk→∞ r2k(S)
1/2k = 2

√
d−1
d , if S contains vertices at even

distance from the root. Moreover,limk→∞ r2k+1(S)
1/(2k+1) = 2

√
d−1
d , if S contains vertices at

odd distance.
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Proof of Theorem 2.1:SinceTd covers everyd-regular graph it is clear that for every positive mea-

sure setH ⊆ X we have thatpk(H) ≥ rk(o). The fact thatX is atomless implies thatν(H) can

be arbitrary small in Lemma 2.2 and thus we obtain thatrk(o)
1/k ≤ ρ(G)/d. By Lemma 2.5 this

completes the proof. �

Proof of Theorem 2.2:It follows from Theorem 2.1 thatρ(Bd) ≥ 2
√
d− 1. Thus by Lemma 2.4 it

remains to show that for some spanning setG ⊂ L2
0(Ωd) the inequalitylim supi→∞ |(v,Bi

dv)|1/i ≤
2
√
d− 1 holds wheneverv ∈ G. LetG be the set of all functions with0 integral and norm1 onΩd

that depend only on the labels in a bounded neighborhood of the root.

For r ∈ N let Sr denote the neighborhood of the root inT ∗
d of radiusr. Assume thatf ∈ G

is a function which depends only on the labels inSr. Using the notation of Lemma 2.5 we claim

thatck = |(Mkf, f)| ≤ rk(S2r) whereM = Bd/d is the Markov operator. This fact together with

Lemma 2.5 will complete the proof.

To prove the claim observe thatck is equal to the correlation of the values off at the two

endpoints of a random walk of lengthk started at a random pointx ∈ X . Using the construction of

Ωd we lift the situation to the probability space[0, 1]T
∗

d . By abusing the notation we assume thatf

is defined on[0, 1]T
∗

d and it is invariant underAut(T ∗
d ). For an elementω ∈ [0, 1]T

∗

d andv ∈ T ∗
d let

g(v, ω) denote the value off when the root is replaced tov. (The fact thatg(v, ω) is well-defined

relies on the fact thatf is invariant underAut(T ∗
d ).) The value ofck has the following description.

We choose a random labelingω of the verticesT ∗
d with [0, 1], start a random walk of lengthk at the

root ofT ∗
d and on this probability space we take the correlation between g(o, ω) andg(v, ω) where

v is the endpoint of the walk. Conditioned on the fact that the random walk ends outsideS2r it is

clear thatg(o, ω) andg(v, ω) are independent and so the correlation is0. It follows that the return

probability toS2r is an upper bound forck. �

We finish this section with an observation on the spectral properties ofBd. We will use a general

fact about operators. AssumeF is a bounded self-adjoint operator on a Hilbert spaceH , f ∈ H
andp ∈ R[x]. Furthermore letP denote the projection valued measure corresponding toF used in

the spectral theorem. Then

(f, p(F)f) =

∫

p dσf (3)

whereσf (M) = ‖P (M)f‖22 forM ⊂ R measurable. Note that if‖f‖2 = 1 thenσf is a probability

measure and we say thatσf is the spectral measure off corresponding toF .

Lemma 2.6 Let h : Ωd → {−1, 1} be the function such thath(ω) = −1 if the label on the root

is in [0, 1/2] andh(ω) = 1 otherwise. Then the spectral measure ofh corresponding toBd is the

Plancherel measure ofTd, i.e. it is concentrated on[−2
√
d− 1, 2

√
d− 1], and its density is the

following: d
2π

√
4(d−1)−t2

d2−t2 (it is also called the Kesten–McKay measure, see e.g. [17]).
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Proof. Letσ′
h be the spectral measure ofh corresponding toBd/d. We use the proof of Theorem 2.2

for the specific functionh. The argument yields that(h, (Bd/d)
kh) is equal to the return probability

of a random walk of lengthk started at the root. On the other hand by (3)(h, (Bd/d)
kh) is equal to

thek-moment ofσ′
h. This completes the proof. �

Corollary 2.7 The set{σf |f ∈ L2
0(Ω) , ‖f‖2 = 1} corresponding toBd is dense in the set of all

probability measures on[−2
√
d− 1, 2

√
d− 1] with respect to the weak topology.

Proof. For the specific functionh defined in Lemma 2.6 we have that the supportσh is the full

interval [−2
√
d− 1, 2

√
d− 1]. The existence of one such function (using the spectral theorem)

implies the statement. Indeed, for smallε, the uniform measure on the interval[x, x + ε] can be

approximated byσPh/h(x), whereP is the spectral projection to the interval[x, x+ ε]. �

3 Random processes on the tree

In this section we describe how to produce random processes on the treeTd from graphings. Fur-

thermore, the correlation decay of the process can be bounded by a function of the largest eigenvalue

of the graphing.

Definition 3.1 LetG be ad-regular graphing on the space(X, ν). We denote byHom0(Td,G) the

set of mapsφ : V (Td) → X with the following two properties:

• the image of an edge inTd is an edge inG,

• φ is injective on the neighborhood of any vertex inTd.

The setHom0(Td,G) is basically the set of covering maps fromTd to G. Note that ifP is a path

of lengthk in Td then the image ofP under anyφ ∈ Hom0(Td,G) is a non-backtracking walk on

G.

Lemma 3.2 There is a unique probability measureκ onHom0(Td,G) satisfying the following prop-

erties:

• for every vertexv ∈ V (Td) the distribution of the image ofv under aκ-random function isν,

• κ is invariant under the action of the automorphism group ofTd.

Proof. We can uniquely bulid up this probability measure in the following way. Let us start with

an arbitrary fixed vertexv of Td. By the first requirement the image ofv has distributionν. Once

the image ofv is determined, sayφ(v) = x, the remaining vertices ofTd have to be mapped to

the connected component ofx. The second requirement guarantees thatφ has to be a randomly

6



chosen covering of this connected component. Note that the graphing axioms imply that the first

requirement holds for every vertex ofTd. �

Using the previous lemma we can create probability distributions ofR-valued functions on the

vertices ofTd in the following way. A similar construction was used in [1],see Lemmas 35 and 36.

Let f : X → R be a function inL2(X). Then the compositionf ◦ φ is anR valued process on

the vertices ofTd whereφ is chosen randomly fromHom0(Td,G). We denote this process byµf .

An important special case is whenG = Bd. In this case processes of the formµf are calledfactor

of i.i.d processes.These processes can be equivalently defined without graphings in the following

way. Letf : [0, 1]T
∗

d → R be a measurable function that is invariant under the naturalaction of

Aut(T ∗
d ) on [0, 1]T

∗

d . Then we construct a probability measure onRTd such that first we put uniform

independent labels on the vertices ofTd and then at each vertexv we evaluatef by putting the root

onv. (Note that this is well-defined sincef is automorphism invariant.)

Theorem 3.1 Let G be a Ramanujan graphing on(X, ν) and letf : X → R be a function in

L2(X). Then, in the processµf , the absolute value of the correlation of the values on two vertices

v, w ∈ Td is at most

(k + 1− 2k/d)
( 1√

d− 1

)k

wherek is the distance ofv andw.

The rest of the section is the proof of the above theorem. We imitate the proof from the paper

[2] in the infinite setting. The main idea is that the correlation decay inµf can be expressed in terms

of non-backtracking random walks onG.

We define a graphingG(k) on (X, ν); two vertices are connected inG(k) if and only if their

distance is exactlyk in G. More precisely, we need weighted graphings. That is, instead of subsets

of X ×X , we label the edges with nonnegative integers in a Borel measurable way. These will be

the multiplicities of the edges in the graphing. Otherwise the definition is the same as the original

one. Ifv, w ∈ Td with distancek, andf ∈ L2
0(X) with ||f ||2 = 1, then by the definition ofµf the

reader can easily check that

corr(µf (v), µf (w)) =

(

f,
G(k)f

d(d− 1)k−1

)

. (4)

The arguments in the proof of Theorem 1.1. of [2] are valid ford-regular graphings as well.

Therefore fork ≥ 1 we have

G(k)

d(d− 1)k−1
=

1
√

d(d− 1)k−1
qk

( G
2
√
d− 1

)

, (5)

where

qk(x) =

√

d− 1

d
Uk(x) −

1
√

d(d− 1)
Uk−2(x); Uk(cosϑ) =

sin((k + 1)ϑ)

sinϑ
,

7



i.e.,Uk is thekth Chebyshev polynomial of the second kind fork ≥ 0, andU−1 ≡ 0.

The spectral mapping theorem implies that ifF : H → H is a bounded self-adjoint operator

on a Hilbert spaceH, andp is a polynomial, then‖p(F)‖ ≤ maxx∈[−‖F‖,‖F‖] |p(x)|. SinceG is a

Ramanujan graphing, its norm onL2
0 is 2

√
d− 1. Hence in our case this yields that

̺

( G(k)

d(d− 1)k−1

)

≤ max
x∈[−1,1]

|qk(x)|
√

d(d− 1)k−1
.

We claim that

max
x∈[−1,1]

qk(x) =
√

d/(d− 1)(k + 1− 2k/d).

To see this letTk(cos(θ)) = cos(kθ) be the defining equation for thek-th Chebyshev polynomial of

the first kind. It is easy to see that

√

d(d− 1)qk(x) = (d− 2)Uk(x) + 2Tk(x).

Both |Uk| and|Tk| have their maximal values at1 andUk(1) = k + 1 , Tk(1) = 1. By substituting

1 into qk we get the claim.

We obtain that

̺

( G(k)

d(d− 1)k−1

)

≤
( 1√

d− 1

)k
(

k + 1− 2k

d

)

.

This finishes the proof. �

4 Randomized local algorithms

As it was described in the introduction, a randomized local algorithm produces a random labeling

of the vertices of a bounded degree graph using an initial i.i.d labeling and a local rule denoted by

f . To give a precise definition we will need the following notation.

LetS be an arbitrary set. AnS-labeled graphG is a graph together with a functionh : V (G) →
S. A rooted graph is a graph in which a special vertex denoted byo and called root is distinguished.

Assume thatr, d ∈ N. We denote byN (r, d, S) the set of isomorphism types of rooted,S-labeled

graphs of maximum degreed such that each vertex is of distance at mostr from the root. (Isomor-

phisms are assumed to be root and label preserving.)

A rule of radiusr and degreed is a functionf : N (r, d, S) → S2 whereS2 is some set. Assume

thatG is a graph of maximal degree at mostd and thath : V (G) → S is some labeling. Then we

can usef to produce a new labelingh2 : V (G) → S2 such thath2(v) is equal to the value off on

theS-labeled rooted neighborhood of radiusr of v where the root is placed onv. We denote the

labelingh2 by hf .

8



Definition 4.1 A randomized local algorithm of radiusr and degreed is given by a measurable

functionf : N (r, d,Ω) → L (called rule of the algorithm) whereΩ is a probability space andL is

a measure space. The input of the algorithm is a graph of maximal degree at mostd and the output

is the random labelinghf whereh is a labeling ofG with independent, random elements fromΩ.

Note that local algorithms can also be computed on infinite graphs if they have bounded maxi-

mum degree. The next example produces independent sets in graphs [3].

Let f : N (1, d, [0, 1]) → {0, 1} be the rule such that the value off is 1 if and only if the

label on the root is the smallest among all labels. It is clearthat if h : V (G) → [0, 1] is an

arbitrary injective function then the support ofhf is an independent set inG. Since random labelings

h : V (G) → [0, 1] are injective with probability1 we have that the local algorithm with rulef

produces a random independent set with probability1.

In the rest of this section we focus on the case whenG is ad-regular graph with girth more than

twice the radius off . In this case it is enough to definef onΩ-labeled versions of the neighborhood

Sr of the root inT ∗
d of radiusr. In other words we can assume thatf is a function of the form

f : ΩSr → L that is invariant under the automorphisms ofSr.

We can also representf as a functiong : Ωd → L on the vertex set of the Bernoulli graphingBd.

Let φ : [0, 1] → Ω be an arbitrary measure preserving map andψ : Ωd → ΩSr be the map defined

by deleting the vertices outsideSr and taking theφ images of the original labels. Letg = f ◦ ψ.

It is clear that the processµg onTd is the same as the process produced by the local algorithm on

Td with rule f . On the other hand ifG is anyd-regular graph of girth at least2(k + r + 1) then

the distribution of the local algorithm in any ball of radiusk is the same as its distribution onTd

in a similar ball. It follows for example that to analyze local properties (such as correlation decay)

of local algorithms in the large-girth setting, it is enoughto consider the algorithm on the treeTd.

This creates the connection between Bernoulli graphings and local algorithms. As a corollary of

Theorem 3.1 and Theorem 2.2 we obtain the following.

Theorem 4.1 Assume thatr, k ∈ N and thatf ∈ L2(ΩSr) is invariant underAut(Sr). LetG be

a d-regular graph of girth at leastk + 2r + 2. If v, w are two vertices of distancek in G then the

absolute value of the correlation of the values onv andw in the local algorithm given byf is at

most(k + 1− 2k/d)(d− 1)−k/2.

5 Characterization of correlation sequences

Our goal is to give an algebraic characterization (up to closure with respect to pointwise conver-

gence) for possible correlation sequences in factor of i.i.d processes. We return to the proof of

9



Theorem 3.1. Let us apply (3) tof andG/(2
√
d− 1) in the calculation. We obtain that the value of

(4) for two vertices of distancek is equal to
∫

[−1,1]

1
√

d(d− 1)k−1
qk dσf

whereσf is the spectral measure off with respect toG/(2
√
d− 1). The next theorem follows

immediately from Corollary 2.7.

Theorem 5.1 LetXd denote the set of all sequences withxk =
∫

d−1/2(d− 1)(1−k)/2qk dη where

η is a probability measure on[−1, 1]. Then the closure of possible correlation sequences in factor

of i.i.d processes is equal toXd.

We finish with an example for a local algorithm on the treeTd. We start with the intitial i.i.d

labeling{Xu}u∈Td
whereXu = 1 with probability1/2 andXu = −1 otherwise. Forr ≥ 0 denote

by Sr(v) the neighborhood of radiusr aroundv ∈ Td. Note that

|Sr(v)| = 1 + d
(d− 1)r − 1

d− 2

for r ≥ 1.

For everyw ∈ Td we define the random variableYw = 1√
|Sr(w)|

∑

u∈Sr(w)Xu. It is clear that

{Yw}w∈Td
is the output of a local algorithm. Furthermore we have that

corr(µf (v), µf (w)) =
1

|Sr(v)|
cov

(

∑

u∈Sr(v)

Xu,
∑

u∈Sr(w)

Xu

)

=
1

|Sr(v)|
var

(

∑

u∈Sr(v)∩Sr(w)

Xu

)

=
|Sr(v) ∩ Sr(w)|

|Sr(v)|
=
d(d− 1)r−k/2 − 2

d(d− 1)r − 2

if k is even andk < 2r. For the last equation we use the fact thatSr(v) ∩ Sr(w) is equal to

Sr−k/2(z) wherez is the middle point of of the path connectingv andw. Now, asr goes to infinity,

the lower bound for the correlation converges to(d− 1)−k/2.

For oddk with k ≤ 2r + 1 we have two points in the middle and so

|Sr(v) ∩ Sr(w)|
|Sr(v)|

=
2[1 + (d− 1) + . . .+ (d− 1)r−(k+1)/2]

|Sr(v)|
= 2

(d− 1)r−(k−1)/2 − 1

d(d− 1)r − 2
.

This converges to2d(d− 1)−
k−1

2 asr → ∞.

This shows that the correlation decay is close to be optimal in this simple example.

6 Semi-definite functions, spherical representations and Gaus-

sian processes

The goal of this section is to show how correlation sequencesof invariant processes onTd can

be viewed from a representation theoretic perspective. Moreover, every such correlation sequence
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produces a unique invariant Gaussian process onTd which is interesting on its own right.

Let Pd denote the set of all positive semi-definite functionsp : Td × Td → [−1, 1] such that

p(v, v) = 1 and the value ofp(v, w) depends only on the distance ofv andw for every pairv, w ∈
Td. It is clear that the correlation structure of an arbitrary (real valued) invariant process onTd is

an element inPd. On the other hand any element ofPd defines a symmetric representation ofTd

in some real Hilbert space. To be more precise, there is a function φ from Td to some separable

Hilbert spaceH such thatp(v, w) = (φ(v), φ(w)) and that{φ(v)|v ∈ Td} generatesH. It is clear

that φ is unique up to orthogonal transformations and that there isan orthogonal representation

ψ : Aut(Td) → O(H) with the property thatφ(α(v)) = ψ(α)(φ(v)) for everyv ∈ Td andα ∈
Aut(Td). In particularφ(o) is fixed underAut(T ∗

d ) whereo is any distinguished root inTd. Such

representations ofAut(Td) are calledsphericalin the literature. In other words, a representation

of Aut(Td) is spherical if the subgroupAut(T ∗
d ) has a fixed vectorx of length1 such that the

images ofx underAut(Td) generate the underlying Hilbert space. It is clear that eachspherical

representationψ of Aut(Td) gives rise to an element inPd by p(v, w) = (ψ(αv)(x), ψ(αw)(x))

whereαv(o) = v, αw(o) = w. (The spherical property guarantees thatp is well-defined.) This

construction yields a one to one correspondence between spherical representations and elements in

Pd.

To complete the picture, for everyp ∈ Pd we construct an invariant process with correlation

structurep. The most natural choice is an infinite dimensional Gaussiandistributionγp onRTd with

correlation structurep. The uniqueness ofγp guarantees that it is an invariant underAut(Td). If µ

is any other invariant process with the same correlation structurep then we can also obtainγp by

the central limit theorem in the following way. Assume thatµ is already normalized in a way that

it has zero expectation and variance (at each vertex) equal to 1. Let [µ]n denote the distibution of

q1 + q2 + · · ·+ qn where eachqi is an independent element ofR
Td chosen with distributionµ. It is

clear that the weak limit ofn−1/2[µ]n is a Gaussian process with correlation structurep and thus it

is equal toγp. If in particularµ is a factor of i.i.d process then so is[µ]n for everyn. It follows that

in this caseγp is a weak limit of factor of i.i.d processes. Therefore we obtain the following.

Corollary 6.1 A Gaussian process is a limit of factor of i.i.d. processes ifand only if its correlation

decay is as in Theorem 5.1.
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