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Abstract

Selberg-type integrals that can be turned into constant term identities for Laurent polynomials arise naturally in con-
junction with random matrix models in statistical mechanics. Built on a recent idea of Karasev and Petrov we develop
a general interpolation based method that is powerful enough to establish many such identities in a simple manner.
The main consequence is the proof of a conjecture of Forrester related to the Calogero–Sutherland model. In fact we
prove a more general theorem, which includes Aomoto’s constant term identity at the same time. We also demonstrate
the relevance of the method in additive combinatorics.
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1. Introduction

Perhaps the most famous constant term identity is the one associated with the name of Freeman Dyson. In his
seminal paper [13] dated back to 1962, Dyson proposed to replace Wigner’s classical Gaussian-based random matrix
models by what now is known as the circular ensembles. The study of their joint eigenvalue probability density
functions led Dyson to the following conjecture. Consider the family of Laurent polynomials

D(x; a) :=
∏

1≤i, j≤n

(

1−
xi

x j

)ai

parametrized by a sequencea = (a1, . . . , an) of nonnegative integers, wherex = (x1, . . . , xn) is a sequence of indeter-
minates. Denoting by CT[L(x)] the constant term of the Laurent polynomialL = L(x), Dyson’s hypothesis can be
formulated as the identity

CT[D(x; a)] =
(a1 + a2 + · · · + an)!

a1!a2! . . .an!
=:

(

|a|
a

)

,
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where|a| = a1 + a2 + · · · + an. Using the shorthand notationD(x; k) for the equal parameter casea = (k, . . . , k), the
constant term ofD(x; k) for k = 1, 2, 4 corresponds to the normalization factor of the partition function for the circular
orthogonal, unitary and symplectic ensemble, respectively.

Dyson’s conjecture was confirmed by Gunson [unpublished]3 and Wilson [49] in the same year. The most elegant
proof, based on Lagrange interpolation, is due to Good [22].

Let q denote yet another independent variable. In 1975 Andrews [5] suggested the followingq-analogue of
Dyson’s conjecture: The constant term of the Laurent polynomial

Dq(x; a) :=
∏

1≤i< j≤n

(

xi

x j

)

ai

(

qxj

xi

)

aj

must be theq-multinomial coefficient
[

|a|
a

]

:=
(q)|a|

(q)a1
(q)a2

. . . (q)an

,

where(t)k = (1 − t)(1 − tq) . . . (1 − tqk−1). Note that the slight asymmetry of the functionDq disappears when one
considersD = D1; specializing atq = 1, Andrews’ conjecture gives back that of Dyson.

Despite several attempts [27, 46, 47] the problem remained unsolved until 1985, when Zeilberger and Bressoud
[53] found a tour de force combinatorial proof; see also [9].Shorter proofs are due to Gessel and Xin [21] and Cai
[10]. Recently an idea of Karasev and Petrov [35] led to a veryshort proof by Károlyi and Nagy [37], which we
consider as a precursor to the present paper.

Constant term identities like these and their generalizations are intimately related to Selberg’s integral formula
[44]. Colloquially referred to as the Selberg integral, it asserts

Sn(α, β, γ) :=
∫ 1

0
. . .

∫ 1

0

n
∏

i=1

tα−1
i (1− ti)β−1

∏

1≤i< j≤n

|ti − t j |
2γdt1 . . .dtn

=

n−1
∏

j=0

Γ(α + jγ)Γ(β + jγ)Γ(1+ ( j + 1)γ)
Γ(α + β + (n+ j − 1)γ)Γ(1+ γ)

,

where the complex parametersα, β, γ satisfy

ℜ(α) > 0, ℜ(β) > 0, ℜ(γ) > −min{1/n,ℜ(α)/(n− 1),ℜ(β)/(n− 1)}.

The continued interest in the Selberg integral, demonstrated for example by the most recent article [43], is due to its
role in random matrix theory, statistical mechanics, special function theory among other fields; see the comprehensive
exposition [19].

The Selberg integral is well-known to be equivalent to Morris’s constant term identity [42]

CT
[ n
∏

j=1

(1− x j)a(1− 1/x j)bD(x; k)
]

=

n−1
∏

j=0

(a+ b+ k j)!(k j + k)!
(a+ k j)!(b+ k j)!k!

, (1.1)

or in a more compact form,
CT [M(x; a, b, k)] = M(n; a, b, k),

where the parametersa, b, k are nonnegative integers. The equivalence is established,via a suitable change of vari-
ables, by an application of a theorem of Carlson [11] and the residue theorem. This method can be employed to reduce
Selberg-type integrals to constant term identities.

3Gunson’s proof is similar to that of Wilson, cf. [13]. A related conjecture of Dyson is proved by Gunson in [23].
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Introducing an extrat1 · · · tm factor into the integrand, Aomoto [4] in 1987 proved an extension of the Selberg
integral. Based on the fundamental theorem of calculus, it yields besides Anderson’s [3] one of the simplest known
proofs of the Selberg integral itself. Turned into a constant term identity, Aomoto’s integral reads as

CT
[ n
∏

j=1

(1− x j)
a+χ( j≤m)(1− 1/x j)

bD(x; k)
]

=

n−1
∏

j=0

(a+ b+ k j + χ( j ≥ n−m))!(k j + k)!
(a+ k j + χ( j ≥ n−m))!(b+ k j)!k!

, (1.2)

whereχ(S) is equal to 1 if the statementS is true and 0 otherwise.

Intimately related to the theory of random matrices, in particular the Dyson Brownian motion model [14], is the
Calogero-Sutherland quantum many body system for spinlessquantum particles on the unit circle interacting via the
1/r2 two-body potential, see [18, Chapter 11]. Generalizationsto include internal degrees of freedom of the particles
were formulated in the early 1990’s. In his 1995 paper [17] Forrester initiated the study of the analogue of the Selberg
integral for the corresponding exact multicomponent ground-state wavefunction. Presented in the form of the constant
term for the Laurent polynomial

F (x; n0; a, b, k) =M(x; a, b, k)
∏

n0<i, j≤n

(

1−
xi

x j

)

,

the normalization factor for the most interesting two-component case can be determined by the conjectured identity

CT [F (x; n0; a, b, k)] = M(n0; a, b, k) ×
n−n0−1
∏

j=0

( j + 1)(a+ b+ kn0 + (k+ 1) j)!(kn0 + (k+ 1) j + k)!
(a+ kn0 + (k+ 1) j)!(b+ kn0 + (k+ 1) j)!k!

.

A q-analogue of this hypothesis which extends theq-Morris ex-conjecture [42] was formulated and studied in [7].
Despite several further attempts [8, 20, 25, 31, 32, 33, 34],these conjectures have been resolved only in some particular
cases. The main achievement in the present paper is the proofof these identities, and in a form that also includes
Aomoto’s formula (1.2); see Theorem 6.2 for the precise formulation. Along the way we develop a method with a
wide range of possible applications, some of which are givenas instructive examples.

A new proof of the Dyson conjecture given in [35] and the subsequent proof of the Zeilberger–Bressoud identity
presented in [37] are based on a quick application of the following explicit version of the Combinatorial Nullstellensatz
[1] found independently by Lasoń [40] and by Karasev and Petrov [35].

Lemma 1.1. LetF be an arbitrary field and F∈ F[x1, x2, . . . , xn] a polynomial of degreedeg(F) ≤ d1+ d2 + · · ·+ dn.
For arbitrary subsets C1,C2, . . . ,Cn of F with |Ci | = di + 1, the coefficient of

∏

xdi
i in F is

∑

c1∈C1

∑

c2∈C2

· · ·
∑

cn∈Cn

F(c1, c2, . . . , cn)
φ′1(c1)φ′2(c2) . . . φ′n(cn)

,

whereφi(z) =
∏

c∈Ci
(z− c).

One principal aim of the present paper is to turn this idea into a method, which has the power to reduce seemingly
difficult evaluations to simple combinatorial problems. To thisend, in the next section we present a somewhat abstract
framework, which allows us to extend the previous lemma to multisets via Hermite interpolation. In Section 3 we
demonstrate the strength of the method in additive combinatorics by providing a new proof of an extension of the
Erdős–Heilbronn conjecture, which is devoid of the heavy technical details that were needed previously. This is
followed in Section 4 by an application to a problem of Kadell[29] in algebraic combinatorics, where the amount
of reduction of former complexities is even more voluminous. In Section 5, which can be viewed as a prelude to
the main result, we reestablish (1.1) using our method, thereby giving a short proof of the Selberg integral itself.
Besides formulating our main result, in Section 6 we point out how a slight modification yields, modulo some routine
computation, a one-page derivation of theq-Morris identity. The same idea with more delicate combinatorics leads to
the solution of the problem of Forrester in the concluding section. Finally we mention that the method developed here
can be successfully applied to prove Kadell’s orthogonality conjectures [30], see [36].
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2. On the Combinatorial Nullstellensatz

Alon’s Nullstellensatz [1] describes effectively the structure of polynomials which vanish on a finite Cartesian
product over an arbitrary field. It implies the following non-vanishing criterion. LetF be a polynomial as in Lemma
1.1. If the coefficient of

∏

xdi
i in F is non-zero, thenF cannot vanish on a setC1×C2×· · ·×Cn, where|Ci | > di for every

i. Note that this is also an immediate consequence of Lemma 1.1. A standard application of the polynomial method to
prove a combinatorial hypothesis works as follows. Assuming the falsity of the hypothesis, build a polynomial whose
values are all zero over a large Cartesian product, then compute the coefficient of the appropriate leading term. If
that coefficient is not zero, the criterion leads to the desired contradiction. The difficulty often lies in the computation
of that coefficient. This is where the power of Lemma 1.1 comes into the picture, which is clearly demonstrated in
the next section. An extension of the non-vanishing criterion for the case whenCi are multisets, along with some
applications, was obtained recently by Kós and Rónyai [39]; see also [38]. Here we generalize Lemma 1.1 in a similar
spirit.

Let V1, . . . ,Vn be vector spaces over the same fieldF. For eachi, fix a basisBi in Vi and fix the corresponding
basis⊗Bi in the tensor product space⊗Vi . Consider arbitrary non-empty subsetsAi ⊆ Bi , labelled vectorsai ∈ Ai ,
and linear functionalsηi ∈ Hom(Vi ,F) that satisfy the conditionsηi(ai) = 1 andηi(b) = 0 for everyb ∈ Ai \ {ai}. Our
tool will be the following straightforward observation.

Lemma 2.1. Assume that the tensor F∈ ⊗Vi satisfies the following condition: if bi ∈ Bi and the coordinate of F at
⊗bi does not vanish, then either bi = ai for every i or bi ∈ Ai \ {ai} for at least one index i. Then the coordinate of F
at⊗ai equals(⊗ηi)(F).

We will apply this lemma in the following situation:

Vi = F[xi ], Bi = {1, xi, x
2
i , . . . }, Ai = {1, xi, . . . , x

di
i }, ai = xdi

i .

Moreover we will assume that the value ofηi ∈ Hom(Vi ,F) at f ∈ F[xi ] is the same as the coefficient of xdi
i in f if

deg(f ) ≤ di . Now F[x1, . . . , xn], as a vector space overF, can be identified with⊗Vi via the unique isomorphism,
which extends the correspondence

xk1

1 . . . xkn
n ←→ xk1

1 ⊗ · · · ⊗ xkn
n , ki ∈ {0, 1, 2 . . . }.

An important feature of this identification is the following.

Lemma 2.2. Assume that linear functionalsϑi ∈ Hom(Vi ,F) are given in the formϑi( f ) = f (mi )(ci) for some elements
ci ∈ F and nonnegative integers mi . Then for any polynomial G∈ F[x1, . . . , xn],

(⊗ϑi)(G) =
∂m1+···+mnG

∂xm1
1 . . . ∂xmn

n
(c1, . . . , cn).

Proof. Indeed, identifyingF ⊗ · · · ⊗ F with F via the correspondenceα1 ⊗ · · · ⊗ αn ←→ α1 . . . αn, for any monomial
G = xk1

1 . . . xkn
n ∈ ⊗Bi we obtain

(⊗ϑi)(G) = ⊗
(

ϑi(x
ki
i )

)

=
∏n

i=1
ki(ki − 1) . . . (ki −mi + 1) ·

(

⊗cki−mi
i

)

=
∂m1+···+mnG

∂xm1
1 . . . ∂xmn

n
(c1, . . . , cn).

The general statement follows by linearity.

Let F ∈ F[x1, . . . , xn]. We say that no monomial majorizes
∏

xdi
i in F if every monomial

∏

xki
i with a non-zero

coefficient inF satisfies eitherki = di for everyi or ki < di for somei. This is certainly the case if deg(F) ≤ d1+· · ·+dn.
Such a polynomialF obviously satisfies the condition in Lemma 2.1. As a warm-up exercise we reestablish Lemma
1.1 in a slightly stronger form using this language.

4



Theorem 2.3. Let F ∈ F[x1, . . . , xn] be a polynomial such that no monomial majorizes M=
∏

xdi
i in F. Let C1, . . . ,Cn

be arbitrary subsets ofF such that|Ci | = di + 1 for every i. Then the coefficient of M in F can be evaluated as

∑

c1∈C1

∑

c2∈C2

· · ·
∑

cn∈Cn

n
∏

i=1

κ(Ci , ci)F(c1, c2, . . . , cn),

whereκ(Ci , ci) =
(

∏

c∈Ci \{ci }(ci − c)
)−1

. Consequently, if the above coefficient is not zero, then there exists a system of
representatives ci ∈ Ci such that F(c1, c2, . . . , cn) , 0.

Proof. Define the linear functionalsηi ∈ Hom(Vi ,F) by ηi( f ) =
∑

ci∈Ci
κ(Ci , ci) f (ci). According to the Lagrange

interpolation formula,ηi( f ) is equal to the coefficient of xdi
i in f for any f ∈ F[xi ] with deg(f ) ≤ di . Since eachηi is

a linear combination of linear functionals of the formϑi( f ) = f (0)(ci), the claim follows easily from Lemmas 2.1 and
2.2.

Extending the notion of the 0/1-valued characteristic function of a set, a finite multisetC in F can be represented
by a multiplicity functionω : F → {0, 1, 2, . . . } with finite sum|C| :=

∑

x∈F ω(x). We denote by supp(C) := {c ∈
F | ω(c) , 0} the supporting set ofC and, with a slight abuse of notation, writec ∈ C if c ∈ supp(C). A finite union
of multisets is understood as the sum of the corresponding multiplicity functions. An appropriate generalization of
Theorem 2.3 for multisets can be formulated as follows.

Theorem 2.4. Let F ∈ F[x1, . . . , xn] be a polynomial such that no monomial majorizes M=
∏

xdi
i in F. Let C1, . . . ,Cn

be arbitrary multisets inF with corresponding multiplicity functionsω1, . . . , ωn such that|Ci | = di + 1 for every i.
Assume that eitherchar(F) = 0 or char(F) ≥ ωi(c) for every index i and c∈ F. Then the coefficient of M in F can be
evaluated as

[M]F =
∑

c1∈C1

∑

m1<ω1(c1)

· · ·
∑

cn∈Cn

∑

mn<ωn(cn)

n
∏

i=1

κ(Ci , ci ,mi)
∂m1+···+mnF

∂xm1
1 . . . ∂xmn

n
(c1, . . . , cn),

where

κ(Ci , ci ,mi) =
1

mi ! · (ωi(ci) − 1−mi)!
·

(

1
∏

c∈Ci\{ci }
(x− c)ωi (c)

)(ωi (ci )−1−mi )
∣

∣

∣

∣

∣

∣

∣

x=ci

.

Consequently, if[M]F , 0, then there exists a system of representatives ci ∈ Ci and multiplicities mi < ωi(ci) such
that

∂m1+···+mnF

∂xm1
1 . . . ∂xmn

n
(c1, . . . , cn) , 0.

Remarks. 1.We tacitly assume that themi ’s are nonnegative integers.2. When eachωi is a 0/1-valued function, the
statement reduces to Theorem 2.3.3. It is possible to derive this result, in a slightly weaker form, from the earlier
works of Kós et al. [38, 39]. We preferred this more direct approach.

Proof. To construct the linear functionalsηi we replace Lagrange interpolation by Hermite interpolation. Forci ∈ Ci ,
0 ≤ mi < ωi(ci), let g(Ci , ci ,mi) denote the unique polynomial of degree less than|Ci |, provided by the Chinese
Remainder Theorem, to the system of simultaneous congruences

g(Ci , ci ,mi)(xi) ≡ (xi − ci)mi/mi ! (mod (xi − ci)ωi (ci )),

g(Ci , ci ,mi)(xi) ≡ 0 (mod (xi − c)ωi(c)) (c ∈ Ci \ {ci})

in Vi . That is,g(Ci , ci ,mi) is the unique polynomialg ∈ F[xi ] of degree less than or equal todi , which satisfies
g(mi)(ci) = 1 andg(m′)(u) = 0 otherwise ifm′ < ωi(u), u ∈ F. Denote byκ(Ci , ci ,mi) the coefficient of xdi

i in
g(Ci, ci ,mi). Then Lemmas 2.1 and 2.2 can be applied as before for the linear functionalsηi ∈ Hom(Vi ,F) given by

ηi( f ) =
∑

ci∈Ci

∑

mi<ωi (ci)

κ(Ci , ci ,mi) f (mi )(ci).
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To compute the coefficientsκ(Ci , ci ,mi), write pi(xi) =
∏

c∈Ci\{ci }(xi − c)ωi(c). That is, there exist polynomialshi , r i ∈

F[xi] with deg(hi) < ωi(ci) and deg(r i) ≤ di − ωi(ci) such that

hi(xi) =
g(Ci , ci ,mi)(xi)

pi(xi)
=

(xi − ci)mi

mi !pi(xi)
+ (xi − ci)

ωi (ci ) r i(xi)
pi(xi)

with κ(Ci , ci ,mi) being the coefficient ofxωi (ci )−1
i in hi(xi). Expanding both the left- and the right-hand side as a formal

power series in the variablexi − ci one finds thatκ(Ci , ci,mi) is the coefficient of (xi − ci)ωi (ci)−mi−1 in 1/(mi!pi(xi)).
The result follows by an application of Taylor’s formula.

3. An application to additive theory

Let S = {Si j | 1 ≤ i < j ≤ n} be a family of subsets of the cyclic groupZp := Z/pZ of prime orderp. For a
collection of setsA1, . . . ,An ⊆ Zp, consider the following restricted sumset:

∧

S
Ai =

{

a1 + · · · + an | ai ∈ Ai , a j − ai < Si j for i < j
}

.

For the special case whenAi ≡ A andSi j ≡ {0}, Dias da Silva and Hamidoune [12] proved
∣

∣

∣

∣

∧

S
Ai

∣

∣

∣

∣

≥ min
{

p, n|A| − n2 + 1
}

,

thus establishing a long-standing conjecture of Erdős andHeilbronn [16]. Their proof exploited the properties of
cyclic spaces of derivations on exterior product spaces andthe representation theory of symmetric groups; see [2] for
another proof based on the polynomial method. A far reachinggeneralization was obtained by Hou and Sun [26].
Here we use Lemma 1.1 to reestablish their result in a short and elegant manner, thereby also providing a simplified
proof to the Dias da Silva–Hamidoune theorem. Note that although our formulation below is slightly different, it is
still equivalent to [26, Theorem 1.1].

Theorem 3.1. Let A1, . . . ,An be subsets of a fieldF such that|Ai | = k for 1 ≤ i ≤ n and assume that Si j ⊆ F satisfy
|Si j | ≤ s for1 ≤ i < j ≤ n. If eitherchar(F) = 0 or

char(F) > max{n⌈s/2⌉, n(k− 1)− n(n− 1)⌈s/2⌉} ,

then
∣

∣

∣

∣

∧

S
Ai

∣

∣

∣

∣

≥ n(k− 1)− n(n− 1)⌈s/2⌉ + 1.

Proof. Since posing extra restrictions cannot increase the size ofthe sumset, we will assume thats is even and
|Si j | = s = 2t holds for every pairi < j. We may also assume thatk − 1 ≥ (n − 1)t. We proceed by way of
contradiction. Suppose that

∧

S Ai is contained in a setC of sizen(k− 1)− n(n− 1)t, and consider the polynomial

∏

e∈C

(x1 + · · · + xn − e) ×
∏

i< j



















∏

e∈Si j

(x j − xi − e)



















.

This polynomial of degreen(k − 1) vanishes on the Cartesian productA1 × · · · × An. According to Lemma 1.1,
the coefficient of the monomial

∏

xk−1
i must be zero. This coefficient remains the same if we slightly modify the

polynomial and consider

F(x) =
n(k−1)−(n

2)t
∏

e=(n
2)t+1

(x1 + · · · + xn − e) ×
∏

i< j

















t−1
∏

e=−t

(x j − xi − e)

















6



instead, keeping all leading terms intact. This coefficient is easy to compute when one applies Lemma 1.1 with
Ci ≡ {0, 1, . . . , k−1}. Indeed, ifF(c) , 0 for somec ∈ C1×· · ·×Cn, then|c j −ci | ≥ t for every pairi < j. Accordingly,

(

n
2

)

t ≤ c1 + · · · + cn ≤ n(k− 1)−

(

n
2

)

t,

thus it must bec1 + · · · + cn =
(

n
2

)

t and the numbersc1, . . . , cn, in some order, must coincide with the numbers
0, t, 2t, . . . , (n− 1)t. Moreover, it must be the natural order, for ifci > c j for somei < j, thenci − c j ≥ t + 1. Thus the
computation of the coefficient reduces to the evaluation of

F(c1, c2, . . . , cn)
φ′1(c1)φ′2(c2) · · ·φ′m(cn)

at the pointc = (0, t, 2t, . . . , (n− 1)t). After some cancellations this leads to the value

(−1)(
n
2)t ×

(n(k− 1)− n(n− 1)t)!
(t!)n

×

n
∏

i=1

(it)!
(k− 1− (i − 1)t)!

which is not zero in view of the assumption on the characteristic of the field. This contradiction completes the
proof.

The tightness of the bound is demonstrated by the choice

Ai ≡ {0, 1, . . . , k− 1}, Si j ≡ {−t + 1,−t + 2, . . . , t − 1}.

3.1. Further examples

The alert reader must have already extracted from the above argument the following general statement about
restricted sumsets, which is rather folklore, cf. [2, Theorem 2.1].

Theorem 3.2. Let di , si j denote non-negative integers, and let A1, . . . ,An and Si j (1 ≤ i < j ≤ n) be subsets of a field
F with |Ai | = di + 1, |Si j | = si j . Assume that N=

∑

di −
∑

si j ≥ 0. If the coefficient of the monomial
∏

xdi
i in the

polynomial
F0(x) = (x1 + · · · + xn)N

∏

i< j

(x j − xi)si j ∈ F[x1, . . . , xn]

is non-zero, then
∣

∣

∣

∧

SAi

∣

∣

∣ > N.

In the proof of Theorem 3.1 we applied Lemma 1.1 in the casedi ≡ k − 1, si j ≡ 2t to obtain the coefficient
[xd1

1 . . . xdn
n ]F0 in a simple product form. Similar arguments work in the following cases. The first example concerns a

related result of Sun and Yeh, cf. [48, Theorem 1.1], which involves only a minor modification.

Example 3.3. Let di = k− i, si j ≡ 2t − 1. Then N= n(k− 1)− n(n− 1)t and

[xd1
1 . . . xdn

n ]F0 = (−1)(
n
2)t ×

N!
(t!)nn!

×

n
∏

i=1

(it)!
(k− 1− (i − 1)t)!

.

Proof. Apply Lemma 1.1 to the modified polynomial

F(x) =
n(k−1)−(n

2)t
∏

e=(n
2)t+1

(x1 + · · · + xn − e) ×
∏

i< j

















t−1
∏

e=1−t

(x j − xi − e)

















with the choiceCi = {0, 1, . . . , k− 1} \ { jm | 0 ≤ j < i − 1}. Once againF(c) , 0 for c ∈ C1 × · · · ×Cn if and only if
ci = (i − 1)t for every 1≤ i ≤ n, and the slight changes in the computation are easy to detect.
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The next example considers the Alon–Nathanson–Ruzsa theorem [2]. Although our approach is not significantly
different from the original proof, we include it for it represents an atypical application of Lemma 1.1, when more than
onec ∈ C1 × · · · ×Cn contributes to a non-zero summand.

Example 3.4. Let the di be arbitrary, si j ≡ 1. Then N= d1 + · · · + dn −
(

n
2

)

and

[xd1
1 . . . xdn

n ]F0 =
N!

d1! . . .dn!

∏

i< j

(d j − di).

Proof. Replace the polynomialF0 by

F(x) =
d1+···+dn
∏

e=(n
2)+1

(x1 + · · · + xn − e) ×
∏

i< j

(x j − xi)

and apply Lemma 1.1 withCi = {0, 1, . . . , di}. Consider an elementc ∈ C1×· · ·×Cn whose coordinatesci are mutually
different. ThenF(c) , 0 only if {c1, . . . , cn} = {0, . . . , n− 1}. That is, there is a permutationπ = πc ∈ S(n) such that
ci = πc(i) − 1. For such ac,

F(c) = (−1)NN! × sign(πc)
∏

i< j
( j − i), φ′(ci) = (−1)di−ci ci !(di − ci)!.

Since
(

di
ci

)

= 0 for di < ci , it is enough to prove that

∑

π∈S(n)

sign(π)
n

∏

i=1

(

di

π(i) − 1

)

=
∏

i< j

d j − di

j − i
.

To establish this identity, notice that both sides are completely antisymmetric polynomials of minimum possible
degreen(n− 1)/2 in the variablesdi , which attain the same value at (d1, . . . , dn) = (0, . . . , n− 1).

Remark.A more direct proof goes as follows. Writex[k] = x(x− 1) . . . (x− k+ 1) and consider the polynomials

F(x) =















n
∑

i=1

xi −

(

n
2

)















[N]
∏

i< j

(x j − xi), F∗(x) =
∑

k1+···+kn=d1+···+dn

N!
∏

ki !

∏

i< j

(k j − ki)
n

∏

i=1

x[ki ]
i .

It is enough to prove thatF−F∗ vanishes on the Cartesian product of the setsCi = {0, 1, . . . , di}, for then [xd1

1 . . . xdn
n ](F−

F∗) = 0 by Lemma 1.1 and therefore

[xd1
1 . . . xdn

n ]F0 = [xd1
1 . . . xdn

n ]F = [xd1
1 . . . xdn

n ]F∗ =
N!

d1! . . .dn!

∏

i< j

(d j − di)

as claimed. For the proof, notice thatc ∈ C1 × · · · ×Cn impliesF(c) = F∗(c) = 0 unlessci = di for everyi, in which
caseF(c) = F∗(c) follows from the very choice of the coefficients inF∗. This argument can be extended to show that
in fact F = F∗.

Our final example originates in Xin [50], where it appears in the form of the constant term identity

CT
[

x−a1
1 . . . x−an

n (x1 + · · · + xn)a1+···+an

∏

i, j
(1− x j/xi)ai

]

=

(

|a|
a

)

, (3.1)

see also [20]. Here the full capacity of Theorem 2.4 can be exploited with a minimum amount of computation.

Example 3.5. Let di = nai, si j = ai + a j. Then N= a1 + · · · + an and

[xd1
1 . . . xdn

n ]F0 = (−1)
∑

i< j ai

(

|a|
a

)

.
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Proof. For the proof we may assume that char(F) = 0. Choose an arbitrary setB = {b1, . . . , bn} ⊂ F so thatb1 +

· · · + bn = 0, and consider the multisetsC1, . . . ,Cn with supp(Ci) = B and multiplicity functions given byωi(b j) =
ai + χ( j = i); then|Ci | = di + 1. We apply Theorem 2.4 to the polynomial

F(x) = (−1)
∑

i< j ai F0(x) = (x1 + · · · + xn)a1+···+an

∏

i, j
(xi − x j)ai .

There is only one non-zero summand in the summation formula for [xd1
1 . . . xdn

n ]F. Indeed, suppose that

∂m1+···+mnF

∂xm1
1 . . . ∂xmn

n
(c1, . . . , cn) , 0

for somec ∈ C1 × · · · ×Cn with 0 ≤ mi < ωi(ci). First we show that the coordinatesci are mutually different. Assume
that on the contrary,ci = c j for somei , j. Thenmi + mj ≤ ωi(ci) + ω j(ci) ≤ ai + a j − 1. This implies that the
polynomialH :=

∏

(∂/∂xi)mi F is divisible byxi − x j , a contradiction.
Thus,{c1, . . . , cn} = {b1, . . . , bn}. Note thatmi ≤ ai . If

∑

mi <
∑

ai , thenH is divisible by
∑

xi , a contradiction.
Accordingly,mi = ai , ci = bi for everyi. Moreover, all thea1+ · · ·+ an partial derivatives must be applied to the term
(x1 + · · · + xn)a1+···+an in F. After all, we get

[xd1
1 . . . xdn

n ]F =
n

∏

i=1

κ(Ci , bi , ai)
∂a1+···+anF

∂xa1
1 . . . ∂xan

n
(b1, . . . , bn) =

(

|a|
a

)

,

for
∏

i, j(bi − b j)ai =
∏

i
∏

c∈B\{bi}(bi − c)ai .

Remarks. 1.A connection between restricted sumsets and Morris’s constant term identity was made recently by Zhou
[55]. 2. Let hr (x) =

∑

1≤ j1≤···≤ jr≤n x j1 . . . x jr denote the complete symmetric function of degreer. Following Good’s
method [22] one gets the following generalization of (3.1),also implicit in [50]:

CT
[

x−ra1
1 . . . x−ran

n hr (x1, . . . , xn)a1+···+an

∏

i, j
(1− x j/xi)ai

]

=

(

|a|
a

)

.

It would be interesting to obtain a proof of this identity based on the Combinatorial Nullstellensatz.

4. On a problem of Kadell

The aforementioned idea of Aomoto led Kadell [29] to discover and prove the following Dyson-type identity. Fix
m< n. For 1≤ r ≤ n and anm-element subsetM of {1, 2, . . . , n}, consider the Laurent polynomial

Kr,M(x; a) =
(

1+
∑

v<M

av

)

∏

s∈M

(

1−
xr

xs

)

D(x; a).

Note thatKr,M(x; a) = 0 if r ∈ M. Then, according to [29, Theorem 1],

CT
[ n
∑

r=1

∑

|M|=m

Kr,M(x; a)
]

= n

(

n− 1
m

)

(1+ |a|)
(

|a|
a

)

. (4.1)

Kadell suggested that each non-zero functionKr,M(x; a) must have the same contribution to the constant term. He
formulated an even more general hypothesis (see [29, Conjecture 2]), which was established recently by Zhou [54]
based on the first layer formulas for Dyson-coefficients [41, Theorem 1.7]. Kadell also suggested the following
q-analogue of his hypothesis.

Conjecture 4.1 ([29, Conjecture 3]). Let M ⊂ {1, 2, . . . , n} and{rs | s ∈ M} ∩ M = ∅. Then

CT
[

∏

1≤i< j≤n

(

xi

x j

)

a∗i

(

qxj

xi

)

a∗j

]

=
1− q1+|a|

1− q1+
∑

v<M av

[

|a|
a

]

,

where, with a slight abuse of notation, a∗i = a∗i ( j) = ai + χ( j ∈ M, i = r j) and a∗j = a∗j (i) = a j + χ(i ∈ M, j = r i).
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Zhou [54] pointed out that this conjecture already fails forn = 3, |M| = m = 1, and proved a meaningfulq-analogue
of [29, Conjecture 2], which is too technical to be recalled here in detail. Our main result in this section is the proof
of the following special case of Conjecture 4.1 corresponding to M = {1, . . . ,m} andrs ≡ n that, unexpectedly, does
not seem to be implied by Zhou’s result.

Theorem 4.2. Let m< n. Then

CT
[

∏

1≤i< j≤n

(

xi

x j

)

ai

(

qxj

xi

)

a∗j

]

=
1− q1+|a|

1− q1+
∑n

v=m+1 av

[

|a|
a

]

,

where a∗n = an + χ(i ≤ m) and a∗j = a j otherwise.

Specializing atq = 1 and taking into account the symmetry of the Dyson product weobtain the following special
case of [29, Conjecture 2], which already implies (4.1).

Corollary 4.3. Let m< n, M ⊂ {1, . . . , n} with |M| = m and r∈ {1, . . . , n} \ M. Then

CT
[

∏

s∈M

(

1−
xr

xs

)

D(x; a)
]

=
1+ |a|

1+
∑

v<M av

(

|a|
a

)

.

As a final remark we mention that them = 1 case of this corollary in conjunction with the Zeilberger–Bressoud
theorem immediately implies Sills’ [45, Theorem 1.1]: For 1≤ r , s≤ n,

CT [(xr/xs)D(x; a)] =
−as

1+ |a| − as

(

|a|
a

)

.

In general, one may use the inclusion-exclusion principle to obtain a formula for the constant term of
(

xm
r /

∏

s∈M
xs

)

D(x; a),

in agreement with [41, Theorem 1.7].

Proof of Theorem 4.2.Note that ifai = 0 for somei < n, then we may omit all factors that include the variablexi

without affecting the constant term. Accordingly, we may assume that each ai, with the possible exception ofan, is a
positive integer. Clearly the constant term equals the coefficient of the monomial

n
∏

i=1

x|a|−ai+χ(i≤m)
i

in the homogeneous polynomial

F(x) =
∏

1≤i< j≤n

(
ai−1
∏

k=0

(x j − xiq
k) ×

a∗j
∏

k=1

(xi − x jq
k)
)

,

where

a∗j =



















a j + 1 if j = n andi ≤ m,

a j otherwise.

To express this coefficient we apply Lemma 1.1 withF = Q(q). Once again, the aim is to choose the setsCi so that
F(c) = 0 for all but one elementc ∈ C1 × · · · × Cn. This can be easily achieved as follows. LetCi = {qαi | αi ∈ Bi},
where

Bi = {0, 1, . . . , |a| − ai + χ(i ≤ m)}.
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The setsCi clearly have the right cardinalities. Now assume thatci = qαi ∈ Ci andF(c) , 0. Then all theαi are
distinct. Moreover,

α j ≥ αi + ai + χ( j < i) + χ(i = n, j ≤ m)

holds forα j > αi . Next consider the unique permutationπ ∈ Sn for which

0 ≤ απ(1) < απ(2) < · · · < απ(n) ≤ |a| − aπ(n) + χ(π(n) ≤ m).

We obtain the chain of inequalities

|a| − aπ(n) =

n−1
∑

i=1

aπ(i) ≤

n−1
∑

i=1

(απ(i+1) − απ(i)) = απ(n) − απ(1) ≤ |a| − aπ(n) + 1.

Notice that the first inequality is strict ifπ is not the identity permutation, while the second inequality is strict if
π(n) > m. Suppose thatπ(n) , n. Sinceπ , id, it must beπ(n) ≤ m. Consider the indexi with π(i) = n. Then
απ(i+1)−απ(i) = aπ(i)+1, which impliesπ(i +1) > m. Therefore there must be an indexi +1 ≤ j < n such thatπ( j) > m
andπ( j + 1) ≤ m. For such aj we haveαπ( j+1) − απ( j) ≥ aπ( j) + 1, resulting in

|a| − aπ(n) =

n−1
∑

i=1

aπ(i) ≤

n−1
∑

i=1

(απ(i+1) − απ(i)) − 2 ≤ |a| − aπ(n) − 1,

a contradiction. Thus we can conclude thatπ(n) = n, implyingπ = id andαi = a1 + · · · + ai−1 for everyi.
It only remains to substitute these values into

F(c1, c2, . . . , cn)
φ′1(c1)φ′2(c2) · · ·φ′n(cn)

,

which is quite a routine calculation. Therefore we only recall that substituting the same values in the same formula
working with

F(x) =
∏

1≤i< j≤n

(
ai−1
∏

k=0

(x j − xiq
k) ×

aj
∏

k=1

(xi − x jq
k)
)

andBi = {0, 1, . . . , |a| − ai} yields theq-Dyson constant term CT[Dq(x; a)], see [37]. The changes are easily detected,
and notingαi + ai = αi+1, αn + an = |a| we find that the constant term in question is indeed

m
∏

i=1

qαi − qαn+an+1

qαi − q|a|−ai+1

[

|a|
a

]

=
1− q1+|a|−α1

1− q1+|a|−αm+1

[

|a|
a

]

,

as claimed.

5. A new proof of the Selberg integral

Due to its equivalence to the Selberg integral, it will be enough to establish Morris’s constant term identity (1.1).
Making the Laurent polynomial homogeneous by the introduction of a new variable does not affect the constant term.
Thus, we are to determine the constant term of the Laurent polynomial

M(x0, x; a, b, k) :=
n

∏

j=1

(

1−
x j

x0

)a (

1−
x0

x j

)b
∏

1≤i, j≤n

(

1−
xi

x j

)k

,

which is the same as the coefficient ofxna
0

∏n
i=1 x(n−1)k+b

i in the homogeneous polynomial

n
∏

j=1

(x0 − x j)a(x j − x0)b ×
∏

1≤i, j≤n

(x j − xi)k.
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As in Section 3, we modify this polynomial without affecting this leading coefficient and consider

F(x0, x) =
n

∏

j=1

b−1
∏

e=−a

(x j − x0 − e) ×
∏

1≤i< j≤n

k−1
∏

e=−k

(x j − xi − e). (5.1)

To apply Lemma 2.4 efficiently, we choose setsCi = {0, 1, . . . , (n− 1)k+ b} for 1 ≤ i ≤ n and multiset

C0 = {0} ∪
n−1
⋃

ℓ=0

{kℓ + 1, kℓ + 2, . . . , kℓ + a}.

They have the right cardinality, the latter one being an ordinary set ifk ≥ a. Considerci ∈ Ci andmi < ωi(ci). Note
thatmi = 0 for 1≤ i ≤ n. We proceed to prove that

∂m0+···+mnF

∂xm0
0 . . . ∂xmn

n
(c0, . . . , cn) =

∂m0F

∂xm0
0

(c0, . . . , cn) = 0

for all but one such selection.

Lemma 5.1. If c0 , 0, then
∂m0F

∂xm0
0

(c0, . . . , cn) = 0. (5.2)

Proof. Write Sℓ = {kℓ + 1, kℓ + 2, . . . , kℓ + a}. Sincem0 < ω0(c0), there is an index 0≤ u ≤ n − ω0(c0) such that
c0 ∈ Su ∩ Su+1 ∩ · · · ∩ Su+m0. That is,

(u+m0)k+ 1 ≤ c0 ≤ uk+ a.

Accordingly, if c j lies in the interval [uk, (u+m0)k + b] for some 1≤ i ≤ n, thenc0 − a ≤ c j ≤ c0 + b− 1 and there
is a term of the formx j − x0 − e in F which attains 0 when evaluated at the point (c0, c). It follows, that (5.2) holds if
more thanm0 of suchci lie in the interval [uk, (u+m0)k+ b].

Otherwise either at leastu+ 1 of c1, . . . , cn lie in the interval [0, ku− 1], or at leastn−m0 − u of them lie in the
interval [(u+m0)k+ b+ 1, (n− 1)k+ b]. In either case there is a pair of indices 1≤ i < j ≤ n such that|c j − ci | < k,
meaning that there is a term of the formx j − xi − e in F which attains 0 when evaluated at the point (c0, c), and once
again we arrive at (5.2).

Thus we only have to consider the case whenc0 = 0; thenω0(c) = 1 andm0 = 0. If

∂m0F

∂xm0
0

(c0, . . . , cn) = F(c0, c) , 0,

thenc1, . . . , cn ∈ [b, (n− 1)k + b] and |c j − ci | ≥ k for each pair 1≤ i < j ≤ n. Therefore the numbersc1, . . . , cn, in
some order, must coincide with the numbersb, k + b, . . . , (n− 1)k + b. Moreover it must be the natural order, for if
ci > c j for somei < j, thenci − c j ≥ k+ 1. It only remains to evaluate

n
∏

i=0

κ(Ci , ci, 0)F(c0, c)

at the point (c0, c) = (0, b, k+ b, . . . , (n− 1)k+ b). Sinceωi(ci) = 0 for eachi, we simply have

κ(Ci , ci , 0) =
1

∏

c∈Ci\{ci }(ci − c)ωi(c)

and one easily recovers (1.1).

Remark.For the sake of simplicity, we tacitly assumed that the parametersa, b, k are positive integers. It is not difficult
to modify the above proof to suit the remaining cases and we leave it to the reader. Alternatively, one can easily reduce
thek = 0 case to the Chu-Vandermonde identity, whereas the min{a, b} = 0 case is just the equal parameter case of
Dyson’s identity.
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6. Interlude

Replace the polynomial in (5.1) by

n
∏

j=1

a
∏

e=1

(x0 − qex j)
b−1
∏

e=0

(x j − qex0) ×
∏

1≤i< j≤n

k−1
∏

e=0

(x j − qexi)
k

∏

e=1

(xi − qex j).

Also replace the multisetsCi by multisets which consist of powers ofq whose exponents belong toCi , and with
the same multiplicities. Repeating the proof given in the previous section almost verbatim one obtains without any
difficulty the following version of theq-Morris constant term identity:

CT
[ n
∏

j=1

(qxj)a(1/x j)bDq(x; k)
]

=

n−1
∏

j=0

(q)a+b+k j(q)k j+k

(q)a+k j(q)b+k j(q)k
.

Although the identity conjectured in Morris’s thesis [42] reads slightly differently as

CT
[

n
∏

j=1

(x j)a(q/x j)bDq(x; k)
]

=

n−1
∏

j=0

(q)a+b+k j(q)k j+k

(q)a+k j(q)b+k j(q)k
, (6.1)

the two are easily seen to be equivalent, for each monomial ofdegree zero has the same coefficient in the Laurent
polynomials

∏n
j=1(qxj)a(1/x j)b and

∏n
j=1(x j)a(q/x j)b. Morris’s conjecture was established independently in [24] and

[28] via the proof of aq-Selberg integral proposed by Askey [6], followed by a more elementary proof in [52].

The above argument relates to the one given in the previous section in a similar way as the derivation of the
q-analogue of Dyson’s conjecture in [37] relates to the original version of Karasev and Petrov’s proof [35] for the
Dyson product. One may say that applications of Lemma 1.1 (orits generalization Theorem 2.4) allows one to prove
an appropriateq-analogue practically along the same lines as the original identity, even without the need to modify
the corresponding polynomial. This works also the other wayaround: the way (6.1) is formulated gives a hint of an
alternative proof of (1.1) which involves a slightly different modification along with a slightly different choice of the
multisetsCi . Our preference was given to the modification, which alloweda more simple choice for theCi as well as
to keep the natural order of the variablesx0, x1, . . . , xn for theq-analogue in the following sense.

All the constant term identities and theirq-analogues studied in this paper can be formulated in the following
context. LetB = (βi j ) denote an (n+ 1)× (n+ 1) matrix with rows and columns numbered from 0 ton, corresponding
to the natural order of the variables. It is assumed that the entries are non-negative integers and all the diagonal entries
are zero. Associated to such a matrix is the Laurent polynomial

L(x0, x; B) =
∏

0≤i, j≤n

(

1−
xi

x j

)βi j

and itsq-analogue

Lq(x0, x; B) =
∏

0≤i< j≤n

(

xi

x j

)

βi j

(

qxj

xi

)

β ji

.

Thus, one can writeD(x; a) = L(x0, x; BD) andM(x0, x; a, b, k) = L(x0, x; BM) with the matrices

BD =

























































0 0 0 0 . . . 0
0 0 a1 a1 . . . a1

0 a2 0 a2 . . . a2

0 a3 a3 0 . . . a3
...

...
...

...
. . .

...

0 an an an . . . 0

























































and BM =

























































0 b b b . . . b
a 0 k k . . . k
a k 0 k . . . k
a k k 0 . . . k
...

...
...

...
. . .

...

a k k k . . . 0
























































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corresponding to the Dyson resp. Morris constant term identities, whereasDq(x; a) = Lq(x0, x; BD). Note that
simultaneous permutation of the rows and columns ofB according to the same element ofSn+1 has no effect on
CT[L(x0, x; B)]. Generally it is not the case for CT[Lq(x0, x; B)], but as we explained in relation to theq-Morris
identity, one may always apply the cyclic permutation

n→ n− 1→ · · · → 1→ 0→ n

or any of its powers without affecting the constant term.
Theorem 4.2 concerns CT[Lq(x0, x; BK )] for the matrix

BK =































































































0 0 0 . . . 0 0 . . . 0 0
0 0 a1 . . . a1 a1 . . . a1 a1

0 a2 0 . . . a2 a2 . . . a2 a2
...

...
...

. . .
...

...
. . .

...
...

0 am am . . . 0 am . . . am am

0 am+1 am+1 . . . am+1 0 . . . am+1 am+1
...

...
...

. . .
...

...
. . .

...
...

0 an−1 an−1 . . . an−1 an−1 . . . 0 an−1

0 an + 1 an + 1 . . . an + 1 an . . . an 0































































































.

Applying the above mentioned cyclic permutations toBK , after rearranging indices we obtain the following more
general form of Theorem 4.2.

Theorem 6.1. Fix an arbitrary integer r∈ {1, 2, . . . , n}. Then Conjecture 4.1 is valid with the choice of M= {r +
1, . . . , r +m} and rs ≡ r, where indices are understood modulo n.

Aomoto’s identity (1.2) and Forrester’s conjecture are related to the matrices

BA =









































































0 b . . . b b . . . b
a 0 . . . k k . . . k
...

...
. . .

...
...

. . .
...

a k . . . 0 k . . . k
a+ 1 k . . . k 0 . . . k
...

...
. . .

...
...

. . .
...

a+ 1 k . . . k k . . . 0









































































and BF =









































































0 b . . . b b . . . b
a 0 . . . k k . . . k
...

...
. . .

...
...

. . .
...

a k . . . 0 k . . . k
a k . . . k 0 . . . k+ 1
...

...
. . .

...
...

. . .
...

a k . . . k k+ 1 . . . 0









































































,

where the lastmresp.n−n0 rows/columns are separated. In the first case we rearranged the matrix so that aq-analogue
can be formulated within our framework. Our main result concerns the overlay of these matrices whenm ≥ n − n0,
that is, the matrix

BAF =















































































































0 b . . . b b . . . b b . . . b
a 0 . . . k k . . . k k . . . k
...

...
. . .

...
...

. . .
...

...
. . .

...

a k . . . 0 k . . . k k . . . k
a+ 1 k . . . k 0 . . . k k . . . k
...

...
. . .

...
...

. . .
...

...
. . .

...

a+ 1 k . . . k k . . . 0 k . . . k
a+ 1 k . . . k k . . . k 0 . . . k+ 1
...

...
. . .

...
...

. . .
...

...
. . .

...

a+ 1 k . . . k k . . . k k+ 1 . . . 0















































































































0
1
...

n−m
n−m+ 1

...

n0

n0 + 1
...

n

.
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Theorem 6.2. Let n be a positive integer. For arbitrary nonnegative integers a, b, k and m, n0 ≤ n ≤ m+ n0,

CT[Lq(x0, x; BAF )] =
n−1
∏

j=0

(q)a+b+k j+χ( j>n0)( j−n0)+χ( j≥n−m)(q)k j+χ( j>n0)( j−n0)+k

(q)a+k j+χ( j>n0)( j−n0)+χ( j≥n−m)(q)b+k j+χ( j>n0)( j−n0)(q)k
×

n−n0
∏

j=1

1− q(k+1) j

1− qk+1
.

Whenm = 0, this proves Baker and Forrester’s [7, Conjecture 2.1], and further specializing atq = 1, Forrester’s
original conjecture as well. Then0 = n case gives the followingq-analogue of Aomoto’s identity.

Corollary 6.3. Let n be a positive integer. For arbitrary nonnegative integers a, b, k and m≤ n,

CT[Lq(x0, x; BA)] =
n−1
∏

j=0

(q)a+b+k j+χ( j≥n−m)(q)k j+k

(q)a+k j+χ( j≥n−m)(q)b+k j(q)k
.

A more general version of this identity, which involves an additional parameter attached tob, was established in
Kadell’s paper [28]. An elementary proof was claimed recently by Xin and Zhou [51]. Replacingk by k+1 we obtain
that Theorem 6.2 is valid for arbitrarym≤ n whenn0 = 0. Although the conditionn ≤ m+ n0 is crucial to our proof
given in the next section, it does not seem to be necessary.

Conjecture 6.4. Theorem 6.2 remains valid without the restriction n≤ m+ n0.

7. Proof of the conjecture of Forrester

Clearly CT[Lq(x0, x; B)] equals the coefficient of
∏

j x
B j

j , whereB j =
∑

i βi j , in the polynomial

Fq(x0, x; B) :=
∏

0≤i< j≤n

(

βi j−1
∏

t=0

(x j − qtxi) ×
β ji
∏

t=1

(xi − qtx j)
)

.

Claim 7.1. Suppose that ci = qαi for some integersαi such that Fq(c0, c; B) , 0. Let j > i. Thenα j ≥ αi implies
α j ≥ αi + βi j , andαi > α j impliesαi ≥ α j + β ji + 1. Both statements are valid even if the corresponding entry in B is
zero. The same is true with Fq replaced by any of its partial derivatives in which mi = mj = 0.

We are to apply Theorem 2.4 with the polynomialF = Fq(.; BAF ). As in Section 5, we will assume that the parameters
a, b, k are positive integers and leave the rest to the reader.

7.1. The choice for the multisets Ci

Write γi = βin for 0 ≤ i < n and let∆t =
∑t

i=0 γi . Thus,

γ0 = b, γ1 = · · · = γn0 = k, γn0+1 = · · · = γn−1 = k+ 1

andβi j = γmin{i, j} for 1 ≤ i , j ≤ n. Consider the intervalsI t = [∆t − γt + 1,∆t] = [∆t−1 + 1,∆t], where here and
thereafter [u, v] stands for the set of integersℓ satisfyingu ≤ ℓ ≤ v. The intervalsI0 := [0, b], I1 . . . , In−1 are mutually
disjoint. The multisetsCi are defined in the formCi = {qα | α ∈ Ai}, where for 1≤ j ≤ n

A j = {0} ∪
n−1
⋃

t=0

[

∆t − γmin{t, j} + 1,∆t

]

⊆

n−1
⋃

t=0

I t = [0,∆n−1]

is and ordinary set and

A0 = {0} ∪
n−1
⋃

t=0

[

∆t − b+ 1,∆t − b+ βt+1,0
]

is a multiset. Then|Ci | = |Ai | = Bi + 1 holds for every 0≤ i ≤ n. We are to show that

∂m0+···+mnF

∂xm0

0 . . . ∂xmn
n

(c0, . . . , cn) =
∂m0F

∂xm0

0

(c0, . . . , cn) = 0

for all but one selection of elementsci ∈ Ci and multiplicitiesmi < ωi(ci), namely whenc0 = 1, ci = q∆i−1 for
1 ≤ i ≤ n, and all the multiplicities are zero.
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7.2. The combinatorics

Consider such a selection and writeci = qαi . Note thatω1(c1) = · · · = ωn(cn) = ω0(q0) = 1. The above statement
is verified by the juxtaposition of the following two lemmas.

Lemma 7.2. Letα0 = 0. If F(c0, c1, . . . , cn) , 0, thenαi = ∆i−1 for every1 ≤ i ≤ n.

Lemma 7.3. If α0 , 0, then(∂m0F/∂xm0
0 )(c0, . . . , cn) = 0.

One key to each is the following consequence of Claim 7.1.

Lemma 7.4. Suppose that(∂m0F/∂xm0
0 )(c0, . . . , cn) , 0. Then for every1 ≤ t ≤ n − 1 there is at most one index

1 ≤ i ≤ n such thatαi ∈ I t.

Proof. Assume that, on the contrary, there is a pair 1≤ i , j ≤ n such thatαi , α j ∈ I t. Let α j ≥ αi , then it follows
from Claim 7.1 thatα j −αi ≥ k. The length ofI t is γt ∈ {k, k+ 1}. Thus, it must beγt = k+ 1,αi = ∆t − k andα j = ∆t.
Consequently,t > n0, i < j andi ≤ n0. Therefore∆t − γmin{t,i} + 1 = ∆t − k+ 1 andαi < Ai , a contradiction.

Proof of Lemma 7.2.For every 1≤ i ≤ n we haveαi ≥ α0, thereforeαi ≥ β0i = b by Claim 7.1. Moreover,k > 0
implies thatα1, . . . , αn are all distinct, thus it follows from Lemma 7.4 that each of the intervalsI0, I1, . . . , In−1 contains
precisely one of them. Letπ ∈ Sn denote the unique permutation for whichαπ(1) < · · · < απ(n), thenαπ(i) ∈ I i−1. By
Claim 7.1 we have

απ(i+1) ≥ απ(i) + βπ(i),π(i+1) + χ(π(i) > π(i + 1)).

Consequently,

απ(n0+1) ≥ b+ kn0 +

n0
∑

i=1

χ(π(i) > π(i + 1)) ≥ ∆n0 +

n0
∑

i=1

χ(π(i) > π(i + 1)).

Sinceαπ(n0+1) ≤ ∆n0, it follows thatαπ(1) = b, π(1) < · · · < π(n0 + 1), andβπ(i),π(i+1) = k for 1 ≤ i ≤ n0. This in turn
implies thatπ(n0) ≤ n0, thusπ(i) = i andαi = ∆i−1 for 1 ≤ i ≤ n0.

Now for n0 < i < n we haveπ(i), π(i + 1) > n0 and thusβπ(i),π(i+1) = k + 1. Restrictingπ to the set [n0 + 1, n] and
starting withαπ(n0+1) = ∆n0, a similar argument completes the proof.

Proof of Lemma 7.3.Assume that, contrary to the statement, (∂m0F/∂xm0
0 )(c0, . . . , cn) , 0. WriteSt =

[

∆t − b+ 1,∆t − b+ βt+1,0
]

.
Sinceα0 , 0 andm0 < ω0(c0), there is an index 0≤ u ≤ n− ω0(c0) such thatα0 ∈ Su ∩ Su+1 ∩ · · · ∩ Su+m0. That is,

∆u+m0 − b+ 1 ≤ α0 ≤ ∆u − b+ βu+1,0.

Accordingly, ifα j lies in the interval

Tu j = [∆u − b+ βu+1,0 − β j0,∆u+m0]

for some 1≤ j ≤ n, thenα0 − β j0 ≤ α j ≤ α0 + β0 j − 1 and there is a term of the formx j − qtx0 or x0 − qtx j in F which
attains 0 when evaluated at the point (c0, c). There cannot be more thanm0 such terms. It is implied by Lemma 7.4
that at mostn− 1− u−m0 of the distinct numbersα1, . . . , αn can lie in the interval [∆u+m0 + 1,∆n−1].

It follows that at leastu+ 1 of the numbersα j satisfyα j ≤ ∆u − b+ βu+1,0 − β j0 − 1. This is clearly impossible if
u+ 1 ≤ n−m, for then∆u − b+ βu+1,0 − β j0 − 1 ≤ uk− 1 in view ofn−m≤ n0, and on the other hand the difference
between any two suchα j is at leastk in view of Claim 7.1. Thus,u ≥ n−m andβu+1,0 = a+ 1. Consider

αν(1) < · · · < αν(u+1) ≤ ∆u − b+ βu+1,0 − βν(u+1),0 − 1 ≤ ∆u − b.

If u ≤ n0, then it must beαν(i) = (i − 1)k andν(1) < · · · < ν(u+ 1), but thenν(u+ 1) ≥ u+ 1 > n−m, βν(u+1),0 = a+ 1,
implyingαν(u+1) ∈ Tu,ν(u+1), which is absurd. This means thatu ≥ n0 + 1. It is easy to see thatαν(i+1) − αν(i) ≥ γν(i) for
i ≤ u, thusαν(u+1) ≥

∑u
i=1 γν(i) ≥ ∆u−b. Therefore

∑u
i=1 γν(i) = ∆u−b, which implies that{ν(1), . . . , ν(u)} ⊇ {1, . . . , n0}.

Consequently,ν(u+ 1) ≥ n0 + 1 > n−m, which leads to a contradiction as before.
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7.3. The computation

It only remains to evaluate
Fq(q0, q∆0, . . . , q∆n−1; B)

ψ0ψ1 . . . ψn
, (7.1)

where
ψ j =

∏

α∈A j \{∆ j−1}
(q∆ j−1 − qα)

for j = 1, . . .n, and with the shorthand notation∆v
u = γu + · · · + γv = ∆v − ∆u−1,

ψ0 =

n−1
∏

t=0

∆t
1+βt+1,0
∏

α=∆t
1+1

(1− qα) =
n

∏

j=1

[

∆
j−1
1 + 1,∆ j−1

1 + β j0

]

q
. (7.2)

From now on, [u, v]q := (1− qu) . . . (1 − qv) = (q)v/(q)u−1, with [u, u]q abbreviated as [u]q. Both the numerator and
the denumerator in (7.1) is the product of factors in the form±qu(1− qv) with some non-negative integersu, v. More
precisely, collecting factors of a similar nature togetherwe find that the numerator is the product of the factors

(−1)γ0 × q1+···+(γ0−1) ×
[

∆
j−1
1 + 1,∆ j−1

0 + β j0

]

q
for 1 ≤ j ≤ n, (7.3)

(−1)γi × q∆i−1+···+(∆i−1+γi−1) ×
[

∆
j−1
i − γi + 1,∆ j−1

i

]

q
for 1 ≤ i < j ≤ n, (7.4)

and
qγi∆i−1 ×

[

∆
j−1
i + 1,∆ j−1

i + γi

]

q
for 1 ≤ i < j ≤ n. (7.5)

In the denominator, besides (7.2) we have the factors

(−1)×
[

∆ j−1

]

q
× ψ j< × ψ j= × ψ j> for 1 ≤ j ≤ n, (7.6)

where

ψ j< =

j−2
∏

t=0

(−1)γt × q(∆t−γt+1)+···+∆t ×
[

∆
j−1
t+1 ,∆

j−1
t+1 + γt − 1

]

q
, (7.7)

ψ j= = (−1)γ j−1−1 × q(∆ j−1−γ j−1+1)+···+(∆ j−1−1) ×
[

1, γ j−1 − 1
]

q
, (7.8)

and

ψ j> =

n−1
∏

t= j

qγ j∆ j−1 ×
[

∆t
j − γ j + 1,∆t

j

]

q
. (7.9)

Now the powers of−1 andq cancel out due to the simple identity

nγ0 +
∑

1≤i< j≤n

γi = n+
∑

0≤t< j−1≤n−1

γt +
∑

1≤ j≤n

(γ j−1 − 1)

and the somewhat more subtle

n

(

γ0

2

)

+
∑

1≤i< j≤n

(

2γi∆i−1 +

(

γi

2

))

=
∑

0≤t< j−1≤n−1

(

γt∆t −

(

γt

2

))

+

n
∑

j=1

(

(γ j−1 − 1)∆ j−1 −

(

γ j−1 − 1
2

))

+
∑

0≤ j−1<t≤n−1

γ j∆ j−1.

It remains to deal with the factors of the form [u, v]q. Those from (7.4) and (7.9) cancel out. Those from (7.3) and
(7.2) yield

n
∏

j=1

(q)
∆

j−1
0 +β j0

(q)
∆

j−1
1 +β j0

=

n−1
∏

j=0

(q)a+b+k j+χ( j>n0)( j−n0)+χ( j≥n−m)

(q)a+k j+χ( j>n0)( j−n0)+χ( j≥n−m)
. (7.10)
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As for the rest, the contribution from (7.5) and (7.7) with the substitutiont + 1 = i gives

∏

1≤i< j≤n

[

∆
j−1
i + 1,∆ j−1

i + γi

]

q
[

∆
j−1
i ,∆

j−1
i + γi−1 − 1

]

q

=
∏

1≤i< j≤n

[

∆
j−1
i ,∆

j−1
i + γi

]

q
·
[

∆
j−1
i + γi−1

]

q
[

∆
j−1
i ,∆

j−1
i + γi−1

]

q
·
[

∆
j−1
i

]

q

=

n
∏

j=2

[

∆
j−1
1 ,∆

j−1
1 + γ1

]

q
[

∆
j−1
1 ,∆

j−1
1 + γ0

]

q

× Ψ ×
∏

1≤i< j≤n

[

∆
j−1
i−1

]

q
[

∆
j−1
i

]

q

=

n
∏

j=2

(q)
∆

j−1
1 +γ1

(q)
∆

j−1
1 +γ0

× Ψ ×

n
∏

j=2

[

∆ j−1

]

q

1− qγ j−1
(7.11)

in the first place, where the factor

Ψ =

n
∏

j=n0+2

[

∆
j−1
n0+1 + γn0+1

]

q
=

n−n0
∏

j=2

(1− q(k+1) j)

only occurs whenn0 > 0. Combining (7.11) with the contribution of the factors
[

∆ j−1

]

q
= 1− q∆ j−1 from (7.6) and the

factors
[

1, γ j−1 − 1
]

q
= (q)γ j−1−1 from (7.8), shifting indices we obtain

n−1
∏

j=1

(q)
∆

j
1+γ1

(q)
∆

j
1+γ0

×

n−1
∏

j=0

1
(q)γ j

×

















n−n0
∏

j=2

(1− q(k+1) j)

















χ(n0>0)

,

in agreement with
(q)k j+χ( j>n0)( j−n0)+k

(q)b+k j+χ( j>n0)( j−n0)(q)k
×

n−n0
∏

j=1

1− q(k+1) j

1− qk+1
. (7.12)

Putting together (7.10) and (7.12) completes the proof of Theorem 6.2.

Remark.For all the identities considered in this paper, the formulas exhibit, apart from some minor deviations, quite a
similar pattern, and it is more or less clear from the above argument, why it is so. We do not elaborate on this here, but
the motivated reader may come up with other families of matricesB for which a similar proof strategy might work.
We believe that the details given above can be useful in such aquest.

7.4. A rationality result

It is possible to prove Theorem 6.2 based solely on Lemma 1.1;in fact this is how our result was originally
obtained. It involves the same combinatorics applied whenk ≥ a + 1, in which caseA0 is an ordinary set. The
extension of the result that includes all non-negative integersk depends on the following rationality lemma, inspired
by [20, Proposition 2.4].

Lemma 7.5. Fix nonnegative integers ri , si for 1 ≤ i ≤ n, satisfying
∑

r i =
∑

si . There is a rational function
Q = Q(z) ∈ Q(q)(z) that depends only on n and the numbers ri , si , such that

CT
[ xr1

1 . . . x
rn
n

xs1
1 . . . xsn

n
Dq(x; k)

]

= Q(qk)
(q)nk

(q)n
k

.

Expanding the degree zero part of

n
∏

j=1

(qxj)a+χ( j≤m)(1/x j)b

∏

n0<i< j≤n

(1− qkxi/x j)(1− qk+1x j/xi)
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into a sum of monomial terms and applying the above lemma to each such term individually, we find that there is a
rational functionR ∈ Q(q)(z) depending only on the parametersn,m, n0, a, b such that

CT[Lq(x0, x; BAF )] = R(qk)
(q)nk

(q)n
k

.

Reorganizing the formula in Theorem 6.2 in the form

P(qk)
(q)nk

(q)n
k

with a functionP ∈ Q(q)(z) which also depends only onn,m, n0, a, b, the theorem established fork ≥ a + 1 yields
P = R, which in turn implies the full content of the result.

It only remains to prove Lemma 7.5, and this is executed with yet another application of Lemma 1.1. Since a
similar — in fact more general — result was found recently by Doron Zeilberger and his able computer [15], we only
give a brief account. As thek = 0 case is trivial, we will assumek > 0.

Proof of Lemma 7.5.The constant term ofDq(x; k) equals the coefficient of
∏

x(n−1)k
i in the polynomial

F(x) =
∏

1≤i< j≤n

( k−1
∏

t=0

(x j − qtxi) ×
k

∏

t=1

(xi − qtx j)
)

.

SetCi = {qαi | αi ∈ [0, (n− 1)k]}. ThenF(c) = 0 for everyc ∈ C1 × · · · × Cn except whenci = q(i−1)k for everyi.
According to Lemma 1.1,

CT[Dq(x; k)] =
F(q0, qk, . . . , q(n−1)k)

ψ1ψ2 . . . ψn
=

(q)nk

(q)n
k

where ψi =
∏

0≤ j≤(n−1)k, j,(i−1)k
(q(i−1)k − q j).

We compare this product to the constant term in the lemma, which equals the coefficient of
∏

x(n−1)k+si

i in the polyno-
mial F∗(x) = xr1

1 . . . x
rn
n F(x). Accordingly we setC∗i = {q

αi | αi ∈ [0, (n− 1)k+ si ]} and note that forc ∈ C∗1 × · · · ×C∗n
we haveF∗(c) , 0 if and only if the exponentsαi are all distinct and

απ(i+1) ≥ απ(i) + k+ χ(π(i) > π(i + 1))

holds for 1≤ i ≤ n − 1 with the unique permutationπ = πc ∈ Sn satisfyingαπ(1) < · · · < απ(n). Consequently,
αi = (π−1(i) − 1)k+ ǫi for someǫi = ǫi(c) ∈ [0, sπ(n)].

SetC = {c ∈ C∗1 × · · · ×C∗n | F
∗(c) , 0}, and writes= maxsi . It follows that

|C| ≤ n!

(

s+ n
n

)

.

Moreover, the setS = {(πc, ǫ1(c), . . . ǫn(c)) | c ∈ C} is independent ofk; it depends only onn and the numberssi . It
follows from Lemma 1.1 that, using the notationτ = π−1,

CT
[ xr1

1 . . . x
rn
n

xs1

1 . . . xsn
n
Dq(x; k)

]

=
∑

c∈C

n
∏

i=1

q((τ(i)−1)k+ǫi )r i
F(. . . , q(τ(i)−1)k+ǫi , . . .)

ψ∗1ψ
∗
2 . . . ψ

∗
n

where
ψ∗π(i) =

∏

0≤ j≤(n−1)k+sπ(i), j,(i−1)k+ǫπ(i)
(q(i−1)k+ǫπ(i) − q j).

One readily checks that for eachΣ = (π, ǫ1, . . . , ǫn) ∈ S there exist rational functionsQi ∈ Q(q)(z) that depend only
onn, the numbersr j , sj and the sequenceΣ, such that

n
∏

i=1

q((τ(i)−1)k+ǫi )r i = Q0(qk),
ψi

ψ∗
π(i)

= Qi(q
k) and

F(. . . , q(τ(i)−1)k+ǫi , . . .)
F(q0, qk, . . . , q(n−1)k)

= Qn+1(qk).
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The result follows.
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[16] P. Erdős, R.L. Graham, Old and New Problems and Resultsin Combinatorial Number Theory, L’Enseignement Mathématique, Geneva, 1980.
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