Generalized line graphs: Cartesian products and complexity of recognition *

Aparna Lakshmanan S.

Csilla Bujtás Department of Computer Science and Technology

University of Pannonia

Department of Mathematics St. Xavier's College for Women Aluva, India

aparnaren@gmail.com

Veszprém, Hungary bujtas@dcs.uni-pannon.hu

Zsolt Tuza

Alfréd Rényi Institute of Mathematics Hungarian Academy of Sciences Budapest, Hungary

tuza@dcs.uni-pannon.hu

Submitted: Dec 21, 2014; Accepted: Aug 20, 2015; Published: Sep 11, 2015 Mathematics Subject Classifications: 05C75 (primary), 05C62, 68Q17

Abstract

Putting the concept of line graph in a more general setting, for a positive integer k the k-line graph $L_k(G)$ of a graph G has the K_k -subgraphs of G as its vertices, and two vertices of $L_k(G)$ are adjacent if the corresponding copies of K_k in G share k-1 vertices. Then, 2-line graph is just the line graph in usual sense, whilst 3-line graph is also known as triangle graph. The k-anti-Gallai graph $\Delta_k(G)$ of G is a specified subgraph of $L_k(G)$ in which two vertices are adjacent if the corresponding two K_k -subgraphs are contained in a common K_{k+1} -subgraph in G.

We give a unified characterization for nontrivial connected graphs G and F such that the Cartesian product $G \square F$ is a k-line graph. In particular for k = 3, this answers the question of Bagga (2004), yielding the necessary and sufficient condition that G is the line graph of a triangle-free graph and F is a complete graph (or vice versa). We show that for any $k \ge 3$, the k-line graph of a connected graph G is isomorphic to the line graph of G if and only if $G = K_{k+2}$. Furthermore, we prove that the recognition problem of k-line graphs and that of k-anti-Gallai graphs are NP-complete for each $k \ge 3$.

Keywords: Triangle graph, k-line graph, anti-Gallai graph, Cartesian product graph.

^{*}Partially supported by University Grants Commission, India under the grant MRP(S)-0843/13-14/KLMG043/UGC-SWRO, Hungarian Scientific Research Fund, OTKA grant 81493 and Hungarian State and the European Union under the grant TAMOP-4.2.2.A-11/1/ KONV-2012-0072.

1 Introduction

The line graph L(G) of a graph G has vertices representing the edges $(K_2$ -subgraphs) of G and two vertices in the line graph are adjacent if and only if the corresponding edges share a vertex (a K_1 subgraph) in G. The analogous notion in the dimension higher by one is the triangle graph $\mathcal{T}(G)$ of G whose vertices correspond to the triangles $(K_3$ -subgraphs) of G and the vertices representing triangles having a common edge $(K_2$ -subgraph) are adjacent. The natural generalization gives the notion of k-line graph, which together with its specified subgraph, the so-called k-anti-Gallai graph is the main subject of this paper.

1.1 Terminology

All graphs considered here are simple and undirected. The vertex set and the edge set of a graph G are denoted by V(G) and E(G), respectively. Throughout this paper, a k-clique of G will be meant as a complete $K_k \subseteq G$ subgraph. That is, *inclusion-wise maximality* is not required. For the sake of simplicity, if the meaning is clear from the context, we do not distinguish between a clique and its vertex set in notation (e.g., the vertex set of a clique C will also be denoted by C instead of V(C). The clique number $\omega(G)$ is the maximum order of a clique contained in G. The Cartesian product of two graphs G and F, denoted by $G \Box F$, has the ordered pairs (u, v) as its vertices where $u \in V(G)$ and $v \in V(F)$, and two vertices (u, v) and (u', v') are adjacent if u = u' and v is adjacent to v' or v = v' and u is adjacent to u'. If $v_i \in V(F)$, the copy G_i is the subgraph of $G \square F$ induced by the vertex set $V(G_i) = \{(u_j, v_i) : u_j \in V(G)\}$. The copy F_j for $u_j \in V(G)$ is meant similarly. The *join* $G \vee F$ of two vertex-disjoint graphs is the graph whose vertex set is $V(G) \cup V(F)$ and two vertices u and v of $G \vee F$ are adjacent if and only if either $uv \in E(G) \cup E(F)$, or $u \in V(G)$ and $v \in V(F)$. The diamond is a 4-cycle with exactly one chord (or equivalently, the graph $K_4 - e$ obtained from the complete graph K_4 by deleting exactly one edge). Given a graph F, a graph G is said to be F-free if it contains no *induced* subgraph isomorphic to F.

Next, we define the two main concepts studied in this paper. For illustration, see Figure 1.

Definition 1. For an integer $k \ge 1$, the *k*-line graph $L_k(G)$ of a graph G has vertices representing the *k*-cliques of G, and two vertices in $L_k(G)$ are adjacent if and only if the represented *k*-cliques of G intersect in a (k-1)-clique.

For k = 1 the definition yields $L_1(G) = K_n$ for every graph G of order n. Note that even the K_2 -free (edgeless) graph with n vertices has the complete graph K_n as its 1-line graph. The 2-line graph $L_2(G)$ is the line graph of G in the usual sense. The 3-line graph is the triangle graph $\mathcal{T}(G)$.

Figure 1: A graph and its 3-line graph and 3-anti-Gallai graph.

Definition 2. For an integer $k \ge 1$, the *k*-anti-Gallai graph $\Delta_k(G)$ of a graph G has one vertex for each *k*-clique of G, and two vertices in $\Delta_k(G)$ are adjacent if and only if the union of the two *k*-cliques represented by them span a (k + 1)-clique in G.

Hence, $\Delta_k(G)$ is a subgraph of $L_k(G)$. For every graph G, its 1-anti-Gallai graph is G itself, whilst 2-anti-Gallai graph means anti-Gallai graph (denoted by $\Delta(G)$) in the usual sense. If a vertex c_i of $L_k(G)$ or $\Delta_k(G)$ represents the k-clique C_i of G, we say that c_i is the image of C_i and conversely, C_i is the preimage of c_i . In notation, if the context is clear, the preimage of c_i is denoted either by C_i or by $C(c_i)$. A graph G is called k-line graph or k-anti-Gallai graph if there exists a graph G' such that $L_k(G') = G$ or $\Delta_k(G') = G$ holds, respectively.

1.2 Results

The line graph operator is a classical subject in graph theory. From the rich literature here we mention only the forbidden subgraph characterization given by Beineke in 1970 [6]. The notion of the triangle graph and that of the k-line graph were introduced several times independently by different motivations, and studied from different points of view (see for example [5, 7, 8, 9, 12, 15, 16, 18]). For earlier results on anti-Gallai and k-anti-Gallai graphs we refer the reader to the papers [4, 10, 13] and the book [15]. As relates the most recent works, Anand *et al.* answered a question of Le by showing that the recognition problem of anti-Gallai graphs is NP-complete [2], moreover an application of the anti-Gallai graphs to automate the discovery of ambiguous words is described in [1].

In this paper we study three related topics. The first one concerns a question of Bagga [5] asking for a characterization of graphs G for which $G \square K_n$ is a triangle graph. As a complete solution in a much more general setting, in Section 2 we give a necessary and sufficient condition for a Cartesian product $G \square F$ to be a 3-line graph. Then, in Section 3, this result is generalized by establishing a unified characterization for $G \square F$ to be a k-line graph, for every $k \ge 2$.

We also study the algorithmic hardness of recognition problems. Due to the forbidden subgraph characterization in [6], the 2-line graphs can be recognized in polynomial time. In contrast to this, we prove in Section 4 that the analogous problem is NP-complete for the triangle graphs. Then, in Section 5 the same hardness is established for k-line graphs for each fixed $k \ge 4$. Via some lemmas and a constructive reduction, we obtain that recognizing k-anti-Gallai graphs is also NP-complete for each $k \ge 3$. The latter result solves a problem raised by Anand *et al.* [2], extending their theorem from k = 2 to larger values of k.

In Section 6, graphs with $L_k(G) \cong L(G)$ are identified for each $k \ge 3$. Finally, in the concluding section we put some remarks and formalize a problem which remains open.

1.3 Some basic facts

Here we list some basic statements, which can be found in [15] or can be proved directly from the definitions.

Observation 1 ([15]). Every k-line graph is $K_{1,k+1}$ -free.

Observation 2. Every clique K_n of a k-line graph $L_k(G)$ either corresponds to n kcliques of G sharing a fixed (k-1)-clique, or corresponds to n k-cliques contained in a common K_{k+1} . In particular, every clique of order n in a triangle graph $\mathcal{T}(G)$ corresponds to n triangles of G which are either incident with a fixed edge, or contained in a common K_4 .

Proof. Let c_1, \ldots, c_n be the vertices of an *n*-clique K_n of $L_k(G)$ and C_1, \ldots, C_n be the corresponding *k*-cliques in *G*. Moreover, let $v_1, \ldots, v_k \in V(G)$ be the vertices which induce C_1 . Since c_2 is adjacent to c_1 in $L_k(G)$, the *k*-clique C_2 has precisely one vertex outside C_1 . We assume without loss of generality that $C_2 = \{u, v_2, v_3, \ldots, v_k\}$. Now, suppose that there exists a vertex in K_n , say c_3 , such that its preimage C_3 does not contain some vertex from the set $C_1 \cap C_2 = \{v_2, v_3, \ldots, v_k\}$; say, v_k is omitted. In this case, since c_3 is adjacent to both c_1 and c_2 , the *k*-clique C_3 must be induced by $\{u, v_1, v_2, \ldots, v_{k-1}\}$. Then, for any further vertex c_i , the preimage must be of the form $C_i = \{u, v_1, v_2, \ldots, v_k\} \setminus \{v_{j_i}\}$ for some $2 \leq j_i \leq k - 1$. This proves that if not all the intersections $C_i \cap C_j$ are the same, then each of the *k*-cliques C_1, \ldots, C_n is contained in the (k + 1)-clique $\{u, v_1, v_2, \ldots, v_k\}$.

Observation 3. If G is the k-line graph of a K_{k+1} -free graph, then for every k' > k, G is also the k'-line graph of a $K_{k'+1}$ -free graph.

Proof. Let $G = L_k(H)$ for a K_{k+1} -free graph H. Consider the join $H' = H \vee K_{k'-k}$. Since H is K_{k+1} -free, H' is $K_{k'+1}$ -free and every k'-clique of H' originates from a k-clique of H extended by the k' - k new vertices. Additionally, two k'-cliques of H' intersect in a $K_{k'-1}$ if and only if the corresponding k-cliques of H meet in a K_{k-1} . Consequently, $L_{k'}(H') = L_k(H) = G$.

2 Cartesian product and triangle graphs

In this section we solve a problem posed in [5] by Bagga.

Theorem 4. The Cartesian product $G \square F$ of two nontrivial connected graphs is a triangle graph if and only if F is a complete graph and G is the line graph of a triangle-free graph (or vice versa).

Before proving the theorem we verify a lemma.

Lemma 5. If G contains a diamond as an induced subgraph then $G \square K_n$ is not a triangle graph for $n \ge 2$.

Proof. To prove the lemma we apply the following result from [5].

(*) If H is a triangle graph with $K_4 - e$ as an induced subgraph, then there exists a vertex x in H such that x is adjacent to three vertices of one triangle of $K_4 - e$ and nonadjacent to the fourth vertex.

Let G be a graph which contains a diamond induced by the vertices u_1, u_2, u_3 and u_4 , where (u_1, u_4) is the non-adjacent vertex pair. Assume for a contradiction that there exists a graph H whose triangle graph is $G \square K_n$ for some $n \ge 2$. Let $v_1 \in V(K_n)$. Then, $(u_1, v_1), (u_2, v_1), (u_3, v_1), (u_4, v_1)$ is an induced diamond in $G \square K_n$. Since $G \square K_n$ is a triangle graph, by (*), it must contain a vertex (u_5, v_1) which is adjacent to all vertices of one of the triangles in the diamond and not adjacent to the fourth vertex. Let (u_4, v_1) be the vertex which is not adjacent to (u_5, v_1) . Let t_i be the triangle in H corresponding to the vertex (u_i, v_1) in $G \square K_n$ for $i = 1, \ldots, 5$. Then t_1, t_2, t_3 and t_5 must be the triangles of a K_4 and t_4 is a triangle which shares the edge which is common to the triangles t_2 and t_3 . Let $v_2 \in V(K_n) \setminus \{v_1\}$ (it exists, since $n \ge 2$). Then (u_1, v_2) is adjacent to (u_i, v_1) only for i = 1. Therefore, the triangle in H corresponding to the vertex (u_1, v_2) must share an edge with t_1 and not with any other t_i for $i = 2, \ldots, 5$. But, each edge of t_1 is shared with at least one among t_2, t_3 and t_5 , which gives a contradiction. Therefore, $G \square K_n$ is not a triangle graph.

Proof of Theorem 4. If both G and F are non-complete graphs, then $G \square F$ contains an induced $K_{1,4} \subset P_3 \square P_3$ and hence, by Observation 1, it is not a triangle graph. So we can assume that $F = K_n$ for some $n \ge 2$.

If G is not a line graph, then by the theorem of Beineke [6], G contains one of the nine forbidden subgraphs as an induced subgraph (see Figure 2). If it is $K_{1,3}$, then $G \square K_n$ contains an induced $K_{1,4}$, which is forbidden for triangle graphs. In the case of any of the remaining eight graphs, G contains an induced diamond and hence, by Lemma 5, $G \square K_n$ cannot be a triangle graph.

The electronic journal of combinatorics 22(3) (2015), #P3.33

Figure 2: Forbidden subgraphs for line graph.

Let G be the line graph of a graph H which contains a triangle. Let $T = (u_1, u_2, u_3)$ be a triangle in H. If $H \neq K_3$, there exists a vertex u_4 adjacent to some u_i in T (not necessarily to u_i alone). But, then G = L(H) contains a diamond and hence by Lemma 5, $G \square K_n$ is not a triangle graph. If H is K_3 itself, then $H = L(K_{1,3})$ also.

Conversely, let G be the line graph of a triangle-free graph H. Then $\mathcal{T}(H \vee \overline{K_n}) = G \square K_n$, completing the proof of the theorem. \square

Concerning edgeless graphs, note that $G \square K_1 \cong G$, and hence the characterization problem of graphs G such that $G \square K_1$ is a triangle graph is equivalent to characterizing triangle graphs.

3 Cartesian product and k-line graphs

As proved in Section 2, if both G and F are nontrivial connected graphs, $G \square F$ is a triangle graph if and only if one of G and F is a line graph of a K_3 -free graph and the other one is a complete graph. We will see that a direct analogue of this theorem is not valid for k-line graphs in general. For instance, one can observe that the grid graph $P_n \square P_m$ is a k-line graph for every n, m and $k \ge 4$.

Our main result in this section is the following theorem, which gives a necessary and sufficient condition for a product $G \square F$ of non-edgeless graphs to be a k-line graph. Recall that k-line graphs were defined for k = 1, too.

Theorem 6. For every $k \ge 2$, the product $G \square F$ of two non-edgeless connected graphs is a k-line graph if and only if there exist positive integers k_1 and k_2 such that G is the k_1 -line graph of a K_{k_1+1} -free graph, F is the k_2 -line graph of a K_{k_2+1} -free graph and $k_1 + k_2 \le k$ holds. If F is a complete graph then it is the k_2 -line graph of a K_{k_2+1} -free graph for every $k_2 \ge 1$. (For example, $K_n = L_{k_2}(K_{k_2-1} \lor nK_1)$ for all $k_2 \ge 1$, where the degenerate case $k_2 = 1$ simply means that $K_n = L_1(nK_1)$.) Hence, in this particular case of Theorem 6, the existence of an appropriate $k_1 \le k-1$ is required. By Observation 3, this is equivalent to the claim that G is the (k-1)-line graph of a K_k -free graph. Thus, we obtain:

Corollary 7. For every two integers $n \ge 2$ and $k \ge 2$, the product $G \square K_n$ is a k-line graph if and only if G is the (k-1)-line graph of a K_k -free graph.

Theorem 6 will be proved at the end of this section. First we need some lemmas.

Lemma 8.

- (i) If H contains a K_{k+1} subgraph, then for the corresponding (k + 1)-clique C of $L_k(H)$, each vertex $c \in V(L_k(H)) \setminus C$ is either adjacent to none of the vertices of C or c is adjacent to exactly two vertices of C.
- (ii) Assume that $k \ge 2$ and no component of the k-line graph $L_k(H)$ is isomorphic to K_{k+1} . Then, H is K_{k+1} -free if and only if $L_k(H)$ is diamond-free.

Proof. First, assume that H contains a K_{k+1} , which is induced by the vertex set $V = \{v_1, \ldots, v_{k+1}\} \subseteq V(H)$, and consider the corresponding (k + 1)-clique C in $L_k(H)$ whose vertices c_1, \ldots, c_{k+1} represent the k-subsets of V. If there is a further vertex c^* adjacent to at least one vertex of C, then in H the k-clique C^* , which is the preimage of c^* , intersects V in exactly k - 1 vertices. Without loss of generality, we assume that for every c_i the preimage is $C_i = V \setminus \{v_i\}$, moreover that $C^* \cap V = \{v_1, \ldots, v_{k-1}\}$. Then, $|C^* \cap C_k| = |C^* \cap C_{k+1}| = k - 1$, but $|C^* \cap C_i| = k - 2$ holds for every $1 \leq i \leq k - 1$. Therefore, c^* is adjacent to exactly two vertices of C. This verifies (i). Concerning (ii), note that if the (k + 1)-clique C is not a component of $L_k(H)$ then such a c^* surely exists, and if $k \geq 2$, vertices c_1, c_k, c_{k+1}, c^* induce a diamond in $L_k(H)$.

For the other direction of (ii), assume that H is K_{k+1} -free, and in $L_k(H)$ vertices c_1, c_2, c_3, c_4 induce a diamond where c_2 and c_4 are nonadjacent. By Observation 2, the preimages C_1, C_2, C_3 of c_1, c_2, c_3 are three different k-cliques of H sharing a fixed (k-1)-clique. Then, $|C_1 \cap C_2 \cap C_3| = k - 1$ and similarly, $|C_1 \cap C_3 \cap C_4| = k - 1$ hold. By the adjacency of c_1 and $c_3, |C_1 \cap C_3| = k - 1$ is valid as well. Hence, the vertex sets $C_1 \cap C_2 \cap C_3$ and $C_1 \cap C_3 \cap C_4$ must be the same, contradicting the non-adjacency of c_2 and c_4 . Thus, we conclude that for a K_{k+1} -free H, the k-line graph contains no induced diamond.

Lemma 9. If the Cartesian product $G \square F$ of two non-edgeless graphs is the k-line graph of H, then H is K_{k+1} -free.

Proof. Suppose for a contradiction that H contains a complete subgraph X induced by vertices x_1, \ldots, x_{k+1} . Then, in $L_k(H) = G \square F$ the vertices c_1, \ldots, c_{k+1} , representing the k-cliques $C_1, \ldots, C_{k+1} \subset X$, form a complete subgraph. Hence, all these vertices c_1, \ldots, c_{k+1} must belong either to the same copy of G or to the same copy of F. Assume without loss of generality that $c_i = (v_1, u_i)$ for every $1 \le i \le k+1$, and let v_j be a neighbor of v_1 in G. Then, the vertex (v_j, u_1) is adjacent to only one vertex (namely, to (v_1, u_1)) from the (k+1)-clique. This contradicts Lemma 8(i) and hence, H is K_{k+1} -free. \Box

Lemma 10. If G is the k-line graph of H, and G contains an induced cycle $c_1c_2c_3c_4$, then the corresponding k-cliques C_1, C_2, C_3, C_4 of H satisfy $C_2 \setminus C_1 = C_3 \setminus C_4$.

Proof. As the 1-line graph $L_1(H)$ is a complete graph, it contains no induced four-cycle. Hence, we can assume that $k \ge 2$. Let $C_1 \setminus C_2 = \{v_1\}, C_2 \setminus C_1 = \{v_2\}, C_1 \setminus C_4 = \{z_1\}$ and $C_4 \setminus C_1 = \{z_2\}$. We observe that $v_1 \ne z_1$ and $v_2 \ne z_2$, as any $v_i = z_i$ would mean the adjacency of c_2 and c_4 . Now, suppose for a contradiction that $v_2 \notin C_3$. Since c_1c_2 and c_2c_3 are edges in G and $v_2 \in C_2$, but $v_2 \notin C_1$ and $v_2 \in C_3$, it follows that, $C_3 \cap C_2 =$ $C_2 \setminus \{v_2\} = C_1 \cap C_2$. This implies $|C_1 \cap C_3| = k - 1$, which contradicts $c_1c_3 \notin E(G)$. Therefore, $v_2 \in C_3$ holds and since $v_2 \notin C_4$, the desired equality $C_3 \setminus C_4 = \{v_2\} = C_2 \setminus C_1$ follows.

In view of Lemma 10, we can give a structural characterization for graphs whose kline graph is the Cartesian product $G \square F$ of two non-edgeless graphs. We will use the following notions.

If $L_k(H) = G \Box F$, consider a copy G_i and the k-cliques of H which are represented by the vertices of G_i . A vertex contained in all these k-cliques is called a *universal vertex*, otherwise it is *non-universal* (with respect to G_i). Formally, let

$$U_i^G(H) = \bigcap \{ C(v_j, u_i) : v_j \in V(G) \}, \text{ and } X_i^G(H) = \bigcup \{ C(v_j, u_i) : v_j \in V(G) \} \setminus U_i^G(H).$$

Analogously, the sets U_i^F and X_i^F of universal and non-universal vertices with respect to the copy F_i are also introduced.

Lemma 11. Let G and F be two connected graphs and let $L_k(H) = G \Box F$.

- (i) For every two copies G_i and G_j of G the non-universal vertices are the same: $X_i^G(H) = X_j^G(H).$
- (ii) Each copy G_i is the k-line graph of the subgraph induced by $U_i^G(H) \cup X_i^G(H)$.

Proof. First assume that u_i and u_j are adjacent vertices in F. For every two vertices v_a and v_b of G there is a path between (v_a, u_i) and (v_b, u_i) in G_i . This path together with the corresponding vertices of G_j induces a chain of 4-cycles. Hence, the repeated application of Lemma 10 implies that

$$C(v_a, u_i) \setminus C(v_a, u_j) = C(v_b, u_i) \setminus C(v_b, u_j) \text{ and } C(v_a, u_j) \setminus C(v_a, u_i) = C(v_b, u_j) \setminus C(v_b, u_i)$$

for every two vertices v_a and v_b of G. As follows, there are fixed vertices $w_{i,j} \in U_i^G(H)$ and $w_{j,i} \in U_j^G(H)$ such that the preimage of any vertex of copy G_j can be obtained from

The electronic journal of combinatorics 22(3) (2015), #P3.33

the preimage of the corresponding vertex of copy G_i by replacing $w_{i,j}$ with $w_{j,i}$ in the k-clique. Thus, $U_j^G(H) = (U_i^G(H) \setminus \{w_{i,j}\}) \cup \{w_{j,i}\}$ and for the non-universal vertices $X_i^G(H) = X_j^G(H)$ holds. Since F is connected, the latter equality is valid for nonadjacent vertices $u_i, u_j \in V(F)$ as well. This verifies (i).

To prove (*ii*), observe that $U_i^G(H) \neq U_j^G(H)$ and $|U_i^G(H)| = |U_j^G(H)|$ for every pair i, j. Therefore, neither $U_i^G(H) \setminus U_j^G(H)$ nor $U_j^G(H) \setminus U_i^G(H)$ is empty. Consequently, every k-clique in the subgraph induced by $U_i^G(H) \cup X_i^G(H)$ has its image in copy G_i . This proves (*ii*).

Proof of Theorem 6. To prove sufficiency, let $G = L_{k_1}(G')$ and $F = L_{k_2}(F')$ where G' is K_{k_1+1} -free, F' is K_{k_2+1} -free, and $k_1 + k_2 \leq k$. Then, the join $H' = G' \vee F'$ is $K_{k_1+k_2+1}$ -free and every $(k_1 + k_2)$ -clique of H' originates from a k_1 -clique of G' and from a k_2 -clique of F'. Thus, the vertices of $L_{k_1+k_2}(H')$ correspond to the pairs (v_i, u_j) with $v_i \in V(G)$ and $u_j \in V(F)$. Moreover two vertices (v_i, u_j) and (v_k, u_ℓ) in $L_{k_1+k_2}(H')$ are adjacent if and only if

- either $v_i = v_k$ and the k_2 -cliques $C(u_j)$ and $C(u_\ell)$ share a $(k_2 1)$ -clique in F', that is $u_j u_\ell \in E(F)$,
- or $u_j = u_\ell$ and the k_1 -cliques $C(v_i)$ and $C(v_k)$ share a $(k_1 1)$ -clique in G', that is $v_i v_k \in E(G)$.

Therefore, $L_{k_1+k_2}(H') = G \square F$, and by Observation 3, $L_k(H' \lor K_{k-k_1-k_2}) = G \square F$ also holds for every $k > k_1 + k_2$.

To prove necessity, suppose that $H = G \square F$ is the k-line graph of H'. By Lemma 9, H' is K_{k+1} -free. Consider the sets $A = U_1^G(H')$ and $B = U_1^F(H')$ of universal vertices in copies G_1 and F_1 .

<u>Claim A.</u> G is the (k - |A|)-line graph of a $K_{k-|A|+1}$ -free graph and F is the (k - |B|)-line graph of a $K_{k-|B|+1}$ -free graph.

Proof. By Lemma 11(*ii*), $G_1 \cong G$ is the k-line graph of the subgraph $G^* \subset H'$ induced by $A \cup X_1^G(H')$. If the universal vertices of G^* are deleted, we obtain $G' = G^* - A$. While constructing G' from G^* , every k-clique is shrunk into a (k - |A|)-clique and two cliques share exactly k - |A| - 1 vertices if and only if the corresponding vertices of G are adjacent. This proves that $G = L_{k-|A|}(G')$. It is clear that G' is $K_{k-|A|+1}$ -free. The analogous argument for F yields $F' = F^* - B$ such that $F = L_{k-|B|}(F')$ and F' is $K_{k-|B|+1}$ -free.

<u>Claim B.</u> $|A| + |B| \ge k$.

Proof. Assume to the contrary that |A| + |B| < k. Then, there exists a vertex $z \in C(v_1, u_1) \setminus (A \cup B)$. As the graph $G_1 \cong G$ is connected and z cannot be contained in all preimages $C(v_\ell, u_1)$, there exist adjacent vertices (v_i, u_1) and (v_j, u_1) such that $z \in C(v_i, u_1)$ and $z \notin C(v_j, u_1)$. This means $C(v_i, u_1) \setminus C(v_j, u_1) = \{z\}$. Similarly for F_1 , there exist indices m and n such that $C(v_1, u_m) \setminus C(v_1, u_n) = \{z\}$ holds. By Lemma

10, for the 4-cycle induced by $\{(v_i, u_n), (v_i, u_m), (v_j, u_m), (v_j, u_n)\}$ the following equalities hold:

$$C(v_1, u_m) \setminus C(v_1, u_n) = C(v_i, u_m) \setminus C(v_i, u_n) = \{z\},\$$

$$C(v_i, u_1) \setminus C(v_j, u_1) = C(v_i, u_n) \setminus C(v_j, u_n) = \{z\}.$$

They give a contradiction on the question whether z is in $C(v_i, u_n)$ or not. This proves $|A| + |B| \ge k$.

Denoting $k_1 = k - |A|$ and $k_2 = k - |B|$, $k_1 + k_2 \leq k$ follows by Claim B. Then, Claim A proves the necessity of the condition given for G and F in the theorem.

The proof of Theorem 6 also verifies the following statement.

Corollary 12. If G is K_{k_1+1} -free and F is K_{k_2+1} -free, then

$$L_{k_1}(G) \square L_{k_2}(F) \cong L_{k_1+k_2}(G \lor F).$$

4 NP-completeness of recognizing triangle graphs

As is well-known, the line graphs can be recognized in polynomial time due to the forbidden subgraph characterization by Beineke [6]. Also linear-time algorithms were designed for solving this problem [14, 17]. Here we prove that triangle graphs (that is, 3-line graphs) are hard to recognize.

Theorem 13. The following problems are NP-complete:

- (i) Recognizing triangle graphs.
- (ii) Deciding whether a given graph is the triangle graph of a K_4 -free graph.

Moreover, both problems remain NP-complete on the class of connected graphs.

Before proving Theorem 13, we verify two lemmas which give necessary conditions for graphs to be anti-Gallai or triangle graphs of some K_4 -free graph, respectively.

Lemma 14. Assume that F is a connected non-trivial graph and F is the anti-Gallai graph of F'. Then F' is K_4 -free if and only if every edge of F is contained in exactly one triangle, or equivalently

(*) every maximal clique of F is a triangle and any two triangles share at most one vertex.

Proof. If F' contains a K_4 subgraph then $F = \triangle(F')$ contains an induced $K_6 - 3K_2$ and (\star) does not hold. If F' is K_4 -free, any three pairwise adjacent vertices in $\triangle(F')$ correspond to three edges of F' which form a triangle. Hence no edge of $\triangle(F')$ belongs to more than one triangle. Additionally, by definition, in an anti-Gallai graph every edge corresponds to two preimage-edges of a triangle; hence, every edge of $\triangle(F')$ is contained in a K_3 . Since F is assumed to be connected and non-edgeless, it contains no isolated vertices. This proves that every maximal clique of F is a K_3 and any two triangles have at most one vertex in common. **Lemma 15.** Assume that G is a connected graph which is not isomorphic to K_4 , moreover $G = \mathcal{T}(G')$. Then G' is K_4 -free if and only if

 $(\star\star)$ each vertex of G is contained in at most three maximal cliques and these cliques are pairwise edge-disjoint.

Proof. In this proof, the vertex of G whose preimage is a triangle abc in G' will be denoted by t_{abc} .

First suppose that G' contains a K_4 induced by the vertices x, y, z, u. Clearly, the four triangles of the K_4 correspond to a 4-clique in $\mathcal{T}(G')$. By our condition $\mathcal{T}(G')$ is not a 4-clique, hence there exists a triangle in G', containing exactly two vertices from x, y, z, u. Say, this triangle is xyw. In $\mathcal{T}(G')$, the vertex originated from xyz is contained in both cliques induced by the vertex sets $\{t_{xyz}, t_{xyu}, t_{yzu}, t_{xzu}\}$ and $\{t_{xyz}, t_{xyu}, t_{xyw}\}$, respectively. Maybe the second clique is not maximal, but since there is no edge between t_{yzu} and t_{xyw} , there are two different maximal cliques with the common edge $t_{xyz}t_{xyu}$. This shows that $(\star\star)$ does not hold.

For the converse, suppose that G' is K_4 -free. Then by Observation 2, each clique of $\mathcal{T}(G')$ corresponds to triangles sharing a fixed edge in G'. Thus, a vertex $t_{xyz} \in V(\mathcal{T}(G))$ can be contained only in those maximal cliques which correspond to the three edges of its preimage-triangle (one or two of these cliques might be missing) and any two of these maximal cliques have t_{xyz} as the only common vertex, hence $(\star\star)$ holds.

While proving that the recognition problem of triangle graphs is NP-complete, we will use the following notion. The *triangle-restriction* of a graph is obtained if the edges not contained in any triangles and the possibly arising isolated vertices are deleted. Every graph has a triangle-restriction, and the application of this operator changes neither the anti-Gallai graph (if it is connected)¹, nor the triangle graph. A graph is called *trianglerestricted* if each edge and each vertex of it belongs to a triangle. The *clique graph* $\mathcal{K}(G)$ of a graph G is the intersection graph of the set of all *maximal* cliques of G.²

Proof of Theorem 13. The decision problems are clearly in NP. The NP-completeness of (ii) will be reduced from the following theorem recently proved by Anand et al. [2]: Deciding whether a connected graph F is the anti-Gallai graph of some K_4 -free graph is an NP-complete problem.

Consider an instance F to decide whether it is the anti-Gallai graph of a K_4 -free graph. In the first step, we check the necessary condition (\star) ; if it does not hold, F is not the anti-Gallai graph of any K_4 -free graphs. From now on, suppose that (\star) holds for F. Then every maximal clique of F is a triangle and the clique graph $G = \mathcal{K}(F)$ is exactly the triangle-intersection graph of F. If F is connected then so is G, and $G \cong K_4$ holds if and only if F is the union of four triangles sharing exactly one vertex. Hence,

¹If some edges of a graph F' are not contained in any triangles, their images in the anti-Gallai graph are isolated vertices. The deletion of these edges from F' results in the deletion of all isolated vertices from the anti-Gallai graph.

²That is, the vertices of $\mathcal{K}(G)$ correspond to the maximal cliques of G and two vertices of $\mathcal{K}(G)$ are adjacent if the corresponding cliques share at least one vertex.

from now on we assume that $G \ncong K_4$. In addition, if F fulfills property (*), then its triangle-intersection graph G fulfills property (**).

Next, we prove that F is the anti-Gallai graph of a K_4 -free triangle-restricted graph H if and only if G is the triangle graph of H.

Assume that $F = \triangle(F')$. By (\star) , F' is K_4 -free, hence its triangles are in one-to-one correspondence with the triangles of F and by (\star) this yields a one-to-one correspondence with the vertices of G. Moreover two triangles in F' share an edge if and only if the corresponding triangles share a vertex in F; and if and only if the corresponding vertices in the clique graph G are adjacent. Therefore, $G = \mathcal{T}(F')$.

To prove the other direction, assume that $G = \mathcal{T}(G')$. Since G satisfies $(\star\star)$, G' must be K_4 -free. We can choose G' to be triangle-restricted. Now, for every vertex $t \in V(G)$, if t is contained in only two maximal cliques, then in addition the 1-element vertex set $\{t\}$ will also be considered as a 'maximal clique' of G. Similarly, if t is contained in only one clique of G, then $\{t\}$ is also taken as a 'maximal clique' with multiplicity 2. Then the edges of G' are in one-to-one correspondence with the maximal cliques of G. These maximal cliques are in one-to-one correspondence with the vertices of F, where the one-element cliques of G represent vertices contained in only one triangle of F. Also, two edges of G' belong to a common triangle if and only if the corresponding maximal cliques have a common vertex (which represents the triangle); that is, if and only if the two vertices of F, represented by the cliques, are adjacent. This proves $F = \Delta(G')$.

Checking (\star) and constructing G from F takes polynomial time. So, the recognition problem of the anti-Gallai graphs can be reduced to that of the triangle graphs in polynomial time. Hence, the recognition problem of triangle graphs is NP-complete and this remains valid on the class of connected graphs satisfying $(\star\star)$.

5 Recognizing generalized line graphs and anti-Gallai graphs

In this section we turn to the recognition problems of general k-line graphs and k-anti-Gallai graphs. In sharp contrast to the linear-time recognizability of k-line graphs for $k \leq 2$, by Theorem 13 the analogous problem is NP-complete for k = 3. Also, anti-Gallai graphs are hard to recognize as proved by Anand et al. via a reduction from 3-SAT [2]. Now, we complete these results by proving that the recognition problems of k-line graphs and k-anti-Gallai graphs are NP-complete for each $k \geq 3$.

Theorem 16. The following problems are NP-complete for every fixed $k \ge 3$:

- (i) Recognizing k-line graphs.
- (ii) Deciding whether a given graph is the k-line graph of a K_{k+1} -free graph.

Moreover both problems remain NP-complete on the class of connected graphs.

Proof. Clearly, problems (i) and (ii) are in NP. Moreover, by Theorem 13, both problems are NP-complete for k = 3, already on the class of connected graphs. Therefore, we can proceed by induction on k.

For the inductive step, assume that $k \ge 4$ and that (ii) is NP-complete for k-1 on the class of connected graphs. Let G be a connected graph and construct the Cartesian product $H = G \square K_2$, which is also connected. Due to Corollary 7, G is a (k-1)-line graph of a K_k -free graph if and only if H is a k-line graph of a K_{k+1} -free graph. Therefore, (ii) is NP-complete for every $k \ge 3$. On the other hand, by Lemma 9 a graph of the form $G \square K_2$ is a k-line graph if and only if it is a k-line graph of a K_{k+1} -free graph. Hence, the above reduction also proves the NP-completeness of (i) for every $k \ge 3$.

Before proving the same hardness for the recognition problem of k-anti-Gallai graphs, we state a lemma. Note that part (i) gives the same condition (namely diamond-freeness) for $\Delta_k(G)$ as Lemma 8 does for $L_{k+1}(G)$ to ensure that G is K_{k+2} -free.

Lemma 17. For every $k \ge 2$, every graph G and its k-anti-Gallai graph $\triangle_k(G)$ satisfy the following relations:

- (i) G is K_{k+2} -free if and only if $\triangle_k(G)$ is diamond-free.
- (ii) G is K_{k+2} -free if and only if each maximal clique of $\triangle_k(G)$ is either an isolated vertex or a (k+1)-clique. Moreover any two maximal cliques intersect in at most one vertex.

Proof. First, assume that G contains a (k + 2)-clique induced by the vertex set $V = \{v_1, \ldots, v_{k+2}\}$. Consider the following k-cliques:

$$C_1 = V \setminus \{v_1, v_2\}, \quad C_2 = V \setminus \{v_2, v_3\}, \quad C_3 = V \setminus \{v_1, v_3\}, \quad C_4 = V \setminus \{v_1, v_4\}.$$

Any two of these k-cliques are in a common (k + 1)-clique except the pair (C_2, C_4) . Therefore, in the k-anti-Gallai graph the corresponding vertices c_1, c_2, c_3 and c_4 induce a diamond. In addition, the two maximal cliques containing $c_1c_2c_3$ and $c_1c_3c_4$, respectively, must be different and intersect in more than one vertex.

To prove the other direction of (i) and (ii), assume that G is K_{k+2} -free. First, consider an edge $c_i c_j \in E(\Delta_k(G))$. The union $C_i \cup C_j$ of the represented k-cliques induces a K_{k+1} subgraph in G, whose k-clique subgraphs are represented by vertices forming a K_{k+1} subgraph in $\Delta_k(G)$. Hence, every edge of $\Delta_k(G)$ belongs to a (k + 1)-clique. Now, suppose that $c_i c_j c_\ell$ is a triangle in $\Delta_k(G)$. The union $C_i \cup C_j$ of the preimage cliques induces a K_{k+1} in G. Also $C_i \cup C_j \cup C_\ell$ induces a complete subgraph as every two of its vertices are contained in a common clique. Since G is K_{k+2} -free, $C_i \cup C_j \cup C_\ell$ is a (k + 1)-clique as well, and $C_\ell \subset C_i \cup C_j$ must hold. This implies that in the k-anti-Gallai graph, every two adjacent vertices c_i, c_j together with all their common neighbors form a (k + 1)-clique. As follows concerning $(i), \Delta_k(G)$ contains no induced diamond. Furthermore, each edge belongs to exactly one maximal clique of $\Delta_k(G)$ and this must be a (k + 1)-clique. These complete the proof of (i) and (ii).

Theorem 18. The following problems are NP-complete for every fixed $k \ge 3$:

(i) Recognizing k-anti-Gallai graphs.

THE ELECTRONIC JOURNAL OF COMBINATORICS 22(3) (2015), #P3.33

- (*ii*) Recognizing k-anti-Gallai graphs on the class of connected and diamond-free graphs.
- (iii) Deciding whether a given connected graph is a k-anti-Gallai graph of a K_{k+2} -free graph.

Proof. The membership in NP is obvious for each of (i)-(iii). As diamond-freeness can be checked in polynomial time, statements (ii) and (iii) imply each other by Lemma 17(*i*). It is also clear that (ii) implies (i). Then, it is enough to prove (iii). For k = 2, problem (iii) was proved to be NP-complete in [2].

We proceed by induction on k. Consider a generic connected instance G and an integer $k \ge 3$.

For each fixed k, the condition given in Lemma 17(ii) can be checked in polynomial time. If it does not hold, G cannot be a k-anti-Gallai graph of any K_{k+2} -free graph. From now on we suppose that every maximal clique of G is of order k+1 and any two maximal cliques have at most one vertex in common. For such a G we construct the following graph G_e and prove that G is a k-anti-Gallai graph if and only if G_e is a (k + 1)-anti-Gallai graph.

<u>Construction of G_e .</u> Take two disjoint copies G^1 and G^2 of G with vertex sets $V(G^j) = \{c_i^j : c_i \in V(G)\}$ (j = 1, 2), moreover one vertex b_s for each (k+1)-clique B_s of G. Besides the edges of G^1 and G^2 take all edges of the form $b_s c_i^j$ for which $c_i \in B_s$ and j = 1, 2 hold.

As G consists of (k + 1)-cliques such that any two of them intersect in at most one vertex, G_e consists of (k + 2)-cliques such that any two of them intersect in at most one vertex.

<u>Claim C.</u> If $G = \triangle_k(G')$ then $G_e = \triangle_{k+1}(G' \vee 2K_1)$.

Proof. Let \mathcal{B} denote the set of k-cliques of G'. Corresponding to the relation $G = \Delta_k(G')$, we have a bijection $\phi : \mathcal{B} \mapsto V(G)$ such that every k-clique of G' is mapped to the vertex representing it in $\Delta_k(G')$.

Partition the set \mathcal{A} of (k+1)-cliques of the join $G'_e = G' \vee \{z_1, z_2\}$ into three subsets. An $A \in \mathcal{A}$ is said to be of Type 1 or 2 or 3 if it contains z_1 , or z_2 , or none of them, respectively. (Since z_1 and z_2 are nonadjacent, no clique contains both of them.)

Now, define a bijection $\varphi : \mathcal{A} \mapsto V(G_e)$ as follows. For every $A \in \mathcal{A}$,

$$\varphi(A) = \begin{cases} (\phi(A \setminus \{z_1\})^1 & \text{if } A \text{ is of Type } 1, \\ (\phi(A \setminus \{z_2\})^2 & \text{if } A \text{ is of Type } 2, \\ b_\ell & \text{if } A \text{ is of Type } 3, \text{ and } A \text{ is the } (k+1)\text{-clique } B_\ell \text{ of } G'. \end{cases}$$

To prove Claim C, we show that two (k+1)-cliques A_1 and A_2 of G'_e are contained in a common K_{k+2} if and only if $\varphi(A_1)$ and $\varphi(A_2)$ are adjacent in G_e .

• Type-1 cliques are mapped onto $V(G^1)$. In addition, two cliques A_1 , A_2 of Type 1 are contained in a common (k+2)-clique in G'_e if and only if $A_1 \setminus \{z_1\}$ and $A_2 \setminus \{z_1\}$ are in a common (k+1)-clique in G'; or equivalently, if and only if $(\phi(A_1 \setminus \{z_1\})^1)$ and $(\phi(A_2 \setminus \{z_1\})^1)$ are adjacent in G^1 . Similarly, Type-2 cliques are mapped onto $V(G^2)$ and the adjacencies in G^2 correspond to the adjacencies required in $\Delta_{k+1}(G'_e)$.

- If A_1 is of Type 1 and A_2 is of Type 3, their images are adjacent in $\triangle_{k+1}(G'_e)$ if and only if $A_1 \setminus \{z_1\} \subset A_2$; that is, if the (k + 1)-clique A_2 contains the k-clique $A_1 \setminus \{z_1\}$ in G'. This corresponds to the adjacency defined in Construction of G_e . The analogous property holds for cliques of Type 2 and Type 3.
- Since z_1 and z_2 are nonadjacent, no two cliques, one of Type 1 and the other of Type 2, belong to a common K_{k+2} in G'_e . Correspondingly, by the construction, there is no edge between $V(G^1)$ and $V(G^2)$ in G_e . Finally, as G' is K_{k+2} -free, no two (k+1)-cliques of Type 3 are in a common (k+2)-clique in G'_e . This corresponds to the fact that $V(G_e) \setminus (V(G^1) \cup V(G^2))$ is an independent vertex set.

These observations prove that $G_e = \triangle_{k+1}(G'_e)$.

Concerning the following claim, let us recall that Construction of G_e is applied for a $(K_{k+2}, \text{ diamond})$ -free graph G, and yields a $(K_{k+3}, \text{ diamond})$ -free G_e .

<u>Claim D.</u> If $G_e = \triangle_{k+1}(F')$ then there exist two vertices $z_1, z_2 \in V(F')$ such that $G = \triangle_k(F' - \{z_1, z_2\})$.

Proof. By Lemma 17, F' must be K_{k+3} -free. Consider a (k + 2)-clique D_{ℓ} of G_e . This contains exactly one vertex from $V(G_e) \setminus (V(G^1) \cup V(G^2))$, say b_{ℓ} , and assume that the other vertices of D_{ℓ} are from $V(G^1)$. The preimages of the vertices of D_{ℓ} are exactly the (k + 1)-clique subgraphs of a (k + 2)-clique A_{ℓ} of F'. There is a unique vertex u_{ℓ} , called complementing vertex of D_{ℓ} , such that $u_{\ell} \in A_{\ell}$. Moreover it is not contained in the preimage $C(b_{\ell})$ but is contained in the preimage of each further vertex of D_{ℓ} . For this vertex, $A_{\ell} \setminus C(b_{\ell}) = \{u_l\}$ holds, and $C(c_i^1) \setminus C(b_{\ell}) = \{u_l\}$ is valid for every $c_i^1 \in D_{\ell}$.

Assume for a contradiction that there exist two different complementing vertices for the (k + 2)-cliques meeting $V(G^1)$. By the connectivity of G^1 , there exist two (k + 2)cliques, say D_1 and D_2 , intersecting in a vertex c_i^1 with complementing vertices $u_1 \neq u_2$. Then, consider the vertices $b_1 \in D_1$, $b_2 \in D_2$, the induced 4-cycle $c_i^1 b_1 c_i^2 b_2$ in G_e and the preimage (k + 1)-cliques C_i^1 , B_1 , C_i^2 , B_2 . Since $c_i^1 b_1$, $c_i^1 b_2 \in E(G_e)$, there exist vertices xand y in F' such that

$$B_1 = C_i^1 \setminus \{u_1\} \cup \{x\}, \quad B_2 = C_i^1 \setminus \{u_2\} \cup \{y\}.$$

By our assumption, $u_1 \neq u_2$. Moreover, $x \neq y$ must be valid, since x = y would imply for $B_1 \cup B_2 = C_i^1 \cup \{x\}$ to be a (k+2)-clique, contradicting $b_1b_2 \notin E(G_e)$. Further, if any two vertices coincide from the remaining pairs of u_1, u_2, x, y , it would contradict the above definition of x and y. Hence, u_1, u_2, x, y are four different vertices and the intersection $M = C_i^1 \cap B_1 \cap B_2 = B_1 \cap B_2$ is a (k-1)-clique. Observe that the vertices in $M \cup \{u_1, u_2, x, y\}$ are pairwise adjacent as contained together in at least one of the (k+2)-cliques $C_i^1 \cup B_1$ and $C_i^1 \cup B_2$, the only exception is the pair x, y. They are surely nonadjacent, as otherwise $M \cup \{u_1, u_2, x, y\}$ would be a forbidden (k+3)-clique in F'.

Next, consider the k-element intersections $C_i^2 \cap B_1$ and $C_i^2 \cap B_2$. Both of them must contain the entire M and one further vertex from $\{x, u_2\}$ and $\{y, u_1\}$, respectively. But all the four possible choices are forbidden. The choice (u_2, u_1) would mean $C_i^1 = C_i^2$; any of the choices (x, u_1) or (u_2, y) would imply that $C_i^1 \cup C_i^2$ is a (k+2)-clique, contradicting $c_i^1 c_i^2 \notin E(G_e)$; and finally, the choice (x, y) contradicts the non-adjacency of x and y. By this contradiction we conclude that all (k+2)-cliques intersecting G^1 have the same complementing vertex, say z_1 , and the similar result for G^2 with the common complementing vertex z_2 also follows. Deleting these vertices from F', we obtain the graph F'' for which $\Delta_k(F'') = G$ holds.

Via Claims C and D, we have proved that G is the k-anti-Gallai graph of some K_{k+2} -free graph if and only if G_e is the (k + 1)-anti-Gallai graph of some K_{k+3} -free graph. We conclude that if problem (*iii*) is NP-complete for an integer $k \ge 2$, the same hardness follows for k + 1. Moreover, the reduction takes time polynomial in terms of |V(G)| and k. This proves (*iii*) from which (*i*) and (*ii*) directly follow.

6 Graphs with isomorphic line graph and k-line graph

Lemma 19. If K_n is a subgraph of $L_k(G)$ for $n \ge k+2$, then the k-cliques in G corresponding to these n vertices in $L_k(G)$ share k-1 vertices.

Proof. By Observation 2, the vertices of K_n either correspond to n k-cliques of G contained in a common K_{k+1} , or correspond to n k-cliques sharing a fixed (k-1)-clique. The former case is impossible if $n \ge k+2$. Hence, the statement follows.

Theorem 20. Let G be a connected graph. Then, for any $k \ge 3$, $L_k(G) \cong L(G)$ holds if and only if $G = K_{k+2}$.

Proof. We begin with the remark that K_{k+2} indeed satisfies $L_k(K_{k+2}) \cong L(K_{k+2})$. Isomorphism can be established by the vertex-complementarity of edges (2-cliques) and k-cliques. Two edges of K_{k+2} share a vertex (and hence are adjacent in $L(K_{k+2})$) if and only if their complementing k-tuples (k-cliques) share exactly k - 1 vertices (and hence are adjacent in $L_k(K_{k+2})$).

The rest of the proof is devoted to the "only if" part. Let G be a connected graph such that $L_k(G) \cong L(G)$. Let $t = \omega(L_k(G)) = \omega(L(G))$. If $t \ge k+2$, then by Lemma 19, the k-cliques in G corresponding to the t vertices in $L_k(G)$ that induce a t-clique, share k-1 vertices.

Therefore, $\Delta(G) \ge k - 2 + t$ and hence $\omega(L(G)) \ge k - 2 + t > t$ for $k \ge 3$, which contradicts $\omega(L(G)) = t$.

Therefore, $t \leq k + 1$, which means $\omega(L(G)) \leq k + 1$. Thus $\Delta(G) \leq k + 1$, from which $\omega(G) \leq k + 2$ clearly follows. Moreover, since, $L_k(G)$ is not the null graph, $\omega(G) \geq k$ also holds. Hence, we have $k \leq \omega(G) \leq k + 2$. In the rest of the proof we consider the three possible values of ω .

Case 1. $\omega(G) = k$

We saw earlier that a 4-clique in $L_k(G)$ would require in G either a (k + 1)-clique or a (k - 1)-clique with four external neighbors. Hence in the current situation with $\Delta(G) \leq k + 1$ and $\omega(G) = k$ we must have $\omega(L_k(G)) \leq 3$, which also means $\omega(L(G)) \leq 3$ and therefore G has $\Delta(G) \leq 3$. Then $\omega(G) \leq 4$, that is k = 3 or 4. We show that these cases cannot occur.

For k = 3, the condition $\Delta(G) \leq 3$ implies that $\Delta(L_3(G)) \leq 1 < 2 \leq \Delta(L(G))$ holds, hence $L_3(G) \not\cong L(G)$. For k = 4, $\Delta(G) \leq 3$ yields $G \cong K_4$, thus $L_4(K_4) = K_1 \not\cong L(K_4)$. Consequently, $L_k(G) \not\cong L(G)$ if $\omega(G) = k$.

Case 2. $\omega(G) = k + 1$

Subcase A: G contains only one K_{k+1}

Since $\Delta(G) \leq k+1$, G contains no (k-1)-clique with k+1 common external neighbors. Hence, $L_k(G)$ also has only one K_{k+1} . Therefore, L(G) also contains only one K_{k+1} and hence G has only one vertex of degree k+1. It means that only one vertex of K_{k+1} in G has a neighbor outside the K_{k+1} , so that $L_k(G) = L_k(K_{k+1}) = K_{k+1}$ (for G is connected, L(G) is connected and hence $L_k(G)$ is connected). But, $L(G) \neq K_{k+1}$. Therefore, G must contain more than one K_{k+1} .

Subcase B: G contains two K_{k+1} subgraphs which share l > 0 vertices

In this case, $\Delta(G) \ge 2k - l + 1$. By $\Delta(G) \le k + 1$ we see that l = k, therefore $K_{k+2} - e \subseteq G$. Since $L_k(G)$ is connected and k vertices in $K_{k+2} - e$ already attained the maximum possible degree k + 1, $L_k(G) = L_k(K_{k+2} - e)$ must hold. But then the number of vertices in $L_k(G)$ is strictly less than the number of vertices in L(G), which is a contradiction.

Subcase C: G contains a K_{k+1} which does not share vertices with any other K_{k+1}

Either this reduces to subcase A or, by connectivity, k-1 vertices of this K_{k+1} belong to a k-clique outside this K_{k+1} . In that case, these k-1 vertices cannot have any further neighbors (since they attained the maximum degree k+1) and there are only two more vertices in the K_{k+1} under consideration. If k > 3 then, since $L_k(G)$ is connected, there are no further k-cliques in G and hence $L_k(G)$ is K_{k+1} together with a vertex having exactly two neighbors in K_{k+1} , which is obviously not isomorphic to L(G). If k = 3, using the same arguments, we can see that $L_k(G)$ is a K_4 with one or two further vertices having exactly two neighbors in K_4 . In either case, $L_k(G) \neq L(G)$.

Case 3. $\omega(G) = k + 2$

In this case $\Delta(G) \leq k+1$ together with connectivity implies $G = K_{k+2}$, and this is exactly what had to be proven.

7 Concluding remarks

Concerning the algorithmic complexity of recognizing k-line graphs, the problem is trivial for k = 1, solvable in linear-time for k = 2, and as we have proved, it becomes NPcomplete for each $k \ge 3$. It is worth noting that there is a further jump between the behavior of 2- and 3-line graphs, which likely is in connection with the jump occurring in time complexity. Namely, this further difference is in the uniqueness of preimages. As a matter of fact, each connected line graph different from K_3 has a unique preimage if we disregard isolated vertices. In other words, viewing the situation from the side of preimages, the line graphs of two non-isomorphic graphs containing no isolated vertices and no K_3 -components surely are non-isomorphic. The similar statement is not true for triangle graphs, even if we suppose that every edge of the preimage is contained in a triangle. For example, there are seven essentially different graphs whose triangle graph is the 8-cycle (see Figure 3). Additionally, the number of non-isomorphic pre-images of an *n*-cycle goes to infinity as $n \to \infty$ [3].

Figure 3: The seven triangle restricted graphs whose triangle graph is C_8 .

Finally, we make some remarks on an open problem closely related to the results of this paper.

For an integer $k \ge 1$, the vertices of the k-Gallai graph $\Gamma_k(G)$ represent the k-cliques of G, moreover its two vertices are adjacent if and only if the corresponding k-cliques of G share a (k - 1)-clique but they are not contained in a common (k + 1)-clique. By this definition, the 1-Gallai graph $\Gamma_1(G)$ is exactly the complement \overline{G} of G, whilst 2-Gallai graph means Gallai graph in the usual sense, as introduced by Gallai in [11]. Obviously, $\Gamma_k(G) \subseteq L_k(G)$ holds. Moreover $\Delta_k(G)$ and $\Gamma_k(G)$ together determine an edge partition of the k-line graph. Our theorems together with the earlier results from [6] and [2] determine the time complexity of recognition problems of the k-line graphs and the k-anti-Gallai graphs for each fixed $k \ge 1$. Since $G = \Gamma_1(\overline{G})$, every graph is a 1-Gallai graph. But for each $k \ge 2$ this recognition problem remains open.

Problem 21. Determine the time complexity of the recognition problem of k-Gallai graphs for $k \ge 2$.

References

- P. Anand, H. Escuadro, R. Gera, and C. Martell, Triangular line graphs and word sense disambiguation, Discrete Appl. Math. 159 (2011), 1160–1165.
- [2] P. Anand, H. Escuadro, R. Gera, S. G. Hartke and D. Stolee, On the hardness of recognizing triangular line graphs, Discrete Math. 312 (2012), 2627–2638.
- [3] S. Aparna Lakshmanan, Cs. Bujtás and Zs. Tuza, Small edge sets meeting all triangles of a graph, Graphs Combin. 28 (2012), 381–392.
- [4] S. Aparna Lakshmanan, S. B. Rao, and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem. 132 (2007), 43–54.
- [5] J. Bagga, Old and new generalizations of line graphs, Int. J. Math. Math. Sci. 29 (2004), 1509–1521.
- [6] L. W. Beineke, Characterizations of derived graphs, J. Combin. Theory 9 (1970), 129–135.
- [7] M. Conforti, D. G. Corneil and A. R. Mahjoub, K_i-covers I: complexity and polytopes, Discrete Math. 58 (1986), 121–142.
- [8] M. Conforti, D. G. Corneil and A. R. Mahjoub, K_i-covers II: K_i-perfect graphs, J. Graph Theory 11 (1987), 569–587.
- [9] C. R. Cook, Two characterizations of interchange graphs of complete *m*-partite graphs, Discrete Math. 8 (1974), 305–311.
- [10] D. Dorrough, Convergence of sequences of iterated triangular line graphs, Discrete Math. 161 (1996), 79–86.
- [11] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967), 25–66.
- [12] V. B. Le, Perfect k-line graphs and k-total graphs, J. Graph Theory 17 (1993), 65–73.
- [13] V. B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math. 159 (1996), 179–189.
- [14] P. Lehot, An optimal algorithm to detect a line graph and output its root graph, J. ACM 21 (1974), 569–575.
- [15] E. Prisner, Graph Dynamics, Longman, 1995.
- [16] E. Prisner, Intersection multigraphs of uniform hypergraphs, Graphs Combin. 14 (1998), 363–375.
- [17] N. D. Roussopoulos, A max m, n algorithm for detecting the graph H from its line graph G, Inform. Process. Lett. 2 (1973), 108–112.
- [18] Zs. Tuza, Some open problems on colorings and coverings of graphs (Abstract), Graphentheorie-Tagung Oberwolfach (1990).