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Abstract

Selberg-type integrals that can be turned into constamt igentities for Laurent polynomials arise naturally in eon
junction with random matrix models in statistical mechaniBuilt on a recent idea of Karasev and Petrov we develop
a general interpolation based method that is powerful emeagstablish many such identities in a simple manner.
The main consequence is the proof of a conjecture of Forredtded to the Calogero—Sutherland model. In fact we
prove a more general theorem, which includes Aomoto’s esriserm identity at the same time. We also demonstrate
the relevance of the method in additive combinatorics.
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1. Introduction

Perhaps the most famous constant term identity is the omeiassd with the name of Freeman Dyson. In his
seminal papem3] dated back to 1962, Dyson proposed tacepWigner’s classical Gaussian-based random matrix
models by what now is known as the circular ensembles. Thaty stfitheir joint eigenvalue probability density
functions led Dyson to the following conjecture. Consider tamily of Laurent polynomials

D(x; @) := 1_[ (1—%)aj

I<i#j<n
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parametrized by a sequenae- (ay, .. ., a,) of nonnegative integers, whexe= (xs, ..., X,) is a sequence of indeter-
minates. Denoting by CT[(x)] the constant term of the Laurent polynomiél= £(x), Dyson’s hypothesis can be
formulated as the identity

CT[D(x; @)] =

(a+a+---+an) _ (lal
ailay!...a,! “\a/)
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wherelal = a; + a2 + - - - + ay. Using the shorthand notatiob(x; k) for the equal parameter caae= (k, ..., k), the
constant term of(x; k) for k = 1, 2, 4 corresponds to the normalization factor of the partitiomction for the circular
orthogonal, unitary and symplectic ensemble, respegtivel

Dyson’s conjecture was confirmed by Gunson [unpublisﬁmddﬂ Wilson[[49] in the same year. The most elegant
proof, based on Lagrange interpolation, is due to Good [22].

Let g denote yet another independent variable. In 1975 Andrelvsy§gested the following-analogue of
Dyson’s conjecture: The constant term of the Laurent patyiab

Dy(x; @) = ]éli:j[gn(Xﬁj)a‘ (qT)i(j)aj

must be the-multinomial codficient
&l
a

. (q)\aj
T (@, @y - (@,

where(t), = (1 -t)(1-tq)...(1 - tg?). Note that the slight asymmetry of the functi@)y disappears when one
considersD = Ds; specializing afj = 1, Andrews’ conjecture gives back that of Dyson.

Despite several attempts [27, 46| 47] the problem remainsdlued until 1985, when Zeilberger and Bressoud
[53] found a tour de force combinatorial proof; see also Shorter proofs are due to Gessel and Xin [21] and Cai
[10]. Recently an idea of Karasev and Petrov [35] led to a whyrt proof by Karolyi and Nagy [37], which we
consider as a precursor to the present paper.

Constant term identities like these and their generabtinatare intimately related to Selberg’s integral formula
[44]. Colloquially referred to as the Selberg integral dserts

1 1N
Sn(a, B, :=f f (1 - )t It — t;/2dty ... dt,
@pn= | 0]_1[ @-tP* [] w-tPdy

1<i<j<n

n-1

_ 1—[ L@+ jnr@+ inra+(j+1)y)
[a@+B+(n+j—-1IA+y) "’

j=0
where the complex parameterss, y satisfy
R(a) >0, R(B) >0, R(y) > —min{1/n, R(a)/(n— 1), R(B)/(n— 1)}.

The continued interest in the Selberg integral, demorestridr example by the most recent articlel[43], is due to its
role in random matrix theory, statistical mechanics, sgidanction theory among other fields; see the comprehensive
exposition|[19].

The Selberg integral is well-known to be equivalent to Mgsrconstant term identity [42]

a+b+kj)(Kj + k!
@+ k)b +kjK

n n-1
CT[ [ T - 1/x)°D(x; k)] =11 ( (1.1)
j=1 i=0

or in a more compact form,
CT [M(x;a,b,K)] = M(n; a, b, k),

where the parametegsb, k are nonnegative integers. The equivalence is establisfieed, suitable change of vari-
ables, by an application of a theorem of Carlson [11] andeki&ue theorem. This method can be employed to reduce
Selberg-type integrals to constant term identities.

3Gunson’s proof is similar to that of Wilson, cf. [13]. A retat conjecture of Dyson is proved by Gunsorlir [23].



Introducing an extrd; - - - t, factor into the integrand, Aomoto![4] in 1987 proved an egten of the Selberg
integral. Based on the fundamental theorem of calculuselitly besides Anderson’s [3] one of the simplest known
proofs of the Selberg integral itself. Turned into a constanm identity, Aomoto’s integral reads as

CT[ ﬁ(l — x)EUSM(1 - 17%)PD(x; k)] (1.2)

i=1

T @+ b+ Kj+x(j = n—m)ikj + K)!
- lj_! @+Kj+x(j=n-m)(b+Kkjk ’

wherey(S) is equal to 1 if the stateme8tis true and 0 otherwise.

Intimately related to the theory of random matrices, inipafar the Dyson Brownian motion model [14], is the
Calogero-Sutherland quantum many body system for spigleastum particles on the unit circle interacting via the
1/r? two-body potential, see [18, Chapter 11]. Generalizattorisclude internal degrees of freedom of the particles
were formulated in the early 1990's. In his 1995 paper [1#€ster initiated the study of the analogue of the Selberg
integral for the corresponding exact multicomponent gtbstate wavefunction. Presented in the form of the constant
term for the Laurent polynomial

Xi
F(x; ng; &, b, k) = M(x; a,b,K) (1——),
nol;[jgn X]

the normalization factor for the most interesting two-cam@nt case can be determined by the conjectured identity

n-np-1 ,. . .
o 3 ) T (j+ D@+ b+ kg + (K+ 1))(kng + (k+ 1)j +K)!
CTIF (x;no; 2, b, K] = M(no; &, b, k) 11_(! @+ ko + (k+ 1)])I(b+ kno + (k+ 1)))IKI

A g-analogue of this hypothesis which extends ¢hlorris ex-conjecture [42] was formulated and studied. ih [7
Despite several further attemptsl[8, 20,125, 31} 32, 33,tBdke conjectures have been resolved only in some particula
cases. The main achievement in the present paper is the girtiodse identities, and in a form that also includes
Aomoto’s formula[[T.R); see Theordm .2 for the precise fdation. Along the way we develop a method with a
wide range of possible applications, some of which are gageimstructive examples.

A new proof of the Dyson conjecture given In [35] and the sgloeat proof of the Zeilberger—Bressoud identity
presented in [37] are based on a quick application of thevigiig explicit version of the Combinatorial Nullstelletsa
[1] found independently by Lasoh [40] and by Karasev andd?dB5].

Lemma1.1. LetF be an arbitrary field and Fe F[xy, Xz, .. ., X,] @ polynomial of degredegF) < dy +dz + - - - + dh.
For arbitrary subsets ¢, C,, ..., C, of F with |Cj| = d; + 1, the cogficient of[| x?i in Fis

F(ci,¢C2,...,Cn)
22 cnzc PP - Br(Cn)’

Cc1€Cy ceCy

where(2) = [Teeq, (2 ©).

One principal aim of the present paper is to turn this idea intnethod, which has the power to reduce seemingly
difficult evaluations to simple combinatorial problems. To #mid, in the next section we present a somewhat abstract
framework, which allows us to extend the previous lemma tdtisais via Hermite interpolation. In Section 3 we
demonstrate the strength of the method in additive combiitat by providing a new proof of an extension of the
Erdds—Heilbronn conjecture, which is devoid of the heaghnical details that were needed previously. This is
followed in Section 4 by an application to a problem of Kad2f] in algebraic combinatorics, where the amount
of reduction of former complexities is even more voluminolrs Section 5, which can be viewed as a prelude to
the main result, we reestabligh {1.1) using our method ethegiving a short proof of the Selberg integral itself.
Besides formulating our main result, in Section 6 we poirtttmw a slight modification yields, modulo some routine
computation, a one-page derivation of th#orris identity. The same idea with more delicate comlonias leads to
the solution of the problem of Forrester in the concludingisa. Finally we mention that the method developed here
can be successfully applied to prove Kadell's orthogoyatiinjectures [30], see [36].



2. OntheCombinatorial Nullstellensatz

Alon’s Nullstellensatz|[1] describedtectively the structure of polynomials which vanish on a én@artesian
product over an arbitrary field. It implies the following neanishing criterion. LeF be a polynomial as in Lemma
L. Ifthe codicient of[] xidi in F is non-zero, thelk cannot vanish on a sé4 xC,x- - -xC,,, wherelC;| > d; for every
i. Note that this is also an immediate consequence of Lemmaktandard application of the polynomial method to
prove a combinatorial hypothesis works as follows. Assutiire falsity of the hypothesis, build a polynomial whose
values are all zero over a large Cartesian product, then ataripe coéficient of the appropriate leading term. If
that codficient is not zero, the criterion leads to the desired coittiad. The dificulty often lies in the computation
of that codficient. This is where the power of Lemimall.1 comes into theumgtwhich is clearly demonstrated in
the next section. An extension of the non-vanishing coterfor the case whe@; are multisets, along with some
applications, was obtained recently by Kés and Ronydi 8 also [38]. Here we generalize Lenimd 1.1 in a similar
spirit.

Lets,...,Yy be vector spaces over the same figld~or each, fix a basis®; in 2J; and fix the corresponding
basis®®; in the tensor product spa@;. Consider arbitrary non-empty subs&sc 93, labelled vectorg; € A,
and linear functionalg; € Hom(J;, IF) that satisfy the conditiong(a;) = 1 andr;(b) = O for everyb € A \ {&}. Our
tool will be the following straightforward observation.

Lemma 2.1. Assume that the tensor &®; satisfies the following condition: if & 9%5; and the coordinate of F at
®b; does not vanish, then either b a, for everyior bh € A \ {a} for at least one index i. Then the coordinate of F
at ®g; equals(®n;)(F). O

We will apply this lemma in the following situation:
Ui =Flx], Bi=(Lx ...}, A={Lx..x" a=x"

Moreover we will assume that the valuemfe Hom(;, F) at f € F[x] is the same as the cfigient of xidi in fif
deg(f) < di. NowF[xy,...,Xn], @s a vector space ov&y, can be identified witle?; via the unique isomorphism,
which extends the correspondence

k

Xll...XI,‘]”<—>XIf®---®XIf(]”, kie{0,1,2...}.

An important feature of this identification is the following

Lemma2.2. Assume that linear functionats € Hom(;, IF) are given in the forn#;(f) = f™)(c;) for some elements
¢ € IF and nonnegative integers nThen for any polynomial @ F[xq, ..., X,],

amlJr"'JrrrhG

%)(G) = ———=(C1, - -
(® |)( ) 6XT1...6Xg}] (C]J

.»Cn).

Proof. Indeed, identifyingf ® - - - ® IF with IF via the correspondeneg ® - - - ® an «— a1 ... an, for any monomial
G= x‘fx,k;‘ € ®B; we obtain

6m1+'-'+n'\-|G

= (1.
6xr1”1...6xnm"(

@)G) = o ((x)) = [ |kl —1)...0« —m +1)- (st ™)

.»Cn).

The general statement follows by linearity. O

Let F € F[xy,...,X)]. We say that no monomial majoriz¢$ xl.di in F if every monomial[] x:‘i with a non-zero
codficientinF satisfies eithek; = d; for everyi ork; < d; for somei. This is certainly the case if deg) < dy+- - - +dh.
Such a polynomiaF obviously satisfies the condition in Lemihal2.1. As a warm-xgré&se we reestablish Lemma
[L.3 in a slightly stronger form using this language.



Theorem 2.3. Let F € F[Xq, ..., Xn] be a polynomial such that no monomial majorizes=MI| xidi inF. LetC,...,C,
be arbitrary subsets df such thaiC;| = d; + 1 for every i. Then the cgkcient of M in F can be evaluated as

33 3 [ [HC e,

c1€C; ceCy cheC, i=1

-1 . S .
wherek(Ci, ¢;) = (]‘Iceci\{q,(ci - c)) . Consequently, if the above gheient is not zero, then there exists a system of
representatives;& C; such that Kc;, Cp, ..., ¢,) # 0.

Proof. Define the linear functionalg; € Hom(Q;,F) by 7i(f) = X «(Ci,c)f(c). According to the Lagrange
interpolation formulag;(f) is equal to the caécient ofxidi in f forany f e IF[x] with deg(f) < d;. Since eachy; is
a linear combination of linear functionals of the fofi{f) = f©(c), the claim follows easily from Lemm&s2.1 and
2.2. O

Extending the notion of the/0-valued characteristic function of a set, a finite multSén F can be represented
by a multiplicity functionw : F — {0,1,2,...} with finite sum|C| := 3, w(X). We denote by supf) := {c €
F | w(c) # O} the supporting set o and, with a slight abuse of notation, write= C if ¢ € suppC). A finite union
of multisets is understood as the sum of the correspondiritiplieity functions. An appropriate generalization of
Theoreni Z.B for multisets can be formulated as follows.

Theorem 2.4. Let F € F[Xy, ..., X,] be a polynomial such that no monomial majorizes=NI| xf|i inF. LetG,...,C,
be arbitrary multisets irfif with corresponding multiplicity functionss, ..., w, such thatC;| = d; + 1 for every i.
Assume that eithezhar(f) = 0 or char({) > wi(c) for every index i and & F. Then the cofcient of M in F can be

evaluated as
n +tTh

[M]F:Z Z Z Z HK(Ci,Ci,m)éi:ll—w(Cl,...,Cn),
1

c1€C1 my<ws(cy) Ccn€Ch My<wn(Cn) =1

where

(wi(ci)-1-my)
1 1
k(Ci,ci,m) = : ( )

m! - (wi(G) =1-m)! \[Teec (o) (X — €)1 ©

Consequently, fM]F # 0O, then there exists a system of representatives €; and multiplicities m < wi(c;) such
that

X=Ci

6m1+.,.+rth
——(Cy,..., 0.
ale...ax[{‘"(l Cn) #

Remarks. 1We tacitly assume that thg’s are nonnegative integerg. When eachy; is a ¢1-valued function, the
statement reduces to TheorEm|233.1t is possible to derive this result, in a slightly weakerfgrfrom the earlier
works of Kos et al.|[38, 39]. We preferred this more diregbiagach.

Proof. To construct the linear functionajs we replace Lagrange interpolation by Hermite interpotatieorc; € C;,
0 < m < wi(a), let g(Ci,ci,m) denote the unique polynomial of degree less ti@h provided by the Chinese
Remainder Theorem, to the system of simultaneous congesenc

9(Ci,ci,m)(%) = (x —c)™/m!  (mod (x — ) @)),

g(Ci,c.m)(x) =0 (mod & - ) (ceCi\{c))

in ;. That is,g(Ci, ¢, m) is the unique polynomialj € F[x] of degree less than or equal th which satisfies
g™(c) = 1 andg™(u) = O otherwise ifm < wi(u), u € F. Denote byx(Ci,c,m) the codficient of x* in
9(Ci, ¢, m). Then Lemmak 2l1 afd 2.2 can be applied as before for thar lfnectionals;; € Hom(Y;, IF) given by

m(f) =), >, «(Ciam)i™).

cieCi m<wi(ci)
5



To compute the cdcients«(Cj, ¢, my), write Pi(X) = [Tcec e (X — ©)“(©. That is, there exist polynomials, r; €
F[x] with degh;) < wi(c) and deg() < di — wi(c;) such that

oy oG m)(6) (6 —c)™
hi(x) = pi(X;) - m!pi (X))

(c)-1

)
pi(x)

+ (X| _ Ci)wi(ci)

with «(C;, ¢i, m) being the cofficient of x” in hj(x). Expanding both the left- and the right-hand side as a forma
power series in the variable — ¢; one finds thak(C;, ¢, m) is the codicient of (¢ — ¢,)“©)-"=1in 1/(my! pi(x))-
The result follows by an application of Taylor’s formula. O

3. An application to additive theory

LetS = {Sj; | 1 <i < ] < n} be a family of subsets of the cyclic grodfy := Z/pZ of prime orderp. For a
collection of setd\y, ..., A, C Zp, consider the following restricted sumset:

/\SAiz{a1+---+an|aieAi, aj—aesijfori<j}.

For the special case whéf = A andS;; = {0}, Dias da Silva and Hamidoune [12] proved

Al = min{p,nA - n?+ 1},
[\ A = min{ )

thus establishing a long-standing conjecture of ErdésHeitbronn [16]. Their proof exploited the properties of
cyclic spaces of derivations on exterior product spaceslamdepresentation theory of symmetric groups; see [2] for
another proof based on the polynomial method. A far reachemngralization was obtained by Hou and Sun [26].
Here we use Lemnia.1 to reestablish their result in a shdrelegant manner, thereby also providing a simplified
proof to the Dias da Silva—Hamidoune theorem. Note thabalgh our formulation below is slightly fferent, it is

still equivalent tol[26, Theorem 1.1].

Theorem 3.1. Let A, ..., A, be subsets of a fielfl such thaiAj| = k for 1 < i < n and assume that;SC FF satisfy
ISijl < sforl<i< j<n.IfeithercharfF) = 0or

char{) > max{n[s/2],n(k— 1) — n(n—1)[s/2]},

then
'AS’*' >n(k-1)-n(n-1)s/2]+ L.

Proof. Since posing extra restrictions cannot increase the sizbeofumset, we will assume thatis even and
ISijl = s = 2t holds for every paii < j. We may also assume thlat- 1 > (n - 1)t. We proceed by way of
contradiction. Suppose tha{s A is contained in a st of sizen(k — 1) — n(n — 1)t, and consider the polynomial

n(x1+---+xn—e)xn[n(xj—xi—e)].
ecC

i<] eeSij

This polynomial of degre@(k — 1) vanishes on the Cartesian prodégtx --- x A,. According to Lemma 111,
the codficient of the monomial] X! must be zero. This cdicient remains the same if we slightly modify the
polynomial and consider

n(k-1)-(H)t t-1
F(x) = l_l (Xl+"'+xn_e)xl_[[ (Xj—Xi—e)]
&(g)nl i<j \e=—t

6



instead, keeping all leading terms intact. This fée&nt is easy to compute when one applies Lerimh 1.1 with
Ci=1{0,1,...,k—1}. Indeed, ifF(c) # O for somec € Cy x- - - x C,, then|c; —ci| > t for every paili < j. Accordingly,

n n
(2)ts01+---+cnsn(k—l)—(z)t,

thus it must bec; + --- + ¢, = (g)t and the numbersy, ..., cy, in some order, must coincide with the numbers
0,t,2t,...,(n— 1)t. Moreover, it must be the natural order, focif> c; for somei < j, thenc; — ¢; > t + 1. Thus the
computation of the cd&cient reduces to the evaluation of

F(ci,Co,...,Cn)
#1(C1)95(C2) - - - Ppn(Cn)

at the pointc = (0,t, 2t,. .., (n— 1)t). After some cancellations this leads to the value

¢, (N(k=1) = n(n - 1)0)! L (it)!
(-0 x n % 1:1[ (K—1—(i— 1

which is not zero in view of the assumption on the charadterif the field. This contradiction completes the
proof. O

The tightness of the bound is demonstrated by the choice
A={01,....k=1}, Sjj={-t+1-t+2,....t—-1}.

3.1. Further examples

The alert reader must have already extracted from the abmenent the following general statement about
restricted sumsets, which is rather folklore, cf. [2, TheoR2.1].

Theorem 3.2. Letd, s; denote non-negative integers, and lgt A., A, and S; (1 <i < j < n) be subsets of a field
F with |A] = di + 1, |Sjj| = sj. Assume that N= ), d; — > 5; = 0. If the cogficient of the monomia[] xidi in the
polynomial

Fo(X) = (Xg + -+ + )N ]_[(xj — %)% € F[x, . .., X]
i<j

is non-zero, thef/\ sAi| > N.

In the proof of Theoreri 311 we applied Leminall.1 in the ahse k — 1, 5; = 2t to obtain the coficient
[x‘f1 e xﬁ"]Fo in a simple product form. Similar arguments work in the faling cases. The first example concerns a
related result of Sun and Yeh, cf. [48, Theorem 1.1], whislolves only a minor modification.

Example3.3. Letd = k—1i, sj = 2t — 1. Then N= n(k - 1) — n(n - 1)t and

dy n = 2 N' ; L
[ xd1Fo = (-1)'x (thnn! Xl_ll (k=1-(@-1p"

Proof. Apply Lemmd1.1 to the modified polynomial

n(k-1)- ()t t-1
F(X) = 1_[ (x1+---+xn—e)><l_[{l_[(xj—xi—e)]

e=())t+1 i<j \e=1-t

with the choiceCj = {0,1,...,k—-1}\ {jm|0 < j <i—1}. Once agair-(c) # 0 forc e C; x --- x Cy, if and only if
¢ = (i — 1)t for every 1< i < n, and the slight changes in the computation are easy to detect O

7



The next example considers the Alon—Nathanson—Ruzsaaiime@]. Although our approach is not significantly
different from the original proof, we include it for it represean atypical application of Lemrhall.1, when more than
onec € C; x - - - x Cy contributes to a non-zero summand.

Example 3.4. Let the ¢ be arbitrary, y = 1. Then N=dy +--- + dn — (2) and

N!

D3 TFo= g l;_l(d,- - d).
Proof. Replace the polynomidd, by
dy+--+dy
FOO= [] Gattxa—e)x | [x-x)
() <

and apply Lemm@adl1 witd; = {0, 1, ..., d;}. Consider an elemente C;x- - -xC,, whose coordinates are mutually
different. Ther=(c) # O only if {c;,...,cy} = {0,...,n—1}. Thatis, there is a permutatian= 7. € &(n) such that
¢ = ne(i) — 1. For such &,

F(0) = (DN xsigngo)[ [_ (-1 #(e) = (~1)*%ail(di —c).

Since(g_‘) = 0 ford; < ¢, itis enough to prove that

_ L od d; — d
2 S'g”@li_l[(n(i)—l)zn }—i ‘

7eS(n) i<j

To establish this identity, notice that both sides are ceta antisymmetric polynomials of minimum possible
degreen(n — 1)/2 in the variables!;, which attain the same value ak(...,d,) = (0,...,n—1). O

Remark A more direct proof goes as follows. Wri#d = x(x— 1)...(x — k + 1) and consider the polynomials
n n [N] N' n
_ - - (y) — : kK [k]
FX) = [Zl X (2)] [ls-n. Foo= 5 malls-o] 4

Itis enoughto prove thd&—F* vanishes on the Cartesian product of the €gts {0, 1, .. ., d;}, forthen (1’1 ... xﬁ"](F_
F*) = 0 by Lemmd_Ll and therefore
N!
di n — dy In _ dy I *
X o Fo = [ XPIF = X xIF = o |i<j|(dj—di)

as claimed. For the proof, notice thae C; x - -- x C,, impliesF(c) = F*(c) = 0 unless; = d; for everyi, in which
caseF(c) = F*(c) follows from the very choice of the cfiicients inF*. This argument can be extended to show that
in factF = F*.

Our final example originates in Xin [50], where it appeardia torm of the constant term identity

o o= =000 = 5) (3.)

see also [20]. Here the full capacity of Theorem 2.4 can béoéed with a minimum amount of computation.

Example3.5. Letd =na, 5 =& +a;. ThenN=a; +--- +a,and
1R - (0249

8



Proof. For the proof we may assume that cidr& 0. Choose an arbitrary s& = {bs,...,b,} c F so thatb; +
---+ by = 0, and consider the multise®;, . . ., C, with suppCi) = B and multiplicity functions given by;i(b;) =
a + x(j = i); then|Cj| = d; + 1. We apply Theorem 2.4 to the polynomial

F(X) = (-1)Z9%Fo(X) = (X + - + Xn)aﬁ"'mnl_[i;tj(Xi - Xj)*.

There is only one non-zero summand in the summation forntlmlpz(f1 e xﬂ”] F. Indeed, suppose that

Pt
———(C1,...,C) # 0
6xr1”1...8xn”‘“( oo Cn) #

for somec € C; x --- x C,, with 0 < my < wj(g;). First we show that the coordinatgsare mutually diferent. Assume
that on the contrary; = c; for somei # j. Thenm + m; < wi(c) + wj(G) < & + a; — 1. This implies that the
polynomialH := [](9/9x)™F is divisible byx — x;, a contradiction.

Thus,{c1,...,cy} = {b1,...,bn}. Note thatm < a. If >’ my < 3 &, thenH is divisible by}’ x;, a contradiction.
Accordingly,m = &, ¢; = b; for everyi. Moreover, all thea; + - - - + &, partial derivatives must be applied to the term
(Xg + -+ + X)2" & in F. After all, we get
ot tan |

dy hE — . - h ) = lal
[Xl...Xg]F—li_l[K(Chbhal)aXil.“6)(%1(b1»...,bn)—(a)y

for [Ti.j(bi — b))% = [Ti [Tcemy ) (0i — ©)%. U

Remarks. 1A connection between restricted sumsets and Morris’s eohgtrm identity was made recently by Zhou
[58]. 2. Lethi(X) = X1<j,<<j<n Xj; - - - Xj, denote the complete symmetric function of degre€ollowing Good’s
method|[22] one gets the following generalization[of(3al3p implicit in [50]:

CT ™ .o he (X, . . ., Xn)™* +anl_[i;tj(l - Xj/Xi)a] ) (|a|)'

It would be interesting to obtain a proof of this identity beson the Combinatorial Nullstellensatz.

4. On aproblem of Kadell

The aforementioned idea of Aomoto led Kadell|[29] to diseaved prove the following Dyson-type identity. Fix
m< n. For 1< r < nand anm-element subsé¥l of {1, 2, ..., n}, consider the Laurent polynomial

Im(x; @) = (1 + Z av) 1_[ (1 - Xﬁ)D(x; a).
veM seM s

Note thatX; m(x; @) = 0 if r € M. Then, according to [29, Theorem 1],
“ n-1 lal
CT[ %, x;a]:n( )1+|a|( ) 41
;“;mrm(> o jasianl (4.1)

Kadell suggested that each non-zero functiGn(x; @) must have the same contribution to the constant term. He
formulated an even more general hypothesis (s€e [29, Gonge2]), which was established recently by Zhou [54]
based on the first layer formulas for Dyson-fiéents [41, Theorem 1.7]. Kadell also suggested the fotigwi
g-analogue of his hypothesis.

Conjecture4.1 ([29, Conjecture 3]) Let Mc {1,2,...,n}and{rs| se M}n M = 0. Then

1T () (%) |- e
1<i<j<n Xj a Xi a]f 1—ql+2quav

a
where, with a slight abuse of notatior, & a’(j) = a + x(j € M,i =rj) and g = aj(i) = a; + x(i € M, j = y).
9
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Zhou [54] pointed out that this conjecture already failsrict 3, M| = m = 1, and proved a meaningfgianalogue

of [29, Conjecture 2], which is too technical to be recalledehin detail. Our main result in this section is the proof
of the following special case of Conjectiirel4.1 correspogdd M = {1,..., m} andrs = n that, unexpectedly, does
not seem to be implied by Zhou’s result.

[ 1—[ (ﬁ) (%) ]_ 1 - g+
1<i<j<n Xj /o \ Xi . 1—q1+23:m+13v

where g = a, + x(i < m) and g = a; otherwise.

Theorem 4.2. Let m< n. Then

|al

a

CT

bl

Specializing afj = 1 and taking into account the symmetry of the Dyson produabhtain the following special
case ofl[29, Conjecture 2], which already implies14.1).

Corollary 4.3. Letm<n, Mc{L,...,nfwith[M|=mandre {1,...,n}\ M. Then
X l+la (lal
CT[ (1——)Z)x;a]=—( )
g Xs (x:a) 1+Yemavla

As a final remark we mention that time = 1 case of this corollary in conjunction with the Zeilberdgressoud
theorem immediately implies Sills’ [45, Theorem 1.1]: Fogt # s< n,

CT[(x/Xs)D(x; @)] = mas_as(lzl).

In general, one may use the inclusion-exclusion principlelttain a formula for the constant term of

(XE”/ ]_[xst) D(x; a),
in agreement with [41, Theorem 1.7].

Proof of Theoreri 4]12Note that ifa; = 0 for somei < n, then we may omit all factors that include the variakle
without dfecting the constant term. Accordingly, we may assume that@awith the possible exception af, is a
positive integer. Clearly the constant term equals théhment of the monomial

n
X!alfaﬁr)((lsm)
i=1

in the homogeneous polynomial

a-1 ol
Foo= [T ([0 -xa9x[]ox-xe)
k=1

1<i<j<n k=0
where
aj+1 ifj=nandi<m,
al =
a; otherwise.

To express this cdicient we apply Lemm@l.1 with = Q(q). Once again, the aim is to choose the $&tso that
F(c) = 0 for all but one element € C; x --- X C,. This can be easily achieved as follows. Get= {q* | a; € By},
where

Bi=1{0,1,....lal — & + x(i <m)}.

10



The set<C; clearly have the right cardinalities. Now assume that q* € C; andF(c) # 0. Then all they; are
distinct. Moreover,
ojzai+a+x(j<i)+x(i=nj<m

holds fora;j > ;. Next consider the unique permutatior &, for which
0 < an() < @n(z) <+ < () < |8 = Bx(n) + x(7r() < M.

We obtain the chain of inequalities

n-1 n-1
|al — ayn) = Z Ay < Z (@r(i+1) = @x(i)) = Un(r) — Ux(1) < 18 — Bz(n) + 1.
i=1 i=1
Notice that the first inequality is strict if is not the identity permutation, while the second inequabtstrict if
x(n) > m. Suppose that(n) # n. Sincer # id, it must ber(n) < m. Consider the indexwith 7(i) = n. Then
Qn(i+1) — Uiy = 8x() + 1, Which impliest(i + 1) > m. Therefore there must be an index1 < j < nsuch thai(j) > m
andz(j + 1) < m. For such g we havew,(j,1) — ax(j) = 8x(j) + 1, resulting in

n-1

n-1
lal — axn) = Z (i) < Z (Ur(i+1) = @n()) =2 < A = Ay — L,
) i1

a contradiction. Thus we can conclude thét) = n, implyings = id anda; = a; + - - - + @1 for everyi.
It only remains to substitute these values into

F(ci,Co,...,Cn)
¢ (Cr)5(C2) - - ph(Cn)

which is quite a routine calculation. Therefore we only tettat substituting the same values in the same formula
working with

g-1
Foo= [T ([0 %= ]ox-xd)

a
1<i<j<n k=0 k=1

andB; = {0,1,...,|a — &} yields theg-Dyson constant term CTl,(X; &)], see[37]. The changes are easily detected,
and notingy; + & = «aj.1, an + &, = |a we find that the constant term in question is indeed

|a] |a]
a a

m Qv — qan+a,-,+l 1- ql+|al—a1

T 1- q1+|al—<rm1

[l

i — gla-a+l
L q~ q

as claimed. O

5. A new proof of the Selberg integral

Due to its equivalence to the Selberg integral, it will be @gioto establish Morris’s constant term identffy {1.1).
Making the Laurent polynomial homogeneous by the introidunatf a new variable does noffact the constant term.
Thus, we are to determine the constant term of the Laureghpatial

( o k) ﬁ X a %o b 1_[ X; k
=1 Xo Xj 1<i#j<n Xj

(n-Dk+b

. in the homogeneous polynomial

which is the same as the dtieient of x(2 [T X

[ Joo - %) = x0)°x [T (x5 - %)
j=1

1<i#j<n

11



As in Section 3, we modify this polynomial withouffacting this leading cd&cient and consider

n b-1 k-1
F(x0,X) = -x-ex [] [Jxi-x-e. (5.1)
j=1 e=-a I<i<j<ne=-k

To apply Lemm&2]4féciently, we choose se = {0,1,...,(n— 1)k + b} for 1 < i < nand multiset

Co={0ju| f{k¢+1L ké+2,...,kt+a}.
0

=]
=

o~
Il

They have the right cardinality, the latter one being anmadi set ifk > a. Consider; € C; andm < wj(c;). Note
thatm, = 0 for 1 <i < n. We proceed to prove that
gt O™F

m(co,---,cn)= W(C&N-»Cn)zo

for all but one such selection.

Lemmab.1. If cg # O, then
POF (o) =0 5:2)
6x0”" Co,...,Cn) =0. .
Proof. Write S, = {kf + L, ké + 2,...,ké + a}. Sincemy < wp(Co), there is an index & u < n — wp(Cp) such that
Co € SyNSys1 N -+ N Sysmy. Thatiis,
(U+my)k+ 1< cp<uk+a

Accordingly, if ¢; lies in the interval fik, (u + mp)k + b] for some 1< i < n, thency —a < ¢; < ¢p + b -1 and there
is a term of the fornx; — xo — ein F which attains 0 when evaluated at the poigt €). It follows, that [5.2) holds if
more thanmy of suchg; lie in the interval [k, (u + mp)k + b].

Otherwise either at least+ 1 of cy, . .., Cy lie in the interval [Qku — 1], or at leash — my — u of them lie in the
interval [(u+ mg)k + b+ 1, (n— 1)k + b]. In either case there is a pair of indicex < j < nsuch thaic; — ¢i| <k,
meaning that there is a term of the fosn— x; — ein F which attains 0 when evaluated at the pougt €), and once
again we arrive af(512). O

Thus we only have to consider the case whgge 0; thenwg(c) = 1 andmy = 0. If

O™F

W(Co,...,cn) = F(co, €) # 0,
thency,...,cy € [b, (n— 1)k + b] and|c; — ¢j| = k for each pair 1< i < j < n. Therefore the numbers, ..., C,, in
some order, must coincide with the numbbyk + b, ..., (n— 1)k + b. Moreover it must be the natural order, for if
¢ > ¢ for somei < j, thenc; — ¢; > k+ 1. It only remains to evaluate

n

[ [(Ci.c.0F (.

i=0
at the point ¢y, ¢) = (0,b,k+ b, ..., (n— 1)k + b). Sincew;(c;) = 0 for eachi, we simply have
1

Ci.c,0) =
k(Ci, ¢, 0) HceCi\lci}(Ci —C)‘“i(c)

and one easily recovels (1.1).

Remark For the sake of simplicity, we tacitly assumed that the patensa, b, k are positive integers. Itis notfticult

to modify the above proof to suit the remaining cases and axelé to the reader. Alternatively, one can easily reduce
thek = 0 case to the Chu-Vandermonde identity, whereas théagbh= 0 case is just the equal parameter case of
Dyson'’s identity.

12



6. Interlude

Replace the polynomial i (3.1) by

n a b-1 k-1 k
[T Teo-a) ] [ -y x [ [ ]6-a) ] [ox - a™).
0

j=1 e=1 e= I<i<j<n e=0 e=1

Also replace the multiset§; by multisets which consist of powers gfwhose exponents belong @, and with
the same multiplicities. Repeating the proof given in thevsus section almost verbatim one obtains without any
difficulty the following version of thg-Morris constant term identity:

n T (@arbekj(@Qkjrk
Ya(1/xi K| = [ T
CT[H(QXJ) (1/%})pDq(X )] lj_(! (@ @Dorg (@

Although the identity conjectured in Morris’s thesis [42pds slightly dierently as

n n-1 . .
o7 [ oodatarmoDtic)| = [ | ettt 61)
j=1 j=0

_ (q)a+kj(q)b+kj(q)k’

the two are easily seen to be equivalent, for each monomidégfee zero has the same fiméent in the Laurent
polynomiaIs]’['j‘zl(qx,-)a(l/xj)tJ and H?zl(x,-)a(q/x,-)b. Morris’s conjecture was established independently ii} §wl
[28] via the proof of ag-Selberg integral proposed by Askey [6], followed by a mdesreentary proof inl[52].

The above argument relates to the one given in the previa®san a similar way as the derivation of the
g-analogue of Dyson’s conjecture in_[37] relates to the oagjiversion of Karasev and Petrov’s proofi[35] for the
Dyson product. One may say that applications of Lernmh 1.kfgeneralization Theoreln 2.4) allows one to prove
an appropriatg-analogue practically along the same lines as the origdsitity, even without the need to modify
the corresponding polynomial. This works also the other m@und: the way(6l1) is formulated gives a hint of an
alternative proof of[(1]1) which involves a slightlyfiirent modification along with a slightly fiérent choice of the
multisetsC;. Our preference was given to the modification, which allowedore simple choice for thg; as well as
to keep the natural order of the variablesx,, . . ., X, for theg-analogue in the following sense.

All the constant term identities and thejranalogues studied in this paper can be formulated in tHeviaig
context. LetB = (8;;) denote anr{+ 1) x (n+ 1) matrix with rows and columns numbered from Gii@orresponding
to the natural order of the variables. It is assumed thatnktes are non-negative integers and all the diagonalentri
are zero. Associated to such a matrix is the Laurent polyabmi

X; Bij
Lo, xB)= [ ] (l——_)
O<i#j<n X]
and itsg-analogue
X gX;
Ly(%0, X; B) = (—) (—) .
Oslijj[sn Xj Bij Xi Bii

Thus, one can writé®(x; a) = L(Xo, X; Bp) and M(xo, X; &, b, k) = L(Xo, X; B) with the matrices

0|0 0O O ... O Olb b b b
0|0 a4 & ... 4 al0 k k k
Olaa 0 a ... a alk 0 k k
By = Olaz az 0 ... a3 and Bm = alk k O k
Ola, ao a, ... O alk k k 0

13



corresponding to the Dyson resp. Morris constant term itiesit whereasDq(x; @) = Lg(Xo, X; Bp). Note that
simultaneous permutation of the rows and column8adccording to the same element &f,.1 has no &ect on
CT[L(x0, x; B)]. Generally it is not the case for CL[(xo, X; B)], but as we explained in relation to tlieMorris
identity, one may always apply the cyclic permutation

or any of its powers withoutféecting the constant term.
Theoreni 4R concerns CL(xo, X; B)] for the matrix

n-n-1-.----51-0-n

0 0 0 0 0 0 0
0 0 a1 a1 ai a ap
0 a 0 a ap a Q
0| am1  amt ami1 0 ami1  Amel
0| a1 an-1 an-1 | an-1 0 an1
Ola,+1 a,+1 an+1| a an 0

Applying the above mentioned cyclic permutationsBg, after rearranging indices we obtain the following more
general form of Theorein4.2.

Theorem 6.1. Fix an arbitrary integer re {1,2,...,n}. Then Conjecture4l.1 is valid with the choice of M{r +
1,...,r+m}andrs = r, where indices are understood modulo n.

Aomoto’s identity [1.2) and Forrester’s conjecture arated to the matrices

0 b b|b b
a |0 k|k k
By{z a k 0| k k
a+1|k k|0 k
a+1|k k|k 0

and

Bs

Olb b| b ... b
alo k k k
alk o k ... k |,
alk ki 0 ... k+1
alk k|k+1 ... O

where the lasinresp.n—ng rowgcolumns are separated. In the first case we rearranged thig stethat ag-analogue
can be formulated within our framework. Our main result Gane the overlay of these matrices wharez n — n,

that is, the matrix

Bar =

0 b blb b b b 0

a 0 k |k k k k 1

a k 0|k k k k n-m
a+1|k k|0 k k k n-m+1
a+1|k k| k 0 k k Ny
a+1|k k| k k 0 k+1 np+1
a+1|k k| k ki k+1 0 n

14



Theorem 6.2. Let n be a positive integer. For arbitrary nonnegative irdegga b, k and mng < n < m+ no,

n-1 n—n i

(Darbrkj+x(>n0) i -no)-+x(zn-m) (D x(>n0) (-no) +k [ 1-glewl

CT[Lq(Xo,X;Bﬂf)]=| | — — Xn 1—gl”
i-0 (Dark j1(>n0)-no)+x(i2n-m) (Db-rk e (j>n0)j-no) (D j=1 q

Whenm = 0, this proves Baker and Forrester’s [7, Conjecture 2.14, famther specializing atj = 1, Forrester’s
original conjecture as well. Th® = n case gives the following-analogue of Aomoto’s identity.

Corollary 6.3. Let n be a positive integer. For arbitrary nonnegative irdegyg b, k and m< n,

CT[L (XO X' B )] — ln;][ (q)a+b+kj+x(j2n7m)(q)ijrk
e o (Daskjonizn-m)(@Doskj( @Dk

A more general version of this identity, which involves ardiidnal parameter attached by was established in
Kadell's paperi[28]. An elementary proof was claimed relyeloy Xin and Zhou|[51]. Replacing by k+ 1 we obtain

that Theorerh 612 is valid for arbitramg < n whenng = 0. Although the conditiom < m+ ng is crucial to our proof
given in the next section, it does not seem to be necessary.

Conjecture6.4. Theorenl 6.2 remains valid without the restrictior m + n.

7. Proof of the conjecture of Forrester
Clearly CT[Lq(x0, X; B)] equals the coféicient of [ ij", whereB; = }}; 8ij, in the polynomial
Bij-1 Bii

FaooiB) = [ ] ([]05-ax)x] Joc-dx)
t=0 t=1

O<i<j<n = t=
Claim 7.1. Suppose thatic= gq* for some integerg; such that F(co, ¢; B) # 0. Let j > i. Thenaj > «; implies
@j > aj + Bij, anda; > «j impliese; > a; + Bj + 1. Both statements are valid even if the corresponding entB is
zero. The same is true withyFeplaced by any of its partial derivatives in which sam; = 0. O

We are to apply Theore[n 2.4 with the polynonfta& Fq(.; Bas). As in Section 5, we will assume that the parameters
a, b, k are positive integers and leave the rest to the reader.

7.1. The choice for the multisets C
Write y; = Bin for 0 <i < nand letA; = 3 _,yi. Thus,
YO:b’ 'Yl:"‘:')’no :k7 7n0+1="‘=')’n—1=k+1

andBij = ymini,j for 1 <i # j < n. Consider the intervalg = [At — y + L, Ad] = [Aw-1 + 1, A{], where here and
thereafter (I, v] stands for the set of integefssatisfyingu < ¢ < v. The intervaldy := [0,b], I;..., In-1 are mutually
disjoint. The multiset€; are defined in the forr@; = {q® | « € Aj}, wherefor1< j <n

n-1 n-1

A; = 100U | [Ac= ymime sy + LA € (1= [0, An 1]
t=0 t=0
is and ordinary set and
n-1
Ao={0}U| J[At—b+ 1 At—Db+pBu10]
t=0
is a multiset. ThetCi| = |Aj| = Bj + 1 holds for every & i < n. We are to show that
oMot thE

(©o- v 0) = St (G ) = 0
axonb,,,axnnh CO""’ n) — 6X0nb CO""7 n) —

for all but one selection of elements € C; and multiplicitesm; < wi(c;), namely whency = 1, ¢ = g~ for
1 <i < n, and all the multiplicities are zero.
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7.2. The combinatorics

Consider such a selection and write= g%. Note thaiw;(c1) = - - - = wn(Cn) = wo(q®) = 1. The above statement
is verified by the juxtaposition of the following two lemmas.

Lemma7.2. Letag = 0. If F(cp, Cy,...,Cn) # O, thena; = Aj_; foreveryl <i <n.
Lemma7.3. If ag # 0, then(d™F /8x;°)(Co, - . ., Cn) = O.
One key to each is the following consequence of Claim 7.1.

Lemma 7.4. Suppose tha(ca”bF/(?ng)(Co, ...,Cy) # 0. Then for everyl <t < n - 1 there is at most one index
1<i < nsuchthaiy € I;.

Proof. Assume that, on the contrary, there is a pait 1 # j < nsuch that;, a; € l;. Lete; > a;, then it follows
from Claim[7.1 thaty; — a; > k. The length of; isy; € {k,k+1}. Thus, itmustbe; = k+1,a; = A; —kandej = A.
Consequentlyt, > ng, i < j andi < ng. ThereforeA: — yminwiy + 1 = At — k+ 1 ande; ¢ A, a contradiction. O

Proof of Lemm&_7]2For every 1< i < nwe havea; > ag, thereforen; > Bg = b by Claim[Z.1. Moreoverk > 0
implies thatx, . . ., @, are all distinct, thus it follows from LemniaT .4 that eachtaf intervaldg, I4, . . ., ;-1 contains
precisely one of them. Let € &, denote the unique permutation for whielyy) < -+ < axm), thena,g) € li—1. By
Claim[7.1 we have

An(i+1) = n(i) + Prl)a(i+1) + X (7(0) > 7(i + 1)).
Consequently,

n(no+1) = b+ Krp + zol)((ﬂ'(i) >n(i+ 1)) = An, + ZO:)((ﬂ(i) > x(i + 1)).
i=1 i=1

Sincea (ny+1) < An, it follows thataq) = b, 7(1) < - -+ < w(Ng + 1), andByi)xi+1) = kfor L < i < ng. This in turn
implies thatr(ng) < ng, thusz(i) = i anda; = Aj_1 for 1 <'i < n.

Now fornp < i < nwe haver(i), 7(i + 1) > np and thugB.() ~i+1) = K+ 1. Restrictingr to the setfip + 1, n] and
starting witha,(n,+1) = An,, @ similar argument completes the proof. O

Proof of Lemm@a_7]3Assume that, contrary to the statemeﬁ'fPF/axo”b)(co, ...,Cp) # 0. WriteS; = [At — b+ 1, A; — b+ Bi10]-
Sinceag # 0 andmy < wp(Co), there is an index & u < n — wo(Co) such thatvg € Sy N Sysa N -+ N Sysm. That s,

AUHTb -b+1<ag<Ay— b+ﬂu+1,0.
Accordingly, if ¢; lies in the interval

Tuj= [Ay— b+ Bus1o - Bjo, Ayimp]

for some 1< j < n, thenao — Bjo < @) < ao + Poj — 1 and there is a term of the forry — g'xo or Xo — g'X; in F which
attains 0 when evaluated at the poicg, ). There cannot be more tham such terms. It is implied by LemniaY.4
that at most — 1 — u — myp of the distinct numberss, .. ., a, can lie in the intervalpym, + 1, An-1].

It follows that at leasti + 1 of the numberg; satisfyaj < Ay — b+ Bur10 — Bjo — 1. This is clearly impossible if
u+1<n-m,forthenA, — b+ Bui10—Bjo— 1 < uk—1inview ofn—m< ny, and on the other hand theflidirence
between any two sual; is at leask in view of Claim[7.1. Thusy > n— mandByu.10 = a+ 1. Consider

ay) < < Ayurr) £ Ay - b+ Burio =By o — 1 <Ay - b.

If u < ng, then it must bey, g = (i — 1)kandv(l) < --- <v(u+1), butthenv(u+ 1) > u+1>n-m B0 =2a+1,
implying ey(u+1) € Tuyu+1), Which is absurd. This means that ng + 1. It is easy to see that.1) — vy = 7. for
i < u, thuseyi1) > YiLq voii) = Au—b. Therefore),iL; v,y = Au—b, whichimplies thatv(1),...,v(u)} 2 {1,...,no}.
Consequentlyy(u + 1) > ng + 1 > n— m, which leads to a contradiction as before. (]
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7.3. The computation

It only remains to evaluate
Fq(@® g,...,q*1; B)

) 7.1
lpO'pl cee 'pn ( )
where
L Aj-1 _ @
Ui = Loenn, @ =)
for j = 1,...n, and with the shorthand notatimﬁ =Yyt = Ay — Ayg,
-1 A +Bri10 n
= H A7+ LAY +Bio] (7.2)
t=0 o= j=1

From now on, §i,V]lg :== (1 —0g")...(1 - g) = (@)v/(d)u-1, With [u, u]q abbreviated asu]q. Both the numerator and
the denumerator i .(74.1) is the product of factors in the famgt(1 — g*) with some non-negative integarsv. More
precisely, collecting factors of a similar nature togetierfind that the numerator is the product of the factors

(—1yo x gt 0ot [Al T+ 1L AT + ﬁjo]q for 1<j<n, (7.3)
(=1 x gt A o ATy 41, Aﬁ‘l]q for 1<i<js<n, (7.4)
and _ _
g x (Al 1A+ yi]q for 1<i<j<n. (7.5)
In the denominator, besidds {I7.2) we have the factors
(1) x [A,—,l]q Xy Xy xy for 1<j<n, (7.6)
where
j—2
= [ ]yt g o A AT + 7 - 1], (7.7)
t=0
v = (_1)71-171 % q(Aj—1*Vj—1+l)+...+(Aj-r1) % [1, Vi-1— 1]q s (7.8)
and
n-1
i, g x A -y + 1, A‘] (7.9)

t=]
Now the powers of-1 andq cancel out due to the simple identity
Mo+ > %i=n+ > y+ D (ra-1)
1<i<j<n O<t<j-1<n-1 1<j<n

and the somewhat more subtle

3]+ 2, 3)
= Z (%AI—(?))JrZ((le—l)AJ‘1—(7112_ 1))+ Z Yilj-1.

O<t<j-1<n-1 j=1 0<j-1<t<n-1

It remains to deal with the factors of the form {/]4. Those from[(Z}4) and{7.9) cancel out. Those frbml(7.3) and
(7.2) yield

N @Dartige T @asbekier(sn-noys(isn m

(7.10)
L @atig, Gp Darkisi>noi-mo)ex(izn-m
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As for the rest, the contribution frorh (7.5) and {7.7) witle ubstitutiort + 1 = i gives

[Aij_l +1, Aij_l + yi]

Q _
[ e,

I<i<jzn 1<i<j<n [A-jil, A-jil + )’i—l] . [A-jfl]
n [A”A'1+yl] Al

1]:2[ [Ajl_l’ A]l L+ 70 o 1<l|<_Jl<n AJ l]

_ . (q)AJ 1+'y1 n A] 1

= g (q)AJ 1+y0 1_[ 1- q)’J 1

J

[Aij_l, AT )’i]q : [Aij_l + Vi-l]q

(7.11)

in the first place, where the factor

N—nNg

¥ = 1_[ e 7n0+1]q = [ -a)
=2

j=np+2

only occurs whemg > 0. Combining[(Z.11) with the contribution of the fact@:ﬁ,l]q = 1- g~ from (Z.8) and the
factors[l, Yj-1— 1]q = (9),,_,-1 from (Z.8), shifting indices we obtain

n-1 i n-1 n-no (no>0)
(q)A’ﬁyl « 1 [1—[ (1- q(k+1)1)]v ’

i=2

in agreement with

(@ierorog-nek T—T 1- gl (7.12)
(@Doskjrn(isnoi-no) @Dk~ §_3 1t

Putting togethel{7.10) and{7]12) completes the proof &forani6.P.

Remark For all the identities considered in this paper, the forragbehibit, apart from some minor deviations, quite a
similar pattern, and it is more or less clear from the abogamuent, why it is so. We do not elaborate on this here, but
the motivated reader may come up with other families of rea#B for which a similar proof strategy might work.
We believe that the details given above can be useful in sugtest.

7.4. Arationality result

It is possible to prove Theoren 6.2 based solely on Lenmaif.fact this is how our result was originally
obtained. It involves the same combinatorics applied wken a + 1, in which case?s is an ordinary set. The
extension of the result that includes all non-negativegetsk depends on the following rationality lemma, inspired
by [20, Proposition 2.4].

Lemma 7.5. Fix nonnegative integers,rs for 1 < i < n, satisfying}>r; = > 5. There is a rational function

Q = Q(2 € Q(9)(2 that depends only on n and the numbersr such that
Xt X

CT[me(X; k)] Q) (@i

@
Expanding the degree zero part of

ﬂ(qx,)aw(,m)(l/x)b [] @-d%/x)a-dix/x)

no<i<j<n

18



into a sum of monomial terms and applying the above lemmachb sach term individually, we find that there is a
rational functiorR € Q(q)(2) depending only on the parametersn, ny, a, b such that

CTLLy (0 X; Bar)] = Rl SO
(@
Reorganizing the formula in TheorémB®.2 in the form
p(q) Dk
(@) @

with a functionP € Q(q)(2) which also depends only am m, ng, a, b, the theorem established fkr> a + 1 yields
P = R, which in turn implies the full content of the result.

It only remains to prove Lemmnia 1.5, and this is executed withanother application of Lemnial.1. Since a
similar — in fact more general — result was found recently lmrdh Zeilberger and his able computer|[15], we only
give a brief account. As thle= 0 case is trivial, we will assume> 0.

Proof of Lemm&7]5The constant term dbq(x; k) equals the caicient of [T x" X

k-1 k
Foo= [ ([]eu-a% %] Jex - %)

in the polynomial

1<i<j<n * t=0 t=1
SetC; = {g” | a; € [0,(n - 1)K]}. ThenF(c) = O for everyc € C; x --- x C,, except whert; = qi~1X for everyi.
According to Lemmall,
AN F(Q0, g, ..., gDk ) o (i-DK i
CT[Dg(x; K)] = where ;i = ﬂogs(n_l)k#(i_l)k(q - q).

Y. .. Yn (9

We compare this product to the constant term in the lemmasiwdqguals the cdicient of [ ] xi(“‘l)"*s in the polyno-
mial F*(x) = xrl1 ... X"F(x). Accordingly we seC; = {q" | a; € [0, (n— 1)k + 5]} and note that foc € C; x - - - x C;,
we haveF*(c) # 0 if and only if the exponents; are all distinct and

n(is1) 2 n(y + K+ x((i) > 7(i + 1))

holds for 1< i < n— 1 with the unique permutatiom = 7. € &, satisfyinga,q) < --+ < ayn. Consequently,
@ = (n7X(i) — 1)k + & for someg = &(c) € [0, Syn)]-
SetC = {ce C] x---xC; | F*(c) # 0}, and writes = maxs. It follows that

ICl < n!(s+ n).
n

Moreover, the sef = {(7¢, €1(C), ... (C)) | ¢ € C} is independent of; it depends only om and the numbers. It

follows from Lemma L1l that, using the notatior: 77,

CT [ le . X::f‘ 0 ( k)] Z ﬁ ((r()-Dk+e)ri F( .
e X, = q 170 — -
XXy il | Wiy .. W

L, qrO-Dkea )

where
* = (i 7l)k+€,,(i) _ j
0 H0sjs(n—1)k+s”<i>,ii(i—l)kmm (@ @)

One readily checks that for eagh= (m, €1, ..., &) € S there exist rational function®; € Q(q)(2) that depend only
onn, the numbers;, s; and the sequencg such that

= Qn+l(qk)'

no . F(...,qr0-Dkwa )
(z(i)-Dk+e)ri _ Q k i ﬂ =Q Ky and 2 2
[ ]o o(d). 5o = Q) F. o . g™
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The result follows. O
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