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Symplectic 4–manifolds, Stein domains,
Seiberg–Witten theory and mapping class groups

ANDRÁS I STIPSICZ

In this survey we review some aspects of the connection between mapping class
groups, symplectic 4–manifolds, Stein domains and Lefschetz fibrations on them.

57R17; 57R57

1 Introduction

Mapping class groups and their study play a central role in low-dimensional topology.
Their connection to 3–manifold topology (through Heegaard decompositions, for ex-
ample) is rather obvious; more recently (through open book decompositions), mapping
class group questions arose in 3–dimensional contact topology.

It is less transparent how mapping class groups are related to 4–dimensional topology.
By results of Donaldson and Gompf, closed symplectic manifolds (admitting Lefschetz
fibration or Lefschetz pencil structures) give rise to various objects in mapping class
groups, and therefore the study of these groups has implications to 4–dimensional
symplectic topology. There are also converse results; there are 4–dimensional topo-
logical theorems that have implications to mapping class group theory. For compact
4–manifolds with nonempty boundary a very similar correspondence can be set up,
provided the manifolds admit Stein structures and we consider mapping class groups
of surfaces with nonempty boundary.

The aim of the present survey is to review basic definitions, constructions and theorems
of smooth 4–manifold topology (such as Lefschetz fibrations, Seiberg–Witten invariants,
Stein structures, and Taubes’ theorems) relevant to the study of mapping class groups,
and describe some simple proofs of statements connecting the two branches. The
proofs are typically only samples; we avoid technically challenging arguments and
provid those steps that show how a 4–dimensional result can be applied to studying
mapping classes.
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2 Symplectic manifolds and Taubes’ theorems

Suppose that X 4 is a smooth, closed, oriented 4–manifold. A 2–form ! 2�2.X / is
a symplectic form if:
� ! is closed, that is, d! D 0.
� ! is nondegenerate, that is, for any nonzero tangent vector v 2 TxX .x 2X /

there is another vector w2TxX with the property that !.v;w/¤0. Equivalently,
! ^! is a volume form on X . Note that ! ^! provides an orientation for X ;
we always assume that this orientation coincides with the given orientation of X .

The 2–form ! defines a symplectic structure (in the linear algebraic sense, that is, a
skew symmetric 2–form) on every fiber TxX . It is not hard to see that a vector space
equipped with a symplectic form admits a complex structure, that is, an endomorphism
J with J 2D� Id; in fact J can be chosen to be compatible with the given symplectic
structure, meaning that !.v;Jv/ > 0 once v ¤ 0 and !.Jv;Jw/D !.v;w/. Once
again, linear algebra shows that the space of such endomorphisms is contractible. In
particular, by viewing ! as an element of �2.X / (and hence giving a symplectic
structure on every tangent space), the space of all fiberwise compatible almost complex
structures form a bundle with contractible fiber, hence admits a section, providing
an almost complex structure (still denoted by J ) on X : a bundle endomorphism
J W TX !TX with J 2D� IdTX . Furthermore, the contractibility of the fiber implies
that two such sections are homotopic.

Note that J turns TX into a complex bundle, hence .TX;J / admits Chern classes, and
since homotopic J ’s give rise to equal Chern classes for a closed symplectic 4–manifold
.X; !/, we get two elements c1.X; !/2H 2.X IZ/ and c2.X; !/2H 4.X IZ/, which
are invariants of the symplectic structure. A simple argument shows that c2.X; !/ is
the Euler class of X , while for c1.X; !/ we have:
� The mod 2 reduction of c1.X; !/ is equal to the second Stiefel–Whitney class
w2.X / 2H 2.X IZ2/.
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� The evaluation of c2
1
.X; !/ on the fundamental class ŒX � is equal to 3�.X /C

2�.X /, where �.X / is the signature of the intersection pairing on the second
(co)homology of X and �.X / is the Euler characteristic of X .

Remark 2.1 Indeed, by a classical result of Hirzebruch and Hopf [24], the existence
of a class h 2H 2.X IZ/ satisfying the above two properties (ie having the required
mod 2 reduction and square) implies the existence of an almost complex structure
J on X . This condition, however, is far from being sufficient for the existence of a
symplectic structure.

Symplectic 4–manifolds admit various special properties. Most notably, they exhibit
features reminiscent in some sense to complex surfaces. These properties can be
most conveniently described using Seiberg–Witten invariants. Before turning to the
description of these properties, we very quickly recall (at least the formal properties
of) the Seiberg–Witten invariants.

Suppose that X is an oriented, closed, smooth 4–manifold with bC
2
.X / > 1. (Recall

that bC
2
.X / is the dimension of the maximal positive-definite subspace of H 2.X IR/

for the cup product; b�
2
.X / is defined similarly by considering the maximal dimension

of negative-definite subspaces, and the signature �.X / is by definition equal to bC
2
.X /�

b�
2
.X /.) If we fix an orientation of the space H 2

C.X IR/˚H 1.X IR/ (ie we fix a
homology orientation for X ), then the Seiberg–Witten invariant SWX of X is a map

SWX W H
2.X IZ/ �! Z

which has finite support, and for a diffeomorphism f W X1!X2 and ˛ 2H 2.X2IZ/
it satisfies

SWX2
.˛/D˙ SWX1

.f �.˛//:

(The sign originates from the possibly different choices of homology orientations.)
Indeed, the definition can be refined to get a function which is defined on the set of spinc

structures rather than on the second cohomology. Since every spinc structure gives rise
to an element of H 2.X IZ/ by taking its first Chern class, the above definition follows
from the refined one by summing the refined invariant for all (the finitely many) spinc

structures with a given first Chern class.

For a fixed Riemannian metric g and a spinc structure s on X , the Seiberg–Witten
invariant counts the number of solutions of a system of partial differential equations
associated to the metric and s on the 4–manifold X (using the twisted Dirac operator
construction and the Hodge star operator). The condition bC

2
.X / > 1 ensures that

the resulting number will be independent of the chosen metric (and of the appropriate
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perturbation of the equation). For details of the construction of the invariant, see [37;
38; 46].

A cohomology class K with nonzero Seiberg–Witten value SWX .K/ is called a
(Seiberg–Witten) basic class. The relation between basic classes and the geometry of
the underlying 4–manifold is most transparent through the adjunction inequality:

Theorem 2.2 (Kronheimer and Mrowka [29; 30]) Suppose that †�X is a smoothly
embedded, oriented, closed surface of genus g.†/ > 0 in the oriented 4–manifold X ,
representing the homology class Œ†� 2H2.X IZ/ with the additional property that the
self-intersection Œ†�2 of † is nonnegative. Then for any basic class K 2H 2.X IZ/
we have the adjunction inequality

2g.†/� 2� Œ†�2CjhK; Œ†�ij:

In some sense the above inequality is the smooth version of the adjunction equality
from complex geometry, which we state in Equation (2-1) below. Suppose that C �X

is an embedded, oriented, closed surface of genus g.C / in the symplectic 4–manifold
.X; !/. Fix an almost complex structure J compatible with ! and assume that C is
a complex submanifold for J . (This simply means that T C � TX is J–invariant.)
By splitting TX along C as the sum T C ˚ �C of complex line bundles, we get the
adjunction equality

(2-1) 2g.C /� 2D ŒC �2� hc1.X; !/; ŒC �i:

The formula of Theorem 2.2 generalizes Equation (2-1) in the sense that, as the next
result shows, ˙c1.X; !/ is always a basic class:

Theorem 2.3 (Taubes [44]) Suppose that .X; !/ is a closed symplectic 4–manifold
with Chern class c1.X; !/ 2H 2.X IZ/. Then

SWX .˙c1.X; !//D˙1:

In particular, the first Chern class of a symplectic manifold is always a basic class.

Indeed, Taubes proved a correspondence between Seiberg–Witten basic classes and
homology classes which admit J–holomorphic representatives. (More precisely, fol-
lowing ideas of Gromov, he introduced a count of J–holomorphic representatives of
a given homology class and identified this count with the Seiberg–Witten value on
an associated cohomology class.) The precise statement of this result is somewhat
technical, hence here we will restrict ourselves to spelling out a consequence which
will be relevant later.
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Theorem 2.4 (Taubes [45]) Suppose that .X; !/ is a symplectic 4–manifold with
bC

2
.X / > 1 and J is a generic compatible almost complex structure. Suppose that

K 2H 2.X IZ/ is a Seiberg–Witten basic class, that is, SWX .K/¤ 0. Then there is a
(not necessarily connected) complex submanifold C � .X;J / such that the Poincaré
dual PDŒC � of the homology class ŒC � represented by C is equal to 1

2
.K� c1.X; !//.

Since SWX .�c1.X; !//D˙1, this implies that there is a (not necessarily connected)
complex submanifold C � .X;J / satisfying

PDŒC �D�c1.X; !/:

This deep result then provides a simple consequence which will be applied in studying
properties of mapping class groups:

Corollary 2.5 Suppose that .X; !/ is a symplectic 4–manifold with bC
2
.X / > 1

which contains no embedded sphere of self-intersection �1. Then c2
1
.X; !/� 0.

Proof Let J be a generic compatible almost complex structure on .X; !/ and suppose
that Ci is a component of the J–holomorphic submanifold C representing �c1.X; !/.
Then �hc1.X; !/; ŒCi �iD ŒCi �

2 , hence the adjunction equality of (2-1) provides g.Ci/�

1 D ŒCi �
2 . Now either g.Ci/ is zero (hence Ci is an embedded sphere) and then

ŒCi �
2 D�1, or ŒCi �

2 � 0. By assumption X contains no sphere of square �1, hence
ŒCi �

2 � 0 holds for every component. Summing these contributions for all (disjoint)
components we get the claimed statement.

Remark 2.6 In fact, using Taubes’ correspondence it can be shown that .X; !/ with
bC

2
.X / > 1 contains an embedded �1–sphere exactly if it contains a J–holomorphic

�1–sphere for any compatible almost complex structure J .

We will pay special attention to characteristic numbers of symplectic 4–manifolds;
the following conjecture of Gompf is along those lines. It is concerned with the sign
of the Euler characteristic � of a symplectic 4–manifold X : we expect �.X / to be
nonnegative, with the exception of some well-known cases. More precisely:

Conjecture 2.7 Suppose that .X; !/ is a symplectic 4–manifold. Then either X is
the blow-up of an S2 –bundle over a genus-g surface (in which case the genus g and the
number of blow-ups determine the Euler characteristic �.X /), or X has nonnegative
Euler characteristic �.X /.
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3 Lefschetz fibrations and Lefschetz pencils

Lefschetz fibrations were originally introduced to study topological properties of
projective varieties. Indeed, suppose that X � CPn is a complex surface. Let A

(an axis) be given as the transverse intersection of two hyperplanes; in particular, A

is diffeomorphic to CPn�2 . Then A defines a map f W X �A! CP1 as follows:
parametrize the hyperplanes of CPn containing A by CP1 , and associate to x 2X�A

the parameter t 2CP1 of the hyperplanes Ht containing both A and x . (Notice that
this map is undefined at the points of A.) Blow up X along X \A, resulting in a
variety zXA . The above map f obviously extends to zf W zXA!CP1 , and for a generic
choice of A it can be shown that d zfp is onto with finitely many exceptions, around
which there are appropriate complex charts on which zf D z2

1
C z2

2
.

Notice that since X is of complex dimension 2, for a generic choice of A, the
intersection X \A is a finite set of points. In smooth terminology the blow-up simply
means the connected sum with CP2 , the complex projective plane with the orientation
opposite to the one induced by the complex structure. The above construction motivates
the following definition:

Definition 3.1 Suppose that X is a smooth, closed, oriented 4–manifold, and † is
a smooth, closed, oriented 2–manifold. The smooth map f W X ! † is a Lefschetz
fibration (with base †) if dfp is onto with finitely many exceptions C Dfp1; : : : ;pmg

(the set of critical points of f ), for which points there are orientation-preserving
complex charts Ui �X and Vi �† (pi 2 Ui and f .pi/ 2 Vi ) with the property that
f jUi

D z2
1
Cz2

2
(as a map Ui! Vi ). Informally, we require f to be a complex Morse

function. If for some t 2† the intersection f �1.t/\C is nonempty, the fiber f �1.t/

of f is called a singular fiber.

With the above terminology in place, in our starting construction we can say that for a
generic choice of A, an appropriate blow-up zXA of a complex projective surface X

admits a Lefschetz fibration with base CP1 .

Recall that in our earlier arguments spheres of square �1 played a crucial role. Indeed,
a manifold containing no �1–sphere is called minimal. A version of this concept is
adapted to Lefschetz fibrations: a Lefschetz fibration f W X !† is relatively minimal
if there is no �1–sphere in X which is contained in a fiber of f . This condition
ensures that we cannot contract a �1–sphere in X in a way that the fibration structure
persists to the quotient.

The definition of a Lefschetz fibration admits a straightforward modification to include
the map we found in the complex projective setting before the blow-up:
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Definition 3.2 Suppose that X is a smooth, closed, oriented 4–manifold. A Lefschetz
pencil on X consists of a nonempty finite set B �X and a map f W X �B!CP1

with the following two properties:

� There is an orientation-preserving complex chart Ub for every element b 2 B

on which f restricts to the projectivization map C2�f0g !CP1 .

� At each critical point f behaves as it would in a Lefschetz fibration, that is,
there are orientation-preserving complex charts Ui � X and Vi � CP1 with
f jUi

D z2
1
C z2

2
.

By blowing up the points of B � X we get a Lefschetz fibration zX ! CP1 on the
blown-up manifold zX DX #jBjCP2 (with base CP1 ).

It is a natural question to examine which 4–manifolds admit a Lefschetz pencil structure.
Surprisingly, the (purely topological) property of carrying a Lefschetz fibration is
equivalent to the (more analytic) property of admitting a symplectic structure. More
formally:

Theorem 3.3 (Donaldson [13]) Suppose that X is a closed, symplectic 4–manifold.
Then X admits a Lefschetz pencil. Consequently, for every closed, symplectic 4–
manifold there is an integer n such that the n–fold blow-up X # #n

1 CP2 admits a
Lefschetz fibration.

Indeed, the converse of the above result of Donaldson also holds:

Theorem 3.4 (Gompf [19; 20]) Suppose that the closed, oriented 4–manifold X

admits a Lefschetz pencil with nonempty base B , or a Lefschetz fibration with the
property that the fiber is nontrivial in homology (when taken with coefficients in R).
Then X admits a symplectic structure.

In fact, if the genus of the fiber of a Lefschetz fibration on the closed 4–manifold X is
not equal to one, then the homology class ŒF � represented by the generic fiber f is
nontrivial in real homology. Indeed, using the fibration one can build an almost complex
structure J with the property that the generic fiber is a J–holomorphic submanifold,
hence by the adjunction equality we get that the value of c1.X;J / on the homology
class ŒF � of the fiber is equal to 2g.F /� 2 (since ŒF �2 D 0 for a fiber). If g.F /¤ 1,
this evaluation shows that ŒF �¤ 0 in H2.X IR/.

For torus fibrations, however, the total space X might not be symplectic: the product
of the Hopf fibration S3! S2 with S1 gives a nontrivial torus bundle (a Lefschetz
fibration with no singular fibers) on S3 �S1 , but since H 2.S3 �S1/D 0, we do not
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have a closed 2–form (representing a second cohomology class) which is nondegenerate.
Notice furthermore that if the Lefschetz fibration zX !CP1 comes from blowing up
a Lefschetz pencil, then the fiber is nontrivial in homology: the exceptional sphere
in any of the blow-ups provides a section, hence a submanifold intersecting the fiber
in a single (transverse) point. In fact, on a fibration the symplectic structure can be
constructed in such a way that any preassigned finite set of disjoint sections will be
symplectic, hence by blowing them back down, the pencil case in Theorem 3.4 follows
easily from the fibration case. For further details, see [21, Section 10.2].

We will pay special attention to sections of Lefschetz fibrations. If f W X ! † is a
given Lefschetz fibration, then a section of f is a map � W †!X with the property
that f ı� D id† . Sometimes we will confuse the section (a map) with its image �.†/
(a subset of X ), and even with the homology class it represents, and consider the
self-intersection (or square) of a section, referring to the corresponding number of the
homology class Œ�.†/�.

4 Lefschetz fibrations and mapping class groups

Suppose that f W X !† is a Lefschetz fibration. It is not hard to see that, by possibly
slightly perturbing f , one can assume that f is injective on the set Cf of critical
points of f . Suppose now that x 2† is a critical value, that is, f �1.x/ is a singular
fiber. By the above assumption it follows that f �1.x/ contains a unique critical point.
The topology of the neighborhood of the fiber f �1.x/ can be given as follows: Pick a
regular value y near x and an embedded arc from y to x . Consider a simple closed
curve inside the tubular neighborhood of the chosen arc which passes through y and
encircles x (and does not pass through any critical value). Restricting the Lefschetz
fibration to this loop we get a surface bundle over S1 (since the loop avoids all the
critical values). Such a fibration can be described by its monodromy: considering it
over Œ0; 1� we get a bundle with a canonical trivialization, and the map (defined up
to conjugation and isotopy) identifying the fibers over 0 and 1 is the monodromy
of the fibration over S1 . In case the surface bundle is given by the procedure above
(restricting a Lefschetz fibration to a loop encircling a unique Lefschetz critical point),
the monodromy can be shown to be a right-handed Dehn twist along a simple closed
curve c D cx . Indeed, the neighborhood of a singular fiber can be given by attaching
a 4–dimensional 2–handle to the neighborhood of the generic fiber along c (with
framing .�1/ relative to the framing the curve inherits from the fiber). This observation
quickly leads to a handlebody description of a Lefschetz fibration. This approach is
very useful in many problems, but since we will not exploit it in this survey, we do not
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go into the description of the details of the handlebody picture. For further discussion
on the handlebody description, see [21].

The simple closed curve c (specified by the Dehn twist up to isotopy) is called the
vanishing cycle corresponding to the singular fiber. The terminology is justified by
the fact that this circle bounds a disk in X , hence represents the zero cycle in the
4–manifold. The disk (which can also be interpreted as the core of the 2–handle we
mentioned above) is called the Lefschetz thimble associated to the singular fiber.

The above idea of considering the monodromy can be extended to any based loop avoid-
ing critical values. The monodromy representation of a Lefschetz fibration f W X !†

is the map
mf W �1.†�f .Cf // �! �g

which associates to a loop in †�f .Cf / (hence to a loop avoiding the critical values)
the monodromy of the surface bundle over that loop. (Strictly speaking, since loops
concatenate from left to right, while diffeomorphisms act on the left, this map is an
antihomomorphism, which can be turned to a homomorphism by composing it with the
inversion map g 7!g�1 . We will always assume that we have applied this composition.)
The fundamental group �1.†�f .Cf // admits a simple presentation�

z1; : : : ; zn; a1; b1; : : : ; ag; bg

ˇ̌̌ nY
iD1

zi

gY
jD1

Œaj ; bj �D 1

�
;

where zi can be represented by small loops around the critical values, while fa1; b1;

: : : , ag; bgg can be chosen to be a usual generating set of �1.†/.

Since the homomorphism mf maps zi to a right-handed Dehn twist ti , the map mf

can be determined by the factorization

(4-1)
nY

iD1

ti

gY
jD1

Œ j̨ ; ǰ �D 1 2 �g

in the mapping class group �g , where ti Dmf .zi/ is a right-handed Dehn twist, and
j̨ Dmf .aj / and ǰ Dmf .bj / are mapping classes with no particular property.

This approach can capture further structures. Indeed, consider the mapping class group
�g;1 of those mapping classes which fix a preassigned point p 2†. There is an obvious
map �g;1 ! �g , since a mapping class fixing the point p naturally gives rise to a
mapping class. By the Birman exact sequence (see [18, Theorem 4.6]), the kernel of
this map can be identified with �1.†/, hence there are various choices for an element
in �g to be lifted to �g;1 . For example, for a Dehn twist along a simple closed curve
C the lift depends on the isotopy class of C relative to p .
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It is easy to see that if the factorization
Qn

iD1 ti
Qg

jD1
Œ j̨ ; ǰ �D 1 2 �g admits a liftQn

iD1
zti
Qg

jD1
Œz̨j ; žj �D 1 2 �g;1 , then the corresponding Lefschetz fibration admits a

section. Indeed, the fixed point p defines a submanifold in X which intersects each
fiber in a single point, hence provides a section of the Lefschetz fibration.

A further group �1
g can be defined by considering mapping classes of maps which

fix a point p and a tangent vector v at p . (Alternatively, we can consider the surface
†� �.p/ with boundary, where �.p/ is a small open neighborhood of p , and take
mapping classes which fix the boundary pointwise.) Obviously there is a natural map
�1

g ! �g;1 , and the kernel is isomorphic to Z, consisting of powers of the Dehn twist
ı along a simple closed curve parallel to the boundary. Now each element of �g;1

admits a lift to �1
g , and hence

Qn
iD1
zti
Qg

jD1
Œz̨j ; žj � lifts to

(4-2)
nY

iD1

t i

gY
jD1

Œ˛j ; ˇj �:

The expression is a relation in �g;1 , therefore it is in the kernel of the map �1
g! �g;1 .

Consequently, the product of Equation (4-2) is equal to ın for some n 2 Z. The
geometric significance of this integer is easy to see: �n is the self-intersection of
the section given by the relation (viewed the section as an oriented surface in the
4–manifold X ). Indeed, by fixing a point q 2 @�.p/, we get a push-off of the section
intersecting it in n points; a local calculation shows that all intersection points come
with the same sign, and in a model case we can identify the sign of the points to be
equal to .�1/, giving the claimed self-intersection.

The ideas above extend to capturing k disjoint sections by lifting the monodromy from
�g to �g;k . The self-intersections can be identified by taking the factorizations in �k

g :
the result will be equal to ın1

1
� � � ı

nk

k
, where ıi is the right-handed Dehn twist along a

curve parallel to the i th boundary component, and the exponents ni are the negatives
of the self-intersections of the sections.

Recall that a Lefschetz pencil can be blown up to a Lefschetz fibration, and by keeping
track of the exceptional spheres, this procedure can be reversed. On the other hand, the
k exceptional spheres are all section of the resulting fibration with self-intersection
�1, hence — according to what was said above — the monodromy representation can
be considered in �k

g , factoring
Qk

iD1 ıi (where the ıi are the right-handed Dehn
twists corresponding to the fixed points originating from the sections). This approach
therefore provides a mapping class group-theoretic description of a Lefschetz pencil,
hence of a symplectic 4–manifold.

Note that the existence of a lift of the relation from �g to �g;1 is far from trivial.
Indeed, since there are surface bundles over surfaces which do not admit a section (see
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Hillman [23]), we cannot expect that any factorization of 1 in �g lifts to a factorization
of 1 in �g;1 . There is, however, no example of a Lefschetz fibration over S2 without
a section. This fact leads us to the following problem.

Problem 4.1 Prove (or disprove) that any nontrivial Lefschetz fibration over S2

(ie f W X !S2 with at least one singular fiber with homotopically nontrivial vanishing
cycle) admits a section. (Nontrivial Lefschetz fibrations over S2 with fiber genus 1 do
admit sections, and some partial results along these lines can be derived from work of
Siebert and Tian [39] for g D 2.)

Remark 4.2 The positive resolution of this problem would be of utmost importance in
the handlebody description of a Lefschetz fibration: the complement of a generic fiber
admits a straightforward description in terms of the vanishing cycles, but the addition
of the 2–handle of the neighborhood of the generic fiber admits a simple description
only when the fibration admits a section.

5 Singular fibers in fibrations over S 2

Let us now concentrate on fibrations over S2 . It is a natural question to determine
the minimal number of singular fibers a nontrivial Lefschetz fibration of fiber genus g

should have. In mapping class group terms, it asks for the minimal length of a nontrivial
factorization of the identity in �g into the product of right-handed Dehn twists.

Relying on Taubes’ result from Section 2, it is not hard to come up with a linear lower
bound in the fiber genus g , which we explain below. Consider a nontrivial Lefschetz
fibration f W X ! S2 with k > 0 singular fibers, and with corresponding monodromy
factorization

Qk
iD1 ti D 1.

In the following arguments we will need a simple construction of Lefschetz fibrations.

Definition 5.1 Suppose that fi W Xi ! †i (i D 1; 2) are two genus-g Lefschetz
fibrations. Fix a regular fiber in each and delete a tubular neighborhood of these
fibers. An identification of the chosen regular fibers in the two fibrations extends to
an identification of their neighborhoods, and composing this identification with the
map we get from the complex conjugation on the base disk we get a fiber-preserving,
orientation-reversing diffeomorphism of the boundaries. Gluing the two fibrations over
†i �D2 together with this diffeomorphism we get the fiber sum X1 #f X2 of X1 and
X2 , which is a Lefschetz fibration over the surface †1 #†2 .
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Let us take the Lefschetz fibration X #f X ! S2 , the fiber sum of X with itself. We
can also describe this fibration through its monodromy factorization; it is� kY

iD1

ti

�
�

� kY
iD1

ti

�
D

� kY
iD1

ti

�2

D 1:

The following two facts can be verified:

Lemma 5.2 [40] Suppose that X ! S2 is a nontrivial, relatively minimal Lefschetz
fibration. Then X #f X is a minimal symplectic 4–manifold with bC

2
.X #f X / > 1.

Remark 5.3 The fact that bC
2
.X #f X / > 1 follows from the nontriviality of the

fibration: Recall that a vanishing cycle bounds a disk with (relative) framing �1

(which was called the Lefschetz thimble corresponding to the critical point). Since
vanishing cycles in X #f X appear in pairs, the union of two thimbles corresponding
to homologically nontrivial vanishing cycles provides a �2–sphere, with a dual torus
(hence a hyperbolic pair) with the fiber in the complement. This dual torus can be
visualized as follows: take the product of the circle dual to the vanishing cycle with
the circle in the base we get when in the fiber sum operation we delete the tubular
neighborhood of a regular fiber (and hence a D2 from the base). The minimality of
the fibration requires a slightly more complicated argument; see [40].

The above lemma (together with Corollary 2.5 of Taubes’ result) then easily implies:

Proposition 5.4 [40] Suppose that X ! S2 is a nontrivial, relatively minimal
Lefschetz fibration with k singular fibers. Then

4
5
.g� 1/� k:

Proof Let us consider X #f X . Since by Lemma 5.2 it is a minimal symplectic
4–manifold with bC

2
.X #f X / > 1, by Corollary 2.5 we have that c2

1
.X #f X / � 0.

Recall that c2
1
D 3� C 2� and � is simply additive for fiber sums, while � satisfies

the slightly more complicated formula

�.X #f Y /D �.X /C�.Y /C 4g� 4

for the fiber sum X #f Y of the genus-g Lefschetz fibrations X and Y . Then the
inequality c2

1
.X #f X /� 0 implies that

(5-1) 4� 4g � c2
1.X /D 3�.X /C 2�.X /� 3kC 2.4� 4gC k/;

where we applied the bound �.X / � k for the signature and the equality �.X / D
4� 4gC k for the Euler characteristic. This last equality follows from the fact that
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deleting two regular fibers from X (with Euler characteristic 2� 2g each) we get a
cobordism involving k 2–handles, while the inequality �.X /� k is a consequence of
� � b2 � k (the second following from the above presentation of X �ftwo fibersg as
a union of 2–handles again). The resulting inequality (5-1) implies the claim of the
proposition at once.

The best-known bound for the number of singular fibers is due to Braungardt and
Kotschick [7]: the number k of singular fibers in a nontrivial Lefschetz fibration over
S2 with the extra property that the map is injective on the critical points is

k � 1
5
.8g� 3/:

This value is rather close to the value of k realized by the following example (the
smallest k known to be realized by a fibration for g � 15):

Example 5.5 Suppose that g D 2nC 1 is odd, and consider the product complex
surface S2�†n of S2DCP1 and the genus-n surface †n . Let C denote the singular
complex curve in S2 �†n given by two copies of fptg �†n (for two different points)
and four copies of S2 � fptg (again, for four distinct points). The double branched
cover of the complex surface S2 �†n along C gives a (singular) complex surface,
which (after desingularization) gives rise to the complex surface X . Indeed, we can
first smooth the transverse double points of C to get a smooth curve in S2 � †n

and take the double branched cover afterwards; the resulting smooth manifold will be
diffeomorphic to the desingularized surface X . A further equivalent way of seeing this
construction is to blow up the singular points of C and then take the double branched
cover along the proper transform (which is now a smooth curve in the blow-up).

Notice that X comes with two fibration maps: the composition of the resolution of
singularities X !X with the branched cover X ! S2�†n can be further composed
with the two projections. These maps are holomorphic, and can be perturbed to
Lefschetz fibrations. Indeed, the map to †n is a Lefschetz fibration with fibers given
by the double branched cover of S2 branched in two points. Therefore it is a ruling
on X , and it is not hard to show that X is diffeomorphic to S2 �†n # 8CP2 . The
other projection (to S2 ) then equips X with a Lefschetz fibration, where the fiber is
the double branched cover of †n , branched in four points. This is a genus-g surface
(remember, g D 2nC 1), and a simple calculation with the Euler characteristic (based
on the formula �.X /D 4�4gCk for the number k of singular fibers) shows that the
perturbed Lefschetz fibration X !S2 has 2gC10 singular fibers. Indeed, with a little
extra effort one can see that the vanishing cycles corresponding to the singular fibers
are homologically essential. (A similar construction adapts if g is even, providing a
fibration with 2gC 4 singular fibers; see [42].)
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In conclusion, there are examples of nontrivial fibrations with 2gC10 (for odd g ) and
2gC 4 (for even g ) singular fibers, and we know that any fibration must have at least
1
5
.8g� 3/ singular fibers.

Problem 5.6 Determine the exact value of the minimal number of singular fibers a
nontrivial, relatively minimal Lefschetz fibration over S2 (with f jCf

injective) must
have. (The answer is classical for g D 1: a genus-1 Lefschetz fibration over S2 has
12q (q 2N ) singular fibers, hence the minimal value is 12 in this case.)

Remark 5.7 The same question over higher-genus surfaces has been addressed and
answered by Korkmaz and Ozbagci [27]: if the base genus is at least two and the fiber
genus is at least three, there is always a nontrivial, relatively minimal fibration with
a single singular fiber (corresponding to the fact that for g � 3 a Dehn twist can be
written as a product of two commutators).

The linear growth of the number of singular fibers can be used to deduce the following
simple result regarding self-intersections of sections:

Proposition 5.8 Suppose that � is a section of the nontrivial Lefschetz fibration
f W X ! S2 over the sphere. Then the self-intersection of the submanifold �.S2/�X

is negative.

Remark 5.9 By the adjunction formula it is rather clear that if bC
2
.X / > 1, then

the square of the section (which is an embedded sphere in X ) must be negative. If
bC

2
.X / D 1, however, X might contain spheres of nonnegative square, and in this

case the proposition claims that those cannot be sections of any nontrivial Lefschetz
fibration.

Proof of Proposition 5.8 Suppose that the genus-g Lefschetz fibration f W X ! S2

admits a section with nonnegative square. After possibly blowing up, we get a genus-g
Lefschetz fibration f 0W X 0! S2 with a section of square 0. Now taking S2 �†h

(which obviously admits a section of square 0) we can “section-sum” them, ie glue
the fibers of f 0 and of the trivial fibration along the sections of square 0, resulting in
a Lefschetz fibration of genus gCh, with the same number of singular fibers as f 0 .
Taking h large enough, the resulting fibration will contradict Proposition 5.4.

6 Commutator length in mapping class groups

A beautiful application of the correspondence between mapping class groups and
Seiberg–Witten theory (furnished by Lefschetz fibrations and symplectic 4–manifolds)
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is given by the following result of Endo and Kotschick [17] (and independently Kork-
maz [26]; see also Bestvina and Fujiwara [5] for a subsequent, different proof).

Recall that for g � 3 the mapping class group is perfect, that is, any element in it
can be written as a product of commutators. It is natural to ask whether the number
of commutators is bounded (that is, the group is uniformly perfect) or no such bound
exists. Let us define the commutator length c.x/ of an element x 2 �g as the minimal
number of commutators one needs to use to express x as a product of commutators.

Theorem 6.1 (Endo and Kotschick [17], Korkmaz [26]) Suppose that g � 3 and
t 2 �g is a right-handed Dehn twist along a separating (but not null-homotopic) curve.
Then the sequence c.tn/ is not bounded. Consequently, the mapping class group �g

(with g � 3) is not uniformly perfect.

Proof Suppose that there is an integer K 2 N with c.tn/ � K , and consider the
expressions

(6-1) tn
D

KY
iD1

Œai.n/; bi.n/�

expressing tn as the product of K commutators. (In case c.tn/ <K , we add further
terms with commuting elements, say ai.n/D 1.) As in Equation (4-1), the relation of
Equation (6-1) gives rise to a genus-g Lefschetz fibration Xn!†K over the surface
†K of genus K with n singular fibers. The Euler characteristic of Xn is easy to
determine: the n critical points corresponding to tn in the expression of Equation (6-1)
give n, while the rest is a †g –bundle over †K �D , hence we get

�.Xn/D nC 4.g� 1/.K� 1/:

For the signature, we again consider the decomposition of Xn as the union of a
Lefschetz fibration over the disk D with the n singular fibers, and the complement
admitting a surface bundle structure over †K �D . The former piece has signature
�n: Based on the fact that the chosen vanishing cycle is separating, we explicitly see
homology classes generating H2 . The signature of the surface bundle over †K �D

can be bounded by the second Betti number, which is definitely less than the sum of
the Euler characteristic and twice the first Betti number, which can be bounded from
above by .2g � 1/.2K � 1/. Indeed, the exact value of this bound is not important;
the important fact is that there is an upper bound of the signature of the fibration over
†�D independent of n. Therefore, for n large enough, the square of the first Chern
class c2

1
.Xn/ (which is equal to 3�.Xn/C 2�.Xn/) is roughly �n, consequently, for

n large enough we have c2
1
.Xn/ < 0.
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It is not hard to see, however, that we can assume that bC
2
.Xn/ > 1 (by possibly fiber

summing with an appropriate surface bundle), and (just as in Lemma 5.2) we have that
Xn is minimal. By Corollary 2.5 these two properties provide that c2

1
.Xn/� 0, hence

the above contradiction shows that our initial assumption on the bounded commutator
length of tn is false, verifying the result.

Remark 6.2 The above rough argument shows that the commutator length is un-
bounded; a more careful analysis using similar arguments provides more precise
information about the behavior of the asymptotics of c.tn/; for details, see [17; 26].

In the argument above the simple estimate on the signature of a Lefschetz fibration
played an important role. Indeed, the signature of a Lefschetz fibration seems to obey
certain constraints. For example, no nontrivial Lefschetz fibration X ! S2 is known
which admits nonnegative signature. This leads us to the following problem:

Problem 6.3 Show that a nontrivial Lefschetz fibration X ! S2 has negative signa-
ture.

Indeed, this question can be put in a slightly broader context:

Problem 6.4 Show that for any two fixed integers g; h2N there is an integer N.g; h/

with the property that if X !†h is a genus-g Lefschetz fibration over the surface of
genus h, then the signature �.X / is at most N.g; h/.

It is easy to see that if such an N.g; 0/ (or N.g; 1/) exists, then it can be chosen to be
zero: If there is a Lefschetz fibration X ! S2 with positive signature �.X /, then the
n–fold fiber sum X #f � � � #f X has signature n�.X /, which can then grow arbitrarily
large, contradicting the existence of N.g; 0/. Similarly, a genus-g Lefschetz fibration
X ! T 2 over the torus T 2 with positive signature can be pulled back by an n–fold
(unramified) cover f W T 2! T 2 , resulting in Xn D f

�.X / with �.Xn/ D n�.X /;
once again, contradicting the existence of N.g; 1/.

7 Surface bundles over surfaces

Motivated by the above considerations, we will examine possible signatures of surface
bundles (ie Lefschetz fibration without singular fibers) in more details. It is a simple
fact that the Euler characteristic is multiplicative, hence for a genus-g surface bundle
X ! †h we have that �.X / D 4.g � 1/.h� 1/. The computation of the signature,
however, turns out to be a much more subtle question. Multiplying the “signatures” of
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the base †h and the fiber †g (both zero), we expect a surface bundle to have vanishing
signature. This vanishing of the signature of a surface bundle over a surface indeed holds
for special fibrations (as shown by a classical result of Chern, Hirzebruch and Serre
[10]). The fact that the vanishing of the signature is not always true for surface bundles
over surfaces was shown by Atiyah [2] and (independently) Kodaira [25]. The question
has been further studied since then; see [8; 15; 16]. Here we only restrict ourselves to a
simple construction providing examples of surface bundles with nonvanishing signature
(see also [9]), and then recall some recent developments in determining relations among
characteristic numbers of surface bundles.

Consider the genus-g Lefschetz fibration X ! S2 constructed in Example 5.5, which
is diffeomorphic to S2 �†n # 8CP (with g D 2nC 1), and hence has �.X /D �8.
Recall that (since the mapping class group �g is perfect once g � 3) any right-handed
Dehn twist t can be written as a product of commutators. The resulting relation
t
Qm

iD1Œai ; bi �D 1 defines a Lefschetz fibration Y !†m with a single singular fiber
over the surface of genus m. Since for any almost complex manifold the sum � C�

is divisible by 4, and �.Y /D 1C 4.g� 1/.m� 1/, we get that �.Y /��1 .mod 4/.
Assume that t is a Dehn twist along a homologically essential simple closed curve, and
recall that the monodromy of X of Example 5.5 can be factored to a product of Dehn
twists along homologically essential simple closed curves. (This fact is nontrivial, yet
not very hard to verify.) Since any two homologically essential simple closed curves on
a surface can be mapped into each other by a diffeomorphism of the surface, it is not
hard to see that the tubular neighborhoods of such fibers in any two Lefschetz fibrations
are (fiber preserving) diffeomorphic. Therefore, we can consider the singular fiber
sums of X and 2gC10 copies of Y : Suppose that Gi �X is the tubular neighborhood
of the i th singular fiber, consider

X �

2gC10[
iD1

Gi

and 2gC 10 copies of

Y � (the tubular neighborhood of the single singular fiber),

and glue each of the latter to X �
S2gC10

iD1
Gi along the diffeomorphic boundaries.

Since we can glue these manifolds together with fiber-preserving, orientation-reversing
diffeomorphisms of the respective boundaries, we can construct a surface bundle
Z!†k , where k Dm.2gC 10/ (recall that m is the number of commutators in the
factorization of the Dehn twist t ). Since the boundary components are orientation-
preserving diffeomorphic, we need to reverse the orientations of the Y so we can glue
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the pieces together. Novikov additivity for the signature then implies that

�.Z/D�8� .2gC 10/�.Y /D 4.�2� .nC 3/�.Y //;

where (as before) gD 2nC1. Now the signature �.Z/ is not zero; in fact, since �.Y /
is nonzero, j�.Z/j is of the magnitude of 2gj�.Y /j.

In [16], examples of surface bundles over surfaces of genus 9 with � D 4 (and fiber
genus at least 3) have been constructed. The signatures in [16] were computed by
more algebraic methods, relying on Meyer’s signature cocycle [36]. The result of
Bryan and Donagi [8] provides the surface bundle with nonvanishing signature and
the smallest possible base genus: a genus-25 fibration over a genus-2 surface with
signature 16. (Since � C� is divisible by 4 and � for a surface bundle over a surface
is 4.g�1/.h�1/, it follows that the signatures of such manifolds are always divisible
by 4.)

The significance of surface bundles also comes from the fact that, once the fiber genus
is at least 2, these manifolds admit symplectic structures with both orientations. In
particular, once bC

2
> 1, this property implies that these manifolds admit nontrivial

Seiberg–Witten invariants with both orientations.

Assume that X is the total space of a surface bundle over a surface with fiber genus at
least 2. Then X is minimal (as a symplectic manifold): Indeed, by choosing an almost
complex structure J for which the bundle map is J–holomorphic, any �1–sphere
would give rise to a .�1/–sphere in a fiber; by Remark 2.6 the �1–sphere can be
assumed to be J–holomorphic, hence the bundle map restricted to the sphere gives
a holomorphic map from S2 to the base complex curve (of positive genus), and this
map must be constant (so S2 is in a fiber). By Taubes’ theorem this property and
bC

2
.X / > 1 implies that c2

1
.X /D 3�.X /C 2�.X /� 0. Since this inequality applies

for both orientations (while �.�X /D��.X / and �.�X /D �.X /), we get

3j�.X /j � 2�.X /:

This inequality has been improved by Kotschick [28]:

Proposition 7.1 (Kotschick [28]) Suppose that X admits a surface bundle structure
with base and fiber genera at least 2. Then

2j�.X /j � �.X /:

Proof Notice that by Theorem 3.4 X with either orientation is a symplectic manifold
(since the assumption on the fiber genus guarantees that the fiber is homologically
essential). As above, it can be shown that the manifold X is minimal, that is, does not
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contain any embedded sphere with self-intersection �1. It can be shown that bC
2
> 1

holds for both orientations, hence c2
1
.X / � 0 and c2

1
.�X / � 0 (where �X denotes

X with the reversed orientation).

By Taubes’ theorem we can consider a J–holomorphic representative C � X of
�c1.X; !/, where ! is a symplectic form given by the fibration structure and J is an
!–compatible almost complex structure. Suppose that C is connected. (Taubes’ result
does not provide connected representatives, and indeed, sometimes the J–holomorphic
representative cannot be chosen to be connected; in the argument to come we assume
connectedness just to simplify the presentation.) Suppose that the intersection number
of C with the typical fiber F is d . Then the restriction of the bundle map f to C

provides a d –fold branched cover fC W C !†h . By Kneser’s formula, this implies

g.C /� 1� d.h� 1/:

By the adjunction formula for the generic fiber F (and by the fact that F �F D 0), we
get that

C �F D 2g.F /� 2:

Since d D C �F , the above two formulae show that g.C /�1� 1
2
�.X /. Applying the

adjunction equality now for C we get

1
2
�.X /� g.C /� 1D 1

2
.C �C � c1.X; !/ �C /D C �C D 3�.X /C 2�.X /:

This argument shows that �.X /��2�.X /; this inequality together with the similar
one for �X implies the claimed inequality of the proposition.

The above result has been recently improved by Hamenstädt:

Theorem 7.2 (Hamenstädt [22]) Suppose that X is a 4–manifold with a surface
bundle map f W X !†h . Then

3j�.X /j � �.X /:

Recall that for a compact complex surface X of general type we have the famous
Bogomolov–Miyaoka–Yau (BMY) inequality

(7-1) c2
1.X /� 3c2.X /:

This inequality is sharp in the sense that there are complex surfaces having characteristic
numbers with equality in Equation (7-1). In fact, by a result of LeBrun [31], this
inequality holds for those symplectic manifolds which admit an Einstein metric. It is
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easy to see that for a surface bundle X!†h , the inequality 3�.X /��.X / (following
from Hamenstädt’s Theorem 7.2) implies

c2
1.X /D 3�.X /C 2�.X /� 3�.X /D 3c2.X /;

providing the BMY inequality for surface bundles.

This connection then brings us to one of the most intriguing questions in 4–dimensional
symplectic topology:

Problem 7.3 Prove or provide a counterexample to the BMY inequality (7-1) for
4–manifolds admitting a Lefschetz fibration structure. More generally, prove or provide
a counterexample to the BMY inequality (7-1) for closed symplectic 4–manifolds.

8 Stein surfaces and Stein domains

The method of considering Lefschetz fibrations and Lefschetz pencils on closed 4–
manifolds (hence providing a bridge between symplectic structures and mapping class
groups) extends to 4–manifolds with boundary. In order to state the relevant result, we
need to review a central concept from complex geometry.

Suppose that V is a complex manifold. It is a Stein manifold if V admits a proper,
holomorphic embedding into Cn for some n. From this perspective, Stein manifolds are
the natural complex counterparts of (real) manifolds, which (by the Whitney embedding
theorem) all admit embedding into some Rm . From the maximum principle it follows
that a Stein manifold is necessarily noncompact.

An alternative definition (relying more on the concept of symplectic forms) can be
given as follows. Suppose that .V;J / is a complex manifold with complex structure J .
Suppose that 'W V ! Œ0;1/ is a proper, smooth function on V . Consider the 1–form
d' , and define dC' by the formula

dC'.v/D d'.Jv/:

Let !' denote the 2–form �d.dC'/.

Definition 8.1 The function ' with the above properties is strictly plurisubharmonic
(spsh) if the associated 2–form !' is nondegenerate, consequently is a symplectic
form on V . The triple .V;J; '/ is a Stein manifold if .V;J / is a complex manifold
and ' is a spsh function.
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(Notice that the 2–form !' is exact, hence it is symplectic if and only if it is nonde-
generate. Also, if !' is an exact symplectic form, then V is necessarily noncompact.)
It is a classical result that the two definitions of Stein manifolds described above are
equivalent.

A compact 4–manifold X with boundary Y and complex structure J on X �Y is
a Stein domain if there is a Stein manifold .V;J; '/ and a regular value c of ' such
that '�1.Œ0; c�/ and .X;J / are biholomorphic.

A striking result of Eliashberg [11; 14] describes Stein manifolds and Stein domains in
dimensions at least 6 by a convenient topological property: the (real) 2n–dimensional
manifold V admits a Stein structure if and only if

� V admits an almost complex structure, and

� V admits a proper Morse function V ! Œ0;1/ which has critical points only
of index � n.

Such a characterization of Stein 4–manifolds is not available; both conditions are
necessary, but (as the example of S2 �D2 shows) are not sufficient. The further
condition one needs to build a Stein structure on an oriented 2–handlebody (ie a 4–
manifold built from 0–, 1– and 2–handles only) is in the attachment of the 2–handles.
(Notice that an oriented 2–handlebody always admits an almost complex structure.)
In fact, the boundary of the union of 0– and 1–handles admits a canonical (tight)
contact structure, and we need that each 2–handle can be attached along a Legendrian
knot, with framing one less than the contact framing of the knot. This condition is
rather delicate, and therefore it is a challenging problem in general to decide whether a
4–manifold admits a Stein structure, or even if a 3–manifold bounds a Stein domain.

Seiberg–Witten theory, and arguments based on these invariants provide strong tools to
understand topological properties of Stein 4–manifolds. A prominent example of such
results is the following theorem:

Theorem 8.2 (Lisca and Matić [33]) Suppose that † � X is a closed, oriented
surface of genus g.†/ in a Stein domain .X;J / with first Chern class c1.X;J /. Then

jhc1.X;J /; Œ†�ijC Œ†�
2
� 2g.†/� 2:

Notice, in particular, that the above inequality implies that a Stein domain does not
contain an embedded sphere with self-intersection �1.

It is now rather easy to see that some 4–manifolds cannot carry Stein structures:
for example, the positive-definite E8 plumbing XE8

(containing many spheres with
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self-intersection C2) cannot be made Stein. It requires a more advanced argument
to show, that, in fact its boundary YE8

D @XE8
is not the boundary of any Stein

domain. This result (due to Lisca [32]) involves two steps: Using an advanced version
of Seiberg–Witten theory one can show that any Stein domain with boundary YE8

must have negative definite intersection form. Then gluing a potential Stein domain Z

with @Z D YE8
to �XE8

(the “negative-definite E8 –plumbing”) we get a negative-
definite closed 4–manifold W with its intersection form containing the negative-definite
E8 lattice. Since by Donaldson’s famous theorem this 4–manifold W must have
diagonalizable intersection form (diagonalizable over Z), while the negative-definite
E8 lattice does not embed into any diagonal lattice over Z (as a rather elementary
argument shows), we find a contradiction from the assumption of the existence of Z .

This shows that the property whether a 3–manifold is the boundary of a Stein domain
is far from being transparent. (This question has been studied for higher-dimensional
manifolds as well [6]; in dimension at least 5, based on Eliashberg’s theorem, surgery-
theoretic methods can be fruitfully applied, while the complete picture for 3–manifolds
is still rather mysterious.)

9 Stein domains and Lefschetz fibrations

Examples of Stein domains can be given by the construction from the beginning of
Section 4. In fact, by considering the same situation of having a complex surface
X �CPn , let us take a hyperplane CPn�1 �CPn and define V as the intersection

X \ .CPn
�CPn�1/:

Since the complement of the hyperplane in CPn is Cn , the above intersection admits
the required embedding into Cn , hence is a Stein surface. Recall that a family of
hyperplanes (containing the fixed axis A) provides a Lefschetz pencil structure on X .

Indeed, this pencil provides a fibration on X\.CPn�CPn�1/: by deleting X\CPn�1

we delete all the base points of the pencil, hence we get a Lefschetz fibration

f W X � .X \CPn�1/ �!D2

over the 2–disk D2 . The fiber of this fibration is given by deleting X \CPn�1 from
a curve of the pencil, hence we get a 2–dimensional surface with nonempty boundary.
This leads us to the following definition:

Definition 9.1 Suppose that X is a smooth, compact, oriented 4–manifold with
nonempty boundary @X D Y and † is a compact 2–dimensional manifold with
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nonempty boundary. The smooth map f W X !† is a Lefschetz fibration with bounded
fibers if df is onto with finitely many exceptions C Dfp1; : : : ;pkg, C is contained in
the interior X�@X and at a point of C we have Lefschetz charts just as in Definition 3.1.

The above complex geometric construction provides such a fibration structure for any
X � .X \CPn�1/ (where X � CPn is a projective surface). In fact, in these cases
the base surface is simply the 2–disk D2 .

Donaldson’s Theorem 3.3, extending the existence of a Lefschetz pencil from projective
surfaces to symplectic 4–manifolds, extends the above construction as well: suppose
that .X; !/ is a closed symplectic 4–manifold. Then the appropriate Lefschetz pencil
of Theorem 3.3 provides a Stein structure on the complement of the generic curve of
the pencil, and also equips this complement with a Lefschetz fibration with bounded
fibers. These examples, however, do not exhaust all Stein 4–manifolds; for example,
the boundary of a Stein manifold constructed in this way is a circle bundle over a
surface, while there are Stein domains with different boundaries. Nevertheless, the
fibration structure and the Stein structure on a 4–manifold are closely related:

Theorem 9.2 (Loi and Piergallini [35], Akbulut and Ozbagci [1]) A Stein domain
X admits a Lefschetz fibration over D2 with bounded fibers. The genus of the fiber
can be chosen to be arbitrarily large. Conversely, the total space of a Lefschetz fibration
over D2 with bounded fibers and with only homologically essential vanishing cycles
admits a Stein structure.

This result admits an extension to Lefschetz fibrations over surfaces other than D2 :

Theorem 9.3 (Lisi and Wendl, Baykur and Van Horn-Morris [3]) Suppose that the
4–manifold with boundary admits a Lefschetz fibration f W X!† with bounded fibers
over the 2–manifold † with nonempty boundary. If the vanishing cycles corresponding
to the Lefschetz singularities are all homologically essential, then X admits a Stein
structure.

Remark 9.4 It is clear that some assumption on the vanishing cycles is needed, since a
Stein domain is minimal (in the sense that it contains no sphere of self-intersection �1,
cf the adjunction formula in Theorem 8.2), while a homotopically trivial vanishing
cycle produces an embedded sphere of self-intersection �1. While the above result
has been known when the base surface † is diffeomorphic to the disk for quite some
time, this general form was proved only recently.
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10 Stein domains and mapping class groups

Just as in the closed case, we can apply mapping class group techniques to encode
bounded Lefschetz fibrations. Indeed, suppose that f W X !† is a bounded Lefschetz
fibration with fiber of genus g and r boundary components. As in the description
of Lefschetz pencils, the monodromies along loops in † avoiding critical values
provide elements of the mapping class group �r

g (that is, mapping classes which keep
the boundary of the fiber pointwise fixed). Consequently, a Lefschetz fibration with
bounded fibers over D2 gives rise to a product

kY
iD1

ti 2 �
r
g

of right-handed Dehn twists in the mapping class group �r
g ; if the fibration is over

a genus-m surface †, then (again after the choice of a generating system of curves
aj ; bj in † for �1.†/) we get, as the corresponding monodromies,

kY
iD1

ti

mY
jD1

Œ j̨ ; ǰ � 2 �
r
g :

Unlike for Lefschetz pencils in the closed case, now we cannot be sure that these
products factor the product of Dehn twists along boundary parallel curves. Indeed,
the product above gives rise to an element h 2 �r

g , which equips the boundary 3–
manifold with an extra structure: an open book in case † D D2 and a spinal open
book in general (for a detailed discussion on spinal open books see the forthcoming
paper of Lisi, Van Horn-Morris and Wendl [34], or [3, Appendix]). Here we will not
discuss these structures in any further detail; we restrict ourselves to the comment that
(spinal) open books provide the mapping class group analogue of contact structures on
3–manifolds.

As in the closed case, we are interested in the number of singular fibers a Lefschetz
fibration can admit. Notice that (since the open book, and hence the monodromy, on
the boundary can be arbitrary) the factorization can be arbitrarily short: by considering
the 3–manifold admitting the open book decomposition with monodromy h being
equal to a right-handed Dehn twist, the factorization can be of length one. The question
therefore makes sense only after an open book decomposition (or equivalently, an
element h 2 �r

g ) is fixed. Let us consider first the special case when hD 1.

Proposition 10.1 [41] Suppose that
Qk

iD1 ti is the product of right-handed Dehn
twists with the property that

Qk
iD1 ti D 1 2 �r

g and r > 0. Then k D 0 and the product
is the empty product.
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Proof Suppose that we have a nontrivial factorization of 1. Considering it in �g ,
we get a nontrivial Lefschetz fibration over the sphere, and since it lifts to �g;r , it
admits sections. Since the lift gives 1 in �r

g , these sections have 0 self-intersection,
contradicting Proposition 5.8.

This result shows that we cannot increase the length of a factorization by multiplying it
with the factorization of the unit element. (Such increase of the length of a factorization
does work in the case when r D0, and indeed it corresponds to fiber summing Lefschetz
fibrations.) This observation led to the expectation that perhaps the factorization of a
fixed element h 2 �r

g is bounded from above.

This boundedness conjecture (proved for further special monodromies besides 12�r
g in

[43]) has been recently disproved by Baykur and Van Horn-Morris in [4] (see also [3]):

Theorem 10.2 (Baykur and Van Horn-Morris [4]) Suppose that † is a genus-g
surface with two boundary components and with g � 8. Then the product ı1ı2 can
be factorized as a product of arbitrarily large number of positive Dehn twists along
nonseparating curves in �2

g .

Since the number of singular fibers (or equivalently, the length of the factorization
of the monodromy) is directly linked to the Euler characteristic of the Stein filling,
the above result provided sequences of Stein manifolds with fixed boundary and with
growing Euler characteristic. Theorem 10.2 has been extended to lower-genus surfaces:

Theorem 10.3 (Dalyan, Korkmaz and Pamuk [12]) Let †1
g be the compact connected

oriented surface of genus g with one boundary component ı . In the mapping class
group �1

g consider the element h which is equal to ı2 for gD 2 and ı for g� 3. Then
h can be written as a product of arbitrarily large number of right-handed Dehn twists
along nonseparating simple closed curves.
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