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Abstract
In 1999 Kannan, Tetali and Vempala proposed a MCMCmethod to uniformly sample all

possible realizations of a given graphical degree sequence and conjectured its rapidly mix-

ing nature. Recently their conjecture was proved affirmative for regular graphs (by Cooper,

Dyer and Greenhill, 2007), for regular directed graphs (by Greenhill, 2011) and for half-regu-

lar bipartite graphs (by Miklós, Erdős and Soukup, 2013).

Several heuristics on counting the number of possible realizations exist (via sampling

processes), and while they work well in practice, so far no approximation guarantees exist

for such an approach. This paper is the first to develop a method for counting realizations

with provable approximation guarantee. In fact, we solve a slightly more general problem;

besides the graphical degree sequence a small set of forbidden edges is also given. We

show that for the general problem (which contains the Greenhill problem and the Miklós,

Erdős and Soukup problem as special cases) the derived MCMC process is rapidly mixing.

Further, we show that this new problem is self-reducible therefore it provides a fully polyno-
mial randomized approximation scheme (a.k.a. FPRAS) for counting of all realizations.

Introduction
In the Age of the Internet, network theory has been undergoing exponential growth. One of its
important problems is to algorithmically construct networks (or graphs) with predefined
parameters, or to uniformly sample networks with these parameters. For general background,
the interested reader can turn to the now-classic book of Newman, Barabási and Watts ([1]) or
to the more recent book of Newman ([2]).

One of the earliest and still most important problems in graph theory is uniformly sampling
all possible graph realizations of given degree sequence. (For the definitions see Section
“Degree sequences”.) One possible method for this is a simple MCMC approach (proposed by
Kannan, Tetali and Vempala [3]); take an arbitrary realization of the degree sequence, then
perform a series of randomly chosen local transformations (called swap or switch). They
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conjectured that the process is rapidly mixing, i.e., a random realization is achieved after poly-
nomial many steps.

The first result with a flawless proof in connection with this conjecture is due to Cooper,
Dyer and Greenhill (2007, [4]) for the special case when the degree sequence is regular. Green-
hill proved in 2011 the analogous result for (in- and out-)regular directed graphs ([5]). In 2013
Miklós, Erdős and Soukup proved the conjecture for half-regular bipartite graphs ([6]). Here
the degree sequence on one class is regular, while there is no constraint on the other class. (A
comprehensive survey on the topic is [5] or is [6].)

In modern network applications sampling the solutions is just one requirement. Sometimes
the actual number of all solutions (or at least a good approximation of it) is also important. It is
well known (Jerrum, Valiant and Vazirani 1986, [7]) that for self-reducible counting problems a
rapidly mixing sampling method also provides a quick estimation of that number (with small
relative error and with very high probability). Unfortunately none of the sampling problems
listed above belongs to this class.

The main purpose of this paper is to remedy this imperfection. For that end we introduce a
slightly more general degree sequence problem, which has all the good characteristics of the
sampling procedures above (including their rapidly mixing nature), furthermore, which
belongs to the class of self-reducible counting problems. This new problem is a common gener-
alization of the regular directed graph and of the half-regular bipartite graph cases. Therefore,
showing the rapidly mixing nature of the corresponding MCMC procedure provides new
proofs for both problems. We prove only the existence of a polynomial upper bound on the
mixing time, but do not prove the tight upper bound in Greenhill’s theorem in [5].

In Section “Degree sequences” we recall the known definitions and facts on degree
sequences problems in simple graphs. Then we introduce and study in full generality our pro-
posed new restricted degree sequence (or ReDeSe for short) problem, where we deal with for-
bidden edges. Next, we study a specific instance of the general ReDeSe problem: bipartite
degree sequences with a forbidden (but not necessarily perfect) 1-factor and a forbidden (but
maybe empty) star.

In Section “Sampling” we first discuss some known results to sample degree sequence reali-
zations. Then, we formulate our main result (Theorem 10): the proposed MCMC process on
half-regular bipartite degree sequences with a well-defined small forbidden edge set is rapidly
mixing. Our proof is based on Sinclair’smulticommodity flow method ([8]), and follows closely
the proof in [6]. We discuss the similarity between the two proofs in this section, while in Sec-
tions “Milestones” and “The analysis” we study the details of our new Markov chain approach
which require different treatment.

In Section “Counting” we show that the studied sampling problem leads to a self-reducible
counting problem. Therefore, our almost uniform sampling method provides a good approxi-
mation on the size of the set of all realizations, strengthening also Greenhill’s result on regular
directed graphs ([5]), and Miklós, Erdős and Soukup’s result on half-regular bipartite
graphs ([6]).

Degree Sequences
In this paper, every graph is assumed to be simple; there are no loops or multiple edges.

Degree sequences and realizations
Let V be a labeled set of n elements. The degree sequence d(G) of a graph G = (V, E) is the
sequence d(G)i = d(vi) of its vertex degrees. A non-negative integer sequence d = (d1, . . ., dn) is
graphical iff d(G) = d for some simple graph G, and then G is a graphical realization of d.
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The first successful approach to decide whether a degree sequence is graphical is due to
Havel ([9]), his simple but surprising observation provides immediately a greedy algorithm to
build such a realization. His work was rediscovered independently later by Hakimi ([10]).
Their method is based on the so-called swap operation. (The expressions switch or rewiring are
also widely used. In this paper the word switch will be used for a similar, but slightly more gen-
eral, operation.) The swap operation is defined as follows:

Let G be a simple graph and assume that a, b, c and d are different vertices. Furthermore,
assume that (a, c), (b, d) 2 E(G) while (b, c), (a, d) =2 E(G). Then

EðG0Þ ¼ EðGÞ n fða; cÞ; ðb; dÞg [ fðb; cÞ; ða; dÞg ð1Þ

is another realization of the same degree sequence. We denote this operation by ac, bd) bc,
ad. Havel’s nice observation is the following:

Lemma 1 (Havel, [9]). Assume that in graph G vertex v is adjacent to vertex x but not to ver-
tex y. Assume furthermore that d(x)� d(y). Then one can find a swap operation which produces
a new graphical realization G0 of the degree sequence d(G) with the property: Γ0(v) = Γ(v) n {x}
[ {y}. (These are the corresponding neighborhoods of vertex v.)

The analogous notions for bipartite graphs are the following: if B is a simple bipartite graph
then its vertex classes will be denoted by U(B) = {u1, . . ., uk} andW(B) = {w1, . . ., wℓ}, and we
keep the notation V(B) = U(B) [W(B). The bipartite degree sequence of B,D(B) is defined as
follows:

DðBÞ ¼ ððdðu1Þ; . . . ; dðukÞÞ; ðdðw1Þ; . . . ; dðw‘ÞÞÞ:

We can define the swap operation for bipartite realizations similarly to Eq (1) but we must take
some care: it is not enough to assume that (b, c), (a, d) =2 E(G) but we have to know that a and b
are in one vertex class, and c and d are in the other.

To make clear whether a vertex pair is not forbidden to be an edge we will call a vertex pair
a chord if it can hold an actual edge in a realization. Those pairs that cannot accommodate an
edge are non-chords. (For example, pairs from the same vertex class of a bipartite graph are
non-chords.) It can also be found in [11, Theorem 6].

Denote ~G a directed graph (no parallel edges, no loops, but oppositely directed edges

between two vertices are allowed) with vertex set Xð~GÞ ¼ fx1; x2; . . . ; xng and edge set Eð~GÞ.
For every vertex v we associate two numbers: the in-degree and the out-degree of v.

Instead of introducing the matching definitions, we will apply the following representation

of the directed graph ~G : let Bð~GÞ ¼ ðU;W; EÞ be a bipartite graph where each class consists of

one copy of every vertex of ~G. The edges adjacent to a vertex ux in class U represent the out-
edges from x, while the edges adjacent to a vertex wx in classW represent the in-edges to x (so
a directed edge xy corresponds the edge uxwy). If a vertex has zero in- (respectively out-) degree

in the directed version, then we delete the corresponding vertex from Bð~GÞ: (Actually, this
representation is an old trick used already by Gale [12].) There is no loop in our directed
graph, therefore there is no (ux, vx) type edge in its bipartite realization—these vertex pairs are
non-chords.

Consider two different realizations, G and H, of the same degree sequence (either simple or
bipartite one). It is a well-known fact that the first can be transformed to the second one (and
vice versa) with consecutive swap operations. Formally, there exists a series of realizations G =
G0, . . ., Gi−1, Gi =H, such that for each j = 0, . . ., i−1 there exists a swap operation which trans-
forms Gj into Gj+1.

For simple graphs this was proved already in 1891 by Petersen [13]. It can be shown that
lemma 1 also provides a solution via the so-called canonical realizations. The analogous result
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for bipartite graphs (with possible multiple edges but no loops) is due to Ryser ([14]). For sim-
ple bipartite graphs this is common-knowledge.

For directed graphs an analogous result is known. It was discovered by Kleitman andWang
(see [15]) and later rediscovered in [16]. It is important however to recognize that in case of
directed graphs the “classical”Havel-type swap operation is not always adequate. To see this, it
is enough to consider an example with three vertices: each vertex incident to one in-edge and
one out-edge. There are exactly two possible realizations of this directed degree sequence,
therefore a swap operation with six chords is necessary: we exchange three edges with three
non-edges in one step. In papers [15, 16] it was shown that this extra operation is always
sufficient.

Restricted degree sequences
In this paper we study the following common generalization of all previously mentioned degree
sequence problems:

The restricted degree sequence (i.e. ReDeSe) problem dF consists of a degree sequence d

and a set F � V
2

� �
of forbidden edges. The problem is to decide whether there is a simple

graph G on V with the given degree sequence and with E(G) \ F = ;.
It is clear that this problem is essentially identical with Tutte’s f-factor problem [17]: the f-

factor to be found is our degree sequence while the graph what the f-factor is searched for is the
complement of the forbidden edges. Therefore Tutte’s theorem and the famous blossom algo-
rithm of Edmonds apply nicely for the ReDeSe problem. However the focus of our approach is
quite different from the f-factor problem: at first we are interested several (or all) solutions of
the ReDeSe problem instead of finding one solution, and often enough we want to find “typi-
cal” solutions. At second: this sampling problem seems to be hopeless in general. In our studies
we restrict ourself for carefully chosen small instances.

The bipartite restricted degree sequence problemDF consists of a bipartite degree
sequenceD on (U,W), and a set F� [U,W] of forbidden edges. The problem is to decide
whether there is a simple bipartite graph G on V with the given degree sequence and with E(G)
\ F = ;.

Clearly, a bipartite restricted degree sequence problemDF on (U,W) is the restricted degree
sequence problem dF0 on U [W, where F0 = F [ [U]2 [ [W]2.

Furthermore, we already studied one instance of the bipartite restricted degree sequence
problem, namely the bipartite representation of directed degree sequences: here F is one 1-fac-
tor, which corresponds to the forbidden loops.

It is important to add that while the fundamental result of Jerrum, Sinclair and Vigoda on
sampling perfect matchings in graphs ([18]) provides a uniform sampling approach for the
possible realizations, their method is not useful in practice. That is the reason that so much
effort has been made on this topic. We return to this issue at the end of Section “Counting”.

In the remaining of this subsection we study the general ReDeSe problem. The next subsec-
tion will be devoted to a particular bipartite restricted degree sequence problem which will play
a central role later in the paper.

Definition 2. Let dF be a restricted degree sequence problem and let G be a realization of it.
The sequence of vertices C = (x1, x2, . . ., x2i) is a chord-circuit if:

(D1) all pairs x1x2, x2x3, . . ., x2i−1x2i, x2ix1 are chords;

(D2) each of these chords is different.

A chord-circuit is elementary if

Approximate Counting of Graphical Realizations
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(D3) no vertex occurs more than twice;

(D4) when two copies of the same vertex exist, then their distance along the circuit is odd.

Definition 3. The chord-circuit C is said to alternate in G, if the chords along C are in turn
edges and non-edges in G. (For example x2j−1x2j are edges for 1� j� i, while the other chords
are non-edges in G.)

Deleting the actual edges along C from G and adding the other chords as edges constructs a
new graph G0 which is again a realization of dF. This is a C-swap and this operation is known
in general as a circular C2i-swap.

Finally, two different vertices x, y of the alternating chord-circuit C form a PV-pair if the dis-
tance of the vertices along the circuit (the number of chords between them) is odd and greater
than 1. If all PV-pairs are non-chords (so they belong to F), then this circular C-swap is called
a F-compatible swap or F-swap for short.

The F-swap is one of the central notions of this paper. When i = 2 then the circular C4-
swap coincides with the classical Havel type swap. When i = 3 then we get back the notion of
the triangular C6-swap, which occurs in connection with directed degree sequences (see [19]).

We define the weight of the F-compatible circular C2i-swap as w(C2i) = i−1. This definition
sets the weight of the classical Havel type swaps to 1 and the weight of a C6-swap to 2, which
agree with the definitions used in paper [19]. Furthermore it is well known (see for example
again [19]) that (i−1) Havel type swaps are needed to alternate the edges along C2i in case of
simple graphs with no forbidden edges. As we will see next the same applies for any elementary
circular C2i-swap:

Lemma 4. Let G be a realization of dF and let the elementary chord-circuit C of length 2i be
alternating. Then the circular C-swap operation can be carried out by a sequence of F-swaps of
total weight i−1.

In other words there exists a sequence G = G0, G1, . . ., Gℓ of realizations such that for each
j = 0, . . ., ℓ−1 there exists an F-compatible swap operation from Gj to Gj+1. The difference
between G and Gℓ is exactly the alternating circuit C. Finally, the total weights of those F-swap
operations is i−1. We will say that this swap sequence does process the prescribed circular
swap operation.

Proof. We apply mathematical induction for the length of the chord-circuit: when i = 2 then
the statement is trivial. Assume now that this is true for all circuits of length at most 2i−2. Then
take an alternating elementary chord-circuit C of length 2i in a realization of dF.

If each PV-pair in C is a non-chord, then the circular C2i-swap itself is a F-swap of weight i
−1. So we may assume that there is a PV-pair uv in C which is a chord. This chord together
with the two “half-circuits” of C form chord-circuits C1 and C2 using the chords of the original
circuit C and twice the chord uv. One of them, say C1, is alternating. The length of C1 is 2j< 2i
therefore there exists a F-compatible swap sequence of total weight j−1 to process it. After the
procedure the status of uv (the property of the chord whether it is an edge or a non-edge) will
alter into the other status. With this new status of the chord the circuit C2 becomes an alternat-

ing one with length 2i+2−2j, so it can be processed with 2iþ2�2j
2

� 1 total weight—and after this

procedure the chord uv is switched back to its original status. We found a swap sequence of
total weight i−1 which finishes the proof.

The space of all realizations of dF: Consider now the set of all possible realizations of a
restricted graphical degree sequence dF. Let G and H be two different realizations. The natural
question, similar to the case of classical degree sequence problems, is whether G can be trans-
formed into H using F-swaps? The answer is affirmative:

Approximate Counting of Graphical Realizations
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Theorem 5. The spaceG = (V, E) of all realizations of the restricted degree sequences prob-
lem dF is connected.

Proof. What we have to prove is the following: let G andH be two realizations of dF. Then
we have to find a series of realizations G = G0, . . ., Gi−1, Gi =H, such that for each j = 0, . . ., i−1
there exists an F-swap from Gj to Gj+1.

Consider the symmetric difference of the edge sets of the two realizations: Δ = E(G)4E(H).
This set is two-colored by the original hosts of the edges: there are G-edges and H-edges. It is
clear that for each vertex v in the graph G = (V, Δ) the numbers of G-edges andH-edges inci-
dent to v are the same: dG(v) = dH(v). It is well known that this can be decomposed into alter-
nating circuits C1, . . ., Cℓ.

We will use the notions of circuit and cycle in a simple graph G as usual: therefore a circuit
is a chord-circuit where all chords are edges. A cycle is a circuit without repeated vertices. A cir-
cuit is alternating in Δ if the edges come in turns from E(G) and E(H). When this is the case
then the corresponding chord-circuit in realization G (as well as inH) is also alternating.

We can find a decomposition, such that no circuit contains a vertex v twice and their dis-
tance δ (the number of edges between the copies is even. Indeed, if δ is even, then δ is at least
four, consequently the vertex v splits the original circuit into two smaller, but still alternating
circuits. Furthermore, if a circuit contains a vertex v at least three times, then there are at least
two of them with even distance.

It is clear that any alternating circuit decomposition can be transformed into a decomposi-
tion where each (chord)-circuit is elementary with successive transformations. It is also clear
that if, by chance, we start with a circuit decomposition of maximal number of circuits, then all
circuits in this decomposition are automatically elementary. (Of course, finding such a decom-
position may be very hard.)

The application of Lemma 4 proves that each circuit C can be processed with jCj/2−1 total
weight. This finishes the proof.

It seems to be interesting that using a result from paper [19] one can determine the mini-
mum weight of an F-compatible swap sequence which transforms G into H, however we do
not discuss this question here.

Bipartite 1-Factor + 1 Star Restricted Degree Sequences
In the previous subsection we studied the restricted degree sequence problem in its full general-
ity. However, our real interest lays in a quite simple case: dF is called a 1-Factor + 1 Star
Restricted Degree Sequence problem (or 1F1S problem for short), if

(C) the set F of forbidden edges is a bipartite graph where the edges are the union of an
1-factor and a star with center s.

Similarly, ifD is a bipartite degree sequence, and (C) holds for F, thenDF is called a Bipartite
1F1S problem.

Everything discussed in this subsection applies to all 1F1S degree sequence problems in sim-
ple graphs. However, we are particularly interested in the bipartite case, therefore we will dis-
cuss these observations for the bipartite case only. We fix the underlying vertex set V = (U,W).
ThenDF is a bipartite 1F1S problem where the center s of the forbidden star belongs to U.

Lemma 6.

(i) The space of all realizations ofDF is closed under F-compatible swap operations.

(ii) The F-compatible swap operations are circular C4- and C6-swaps.

Approximate Counting of Graphical Realizations

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10, 2015 6 / 20



Proof. (i) As we saw already that any bipartite 1F1S can be understood as an 1F1S on simple
graphs, therefore considering F = F [ [U]2 [ [W]2 and applying Theorem 5 for the problem
dF proves (i).

(ii) Let us consider any alternating elementary circuit C in the symmetric difference4 of
two different realizations. There is a vertex u 2 C \ U which is 6¼ s. There is at most one for-
bidden chord in F which is adjacent to u. If C has more than 6 vertices, then C has at least 4 ver-
tices inW therefore there exists a vertex w 2 C \W, such that uw is a chord and uw is not in C.
Therefore the corresponding C-swap is not compatible with F.

As we already mentioned, Tutte’s f-factor theorem can always be utilized to find actual
graphical realizations of the bipartite 1F1S problem. However, in this special case we can prove
a Havel type result (similar to Lemma 1) and can construct a greedy algorithm to produce such
realizations.

Consider the bipartite 1F1S degree sequence problemDF. If the forbidden star is not empty,
then let u≔ s. Otherwise let u 2 U be any given vertex and denote N(u)�W the set of those
vertices which form chords together with u. (It is clear that if u 6¼ s then jWj−1� jN(u)j.)

Observation 7. For any y 2 N(u) there is at most one vertex, denoted by yF, such that yyF is a
non-chord, so it belongs to F. Furthermore if y, z 2 N(u) and yF = zF then y = z.

Now a linear order�u on N(u) is called good if it satisfies the following properties: for y, z
2 N(u) and y�u z we have

d(y)� d(z) and in case of d(y) = d(z) we also have d(yF)� d(zF).

It is obvious that there always exists a good order on N(u). Furthermore whenever d(y) = d(z)
and d(yF) = d(zF), then there are more than one good order.

Lemma 8. Let G be a graphical realization of the 1F1S sequence DF, let u≔ s if the forbidden
star is not empty and take any u 2 U otherwise. Let y, z 2 N(u) where y�u z with uz 2 E while
uy =2 E. Then there exists an alternating chord-cycle C of length at most 6 in G with y, u, z 2 C.
Processing C with F-compatible swap operations, we have ΓG0(u) = ΓG(u) n {z} [ {y} in the
acquired new realization.

Proof. We have uz 2 E but uy =2 E. At first assume that there exists a vertex μ 2 U n {u}, such
that μy 2 E, and μz =2 E but μ 6¼ zF. When such vertex exists then C = (u, z, μ, y) is a suitable
alternating chord-cycle.

When d(y)> d(z) then there are two vertices μ and μ0 2 U such that yμ 2 E and zμ =2 E, and
yμ0 2 E and zμ0 =2 E. Now either zμ or zμ0 is a chord.

However, if d(y) = d(z) then it can happen that zF y 2 E and

for all x 2 U n fu; yF; zFg we have xy 2 E , xz 2 E: ð2Þ

It is important to observe that in this case yF z =2 E, otherwise some x would not satisfy Eq (2)
(in order to keep d(y) = d(z)).

So the only case when we do not find automatically an appropriate circular C4-swap with u,
y and z is when d(y) = d(z), yzF is an edge and zyF is a chord but not an edge. In this case, we
can find a μ 2W n {y, z} such that yFμ 2 E but zFμ =2 E since d(yF)� d(zF). Observe that zFμ is a
chord because μF 6¼ zF.

Now C = (y, u, z, yF, μ, zF, y) is the required alternating chord circle. When uμ is a chord,
then the circular C6-swap is not F-compatible, but we can process the cycle properly (as it was
shown in the proof of Lemma 4). When it is a non-chord, then the circular C6 is an F-compati-
ble operation.

Approximate Counting of Graphical Realizations
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Lemma 8 provides the following easy Havel type greedy algorithm to decide whether our
bipartite 1F1S restricted degree sequence is graphical. (The algorithm is essentially the same as
the original Havel procedure.)

A greedy algorithm to decide whether a bipartite 1F1S degree sequence is graphical: the
degree sequence isD while the set of forbidden edges is F.

(H1) Let u≔ s if the forbidden star is not empty, otherwise take an arbitrary u 2 U. Con-
sider a good order�u on N(u). Connect u the first d(u) vertices from (with respect to
�u) of N(u). If d(u)> jN(u)j then the algorithm FAILS, our sequenceDF is not graph-
ical. Delete u from U, and update the degree sequence and the setW accordingly.
Finally delete the edges adjacent to u from F.

(H2) Repeat the previous step while U is not empty.

Theorem 9 (Generalized Havel theorem for the bipartite 1F1S ReDeSe problem). The 1F1S
restricted degree sequenceDF is graphical if and only if the previous greedy algorithm provides a
realization.

Proof. The proof is exactly the same as in the original case, described by Havel; if the
sequence is graphical, then consider a realization. Fix vertex u 2 U as described in Lemma 8.
Recursive applications of the lemma provide a realization where u is connected to the first d(u)
vertices in N(u) with respect to�u. The repeated application of the previous reasoning finishes
the proof.

Sampling Degree Sequence Realizations with Sinclair’s
Multicommodity FlowMethod
There are several available methods to sample uniformly the space of all realizations of a given
degree sequence. One of these approaches is a Markov Chain Monte Carlo method, proposed
by Kannan, Tetali and Vempala (1999, [3]). They consider a local transformation (the swap
operation) on the realizations, which in turn defines an irreducible, reversible and aperiodic
finite Markov chain on these realizations; at any given realization they choose two independent
edges from some probability distribution and perform the corresponding swap operation if it is
feasible. They conjecture that the resulted MCMC is rapidly mixing. They were studying the
particular case when the degree sequence is regular bipartite using Sinclair’s multicommodity
flow method.

Their conjecture was proved for regular graphs by Cooper, Dyer and Greenhill (2007, [4]).
(Their result does not apply to bipartite graphs, since their version does not allow forbidden
edges.) An analogous theorem was proved by Greenhill on regular directed graphs ([5]). Here
she proved at first that for regular directed degree sequences circular C4-swaps alone make the
space of the realizations connected, then she gave a strong upper bound on the mixing time.
(However, as we saw it earlier, the space of directed realizations are not always connected when
using only C4-swaps.) Finally, in 2013 Miklós, Erdős and Soukup proved ([6]) that the corre-
sponding Markov process is rapidly mixing on each bipartite half-regular degree sequence,
superseding the original study of Kannan, Tetali and Vempala ([3]).

In this paper we study the realizations of half-regular bipartite 1F1S restricted degree
sequencesDF. The vertex set is (U,W) where the center of the forbidden star s is 2 U and
where all vertex in U (except possible s) have the same degree. The degrees inW are not
constrained.

The state space of ourMarkov chain is the graphG = (V(G), E(G)) where V(G) consists of
all possible realizations of our problem, while the edges represent the possible swap operations:
two realizations (which will be indicated by upper case letters like X or Y) are connected if

Approximate Counting of Graphical Realizations

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10, 2015 8 / 20



there is a valid F-swap operation which transforms one realization into the other one (and the
inverse swap transforms the second one into the first one as well). Recall that there are two
kinds of F-compatible swap operations: the circular C4-swaps and certain C6-swaps (in the lat-
ter case opposite vertex pair in the C6 must be non-chord), Furthermore, these two kinds of
operations make the state space connected (see Theorem 5).

The transition (probability) matrix P of the Markov chain is defined as follows: let the cur-
rent realization be G. Then

(a) with probability 1/2 we stay in the current state (that is, our Markov chain is lazy);

(b) with probability 1/4 we choose uniformly two-two vertices u1, u2;v1, v2 from classes U
andW respectively and perform the swap if it is possible;

(c) finally with probability 1/4 choose three—three vertices from U andW and check
whether they form three pairs of forbidden chords. If this is the case, then we perform a
circular C6-swap if it is possible.

The swaps moving from G to its image G0 is unique, therefore the probability of this transfor-
mation (the jumping probability from G to G0 6¼ G) is:

ProbðG!bG
0Þ≔PðG0jGÞ ¼ 1

4
� 1

jU j
2

� � jWj
2

� � ; ð3Þ

and

ProbðG!cG
0Þ≔PðG0jGÞ ¼ 1

4
� 1

jU j
3

� � jWj
3

� � : ð4Þ

(These probabilities reflect the fact, that G0 should be derived from G by a regular swap or by a

C6-swap.) The probability of transforming G to G0 (or vice versa) is time-independent and
symmetric. Therefore P is a symmetric matrix, where the entries in the main diagonal are non-
zero, but (probably) distinct values. Our Markov chain is irreducible (the state space is con-
nected), and it is clearly aperiodic, since it is lazy. Therefore, as it is well known, the Markov
process is reversible with the uniform distribution as the globally stable stationary distribution.

Our main result is the following:
Theorem 10. The Markov process defined above is rapidly mixing on each bipartite half-reg-

ular 1F1S restricted degree sequence.
Remark 11.When we apply this setup for directed graphs then the out-degrees are regular

(except, perhaps, the out-degree of the vertex s), while we have no constrains on the in-degrees.
However, it is important to see, that while this result provides a rapidly mixing sampling proce-
dure on regular directed graphs as well, the applied Markov chain is not the same as the one in
Greenhill’s model. Hence, this result does not supersede Greenhill’s result.

The proof of Theorem 10 follows closely the proof developed in paper [6]. (More precisely
we need to slightly generalize it. The required minor technical issue will be discussed in the Sec-
tion “Some further technical details of the Sinclair’s method”.) Consider two realizations X 2
G and Y 2G of the problemDF, and take the symmetric difference Δ = E(X)ΔE(Y). As we saw
already in the proof of Theorem 5 for each vertex v in the bipartite graph (U,W; Δ) the number
of adjacent X-edges (= E(X) n E(Y)) and the number of the adjacent Y-edges are equal. There-
fore Δ can be decomposed into alternating circuits and later into alternating cycles. The way
the decomposition is executed is described in details in Section 5 of the paper [6]. Here we just
summarize the high points:
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At first we decompose the symmetric difference Δ into alternating circuits on all possible
ways. In each cases we get an ordered sequenceW1,W2, . . .,Wκ of circuits. (Usually there are a
huge number of different circuit decompositions.) Each circuit is endorsed with a fixed cyclic
order.

Now we fix one circuit decomposition. Each circuitWi from the ordered decomposition
determines one unique alternating cycles decomposition:Wi ¼ Ci

1;C
i
2; . . . ;C

i
ki
: (This unique

decomposition is one of the most delicate points of the entire proof in [6]. The main problem
is that a circuit can be “long”—linear in the number of vertices—therefore, it can happen that it
is decomposed into a linear number of cycles. Keeping track of all possible changes along the
circuit is necessary, and without clever data handling it may require an unacceptable big data
set. Section 5.2 in paper [6] found a way around this problem.)

The ordered circuit decomposition of Δ together with the ordered cycle decompositions of
all circuits provide a well defined ordered cycle decomposition C1, . . ., Cℓ of Δ. This decomposi-
tion does not depend on any F-compatible swap operations (actually no swap operation was
performed yet), only on the symmetric difference of realization X and Y. So this part of the
original proof can be used freely in our current reasoning without any modification.

This ordered cycle decomposition singles out ℓ−1 different realizations H1, . . .,Hℓ−1 ofD
F

with the following property: for each j = 0, . . ., ℓ−1 we have E(Hj)ΔE(Hj+1) = Cj+1 if we apply
the notations H0 = X and Hℓ = Y. This mean that

EðHiÞ ¼ EðXÞ 4
[
i0�i

EðCi0 Þ
 !

:

What remains is to design a unique canonical path from X to Y determined by the circuit
decompositions which use the realizations Hj asmilestones along the path. With other words,
for each pair Hj, Hj+1 we have to design the actual swap sequences which turn one milestone
into the next one.

So, the canonical path under construction is a sequence X = G0, . . ., Gi, . . ., Gm = Y of reali-
zations, where each Gi can be derived from Gi−1 with one feasible circular C4- or C6-swap oper-
ation, and there exists an increasing subscript subsequence 0 = n0 < n1 < n2 < � � �< nℓ =m
such that we have Gni =Hi.

In paper [6] the following result was proved:
Theorem 12 (Section 4 in [6]). If the designed canonical path system satisfies the three

(rather complicated) conditions below, then the MCMC process is rapidly mixing. The conditions
are:

(Θ) For each i< ℓ the constructed path Hi ¼ G0
0;G

0
1; . . . ;G

0
m0 ¼ Hiþ1 satisfies that m0 �

c�jCi+1j for a suitable constant c.

(O) 8j there exists a Kj 2 V(G) s.t. d MX þMY �MG0
j
;MKj

� �
� O2, where MG is the bipar-

tite adjacency matrix of G, and d stands for the Hamming distance of two matrices,
finally O2 is a small constant.

(X) For each vertex G0
j in the path under construction the following three objects together

uniquely determine the realizations X, Y and the path itself.

• The value of the auxiliary matrixMX þMY �MG0
j
;

• the symmetric difference Δ = E(X)4E(Y);

• finally a polynomial size parameter set B.
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The meaning of condition (X) is that these structures can be used to control certain features of
the canonical path system: namely their numbers gives a bound on the number of canonical
paths between any realization pairs X, Y which go through any given realization G0

j: Then con-

dition (O) ensures, that the overall number of the used auxiliary matrices is small.
So while we determine our canonical paths among any pair X, Y we have take care for these

three conditions. We will describe the construction itself in the following two Sections.

The construction of swap sequences between consecutive
“milestones”
Now we are going to implement our plan described above. At first we introduce some short-
hand. Instead ofHi−1 andHi we will use the names G and G0. These two graphs have almost the
same edge set. More precisely

ðEðGÞ n ðCi \ EðXÞÞÞ [ ðCi \ EðYÞÞ ¼ EðG0Þ
ðEðG0Þ n ðCi \ EðYÞÞÞ [ ðCi \ EðXÞÞ ¼ EðGÞ:

Of course E(G)ΔE(G0) = Ci also holds. We refer to the elements of Ci \ E(X) as X-edges, while
the others are Y-edges. We denote the cycle itself by C, it has 2ℓ edges and its vertices are u1, w1,
u2, w2, . . ., uℓ, wℓ. Since C has at least four vertices, therefore we may assume that u1 6¼ s (thus
u1 is not the center of the forbidden star). Finally, w.l.o.g. we may assume that the chord u1w1

is a Y-edge (and, of course, wℓ u1 is an X-edge).
We are going to construct the realizations G0

j one by one. We build our canonical path from

G toward G0. At any particular step the last constructed realization is denoted by Z. (At the
beginning of the process we have Z = G.) We are looking for the next realization, denoted by
Z0.

Before we continue the discussion of the canonical path system, we introduce our control
mechanism, mentioned in condition (O). This auxiliary structure originally was introduced by
Kannan, Tetali and Vempala in [3]:

For any particular realization G from V(G) the matrixMG denotes the adjacency matrix of
the bipartite realization G where the columns and rows are indexed by the vertices of U andW
respectively (Therefore the column sums are the same in each realization, except perhaps at
column s.) Our indexing method is a bit unusual: the columns are numbered from left to right
while the rows are numbered from bottom to the top. (Like in the Cartesian coordinate sys-
tem.) This matrix is not necessarily symmetric, and elementsMi,i can be different from 0.

For example, if we consider the submatrix inMG spanned by u1, . . ., uℓ and w1, . . ., wℓ then
we haveMG(i, i) = 0 for i = 1, . . ., ℓ, whileMG(i, i−1) = 1 (for i = 2, . . ., ℓ) andMG(1, ℓ) = 1. (So
the first value gives the column, the second one gives the row.) The non-chords between verti-
ces in the same vertex class are not considered at all, while non-chords which are forbidden are
denoted by ✠. As it is clear from the previous sentence, we will identify each chord or non-
chord with the corresponding position in the matrix.

Our auxiliary structure is the matrixbMðX þ Y � ZÞ ¼ MX þMY �MZ:

By definition, each entry of a bipartite adjacency matrix is 0 or 1 (or ✠). Therefore only −1, 0, 1,

2 can be the “meaningful” entries of bM: An entry is −1 if the edge is missing from both X and Y
but it exists in Z. It is 2 if the edge is missing from Z but exists in both X and Y. It is 1 if the
edge exists in all three graphs (X, Y, Z) or it is there only in one of X and Y but not in Z. Finally
it is 0 if the edge is missing from all three graphs, or the edge exists in exactly one of X and Y
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and in Z. (Therefore if an edge exists in exactly one of X and Y then the corresponding chord inbM is always 0 or 1.) One more important, but easy fact is the following:

Observation 13. The row and column sums of bMðX þ Y � ZÞ are the same as row and col-
umn sums in MX (or MY or MZ).

Next we will determine the swap sequence between G and G0 through an iterative algorithm.
At the first iteration we check, step by step, the positions (u1, w2), (u1, w3), . . ., (u1, wℓ) and
take the smallest j for which (u1, wi) is an actual edge in G. Since (u1, wℓ) is an edge, therefore
such i always exists. So we may face to the following configuration:

We call the chord u1wi the start-chord of the current sub-process and u1w1 is the end-
chord. We will sweep the alternating chords along the cycle from the start-edge wiui (non-
edge), uiwi−1 (an edge) toward the end-edge w1u1 (non-edge)—switching their status in twos
and fours. We check positions u1wi−1, u1wi−2 (all are non-edges) and choose the first chord
among them, we call this the current-chord. (Since u1 6¼ s therefore we never have to check
more than two edges to find the first chord, and we need to check two edges only once, since
there is at most one non-chord adjacent to u1.)

Case 1: As we just explained, the typical situation is that the current-chord is the “next” one,
so when we start this is typically u1wi−1. Assume that this is a chord. Then we can proceed with
the swap operation wi−1ui, wiu1 ) u1wi−1, uiwi. We just produced the first “new” realization in
our sequence, this is G0

1: For the next swap operation this will be our new current realization.
This operation will be called a single-step.

In a realization Z we call a chord bad, if its current status (being edge or non-edge) is differ-
ent from its status in G (or, what is the same, in G0, since they differ only on the chords along
the cycle C). After the previous swap, we have two bad chords in G0

1; namely u1wi−1 and wiu1.

Consider now the auxiliary matrix bMðX þ Y � ZÞ (here Z ¼ G0
1). As we saw earlier, for

each position outside the chords in C the status of that particular position in Z is the same as in
X or Y or in both. Accordingly, the corresponding matrix value is 0 or 1. We call a position bad

in bM if this value is −1 or 2. (A bad position in bM always corresponds to a bad chord.) Since in

Case 1 we switch the start-chord into a non-edge, it may become 2 in bM: (In case if in both X
and Y it is an edge. Otherwise it is 0 or 1, so in that case it is not a bad position.) The current-
chord turned into an edge. If it is a non-edge in both X and Y then the value becomes −1, other-
wise it does not become a bad position. After this single-step, we have at most two bad posi-
tions in the matrix, at most one position with 2-value and at most one with −1-value.

Case 2: If the previous case does not apply then the pair u1wi−1 is a non-chord, therefore we
cannot produce the previous swap. Then the non-edge u1wi−2 is the current-chord. For sake of
simplicity we assume that i−2 = 2, this case is represented in Fig 1. Consider now the alternat-
ing C6 cycle: u1, w2, u3, w3, u4, w4. It has a total of three vertex pairs which may be chords. We
know already that u1w3 is a non-chord. If none of the three positions is a chord, then this is an
F-compatible circular C6-swap—and accordingly to the definitions we can swap it in one step.
Again, we found the valid swap w2u3, w3u4, w4u1 ) u1w2, u3w3, u4w4. After that we again have
2 bad chords, namely u1w2 and w4u1, and together we have at most two bad positions in the

new bMðX þ Y � ZÞ with at most one 2-value and at most one −1-value.
Finally, if one position, say w2u4, is a chord then we can process this C6 with two swap oper-

ations. If this chord is, say, an actual edge, then we swap w2u4, w4u1 ) u1w2, u4w4. After this
we can take care of the w2, u3, w3, u4 cycle. Along this sequence we never create more, than 3
bad chords: the first swap makes chords w2u4, w4u1 and u1w2 bad ones, and the second one
“cures” w2u4 but does not touch u1w2 and w4u1. So along this swap sequence we have 3 bad
chords, at the end we have only 2. On the other hand, if the chord w2u4 is not an edge, then we
can swap w2u3, w3u4 ) u3w3, u4w2, creating one bad edge, then taking care the four-cycle u1,
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w2, u4, w4 we “cure” w2u4 but we switch u1w2 and w4u1 into bad chords. We finished our dou-
ble-step along the cycle.

In a double-step in any moment we have at most three bad chords. When the first swap uses

three chords along the cycle then we may have at most one bad chord (with bM-value 0 or −1)
and then the next swap switches back the chord into its original status, and makes two new bad
chords (with at most one 2-value and one −1-value). When the first swap uses only one chord
from the cycle, then it makes three bad chords (changing two chords into non-edge and one
into edge), therefore it may make at most two 2-values and one −1-value. After the second
swap there will be only two bad chords, with at most one 2-value, and at most one −1-value.

When only the third position corresponds to a chord in our C6 then after the first swap we
may have two −1-values and one 2-value. However, again after the next swap we will have at
most one of both types.

Remark 14.When two realizations are one swap apart (so they are adjacent inG) then we
say that their auxiliary matrices are at swap-distance one. Since one swap changes four posi-
tions of the matrix, therefore the Hamming distance of these matrices is 4.

Finishing our single- or double-step, the previous current-chord becomes the new start-
chord. Then we repeat our procedure. There is only one important point to be mentioned:
along the step, the start-chord switches back into its original status, therefore it stops being a
bad chord. Thus, even if we face a double-step the number of bad chords never will be bigger
than three (together with the chord wi u1 which is still in the wrong status, so it is bad), and we

have always at most two 2-values and at most one −1-value in bMðX þ Y � ZÞ:
When w1u2 becomes the current-chord the last step will switch the last start-chord back

into its correct status, hence the last current-chord cannot be in bad status. Finally, when the
sweep from wi u1 to w1u1 is finished we only have one bad chord (with a possible 2-value inbM). This concludes the first iteration of our algorithm.

Fig 1. Sweeping a cycle.

doi:10.1371/journal.pone.0131300.g001
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For the next iteration we seeks a new start-chord between wiu1 and wℓu1. Chord wiu1
becomes the new end-chord. We will repeat our sweeping process for this setup, until all
chords are processed. If there was a double-step in the first sweep, then it will not occur again,
thus there are never more than three bad chords; at most two 2-values and at most one
−1-value.

However, if the double-step occurs sometime later, for example in the second sweep, then
we face one of the following two cases: the circular C6-swap under consideration is either F-
compatible or not. If it is F-compatible, we perform the circular C6-swap. This does not change
the number of bad chords, except if this swap finishes a current sweep. If, however, the circular
C6-swap is not compatible, then there exists a chord in the chord-cycle which is suitable for a
swap. If this chord is a non-edge, then the swap corresponding to it produces one bad chord,

and at most one bad position in bM: If this chord is an edge in the current realization, then after
the first swap there are four bad chords, and there may be at most three 2-values and at most
one −1 value. After the next swap (which finishes the double step) we annihilate one of the
2-values, and after that swap there are at most two 2-values and at most −1-value along the
entire swap sequence. When we finish our second sweep, then chord wiu1 will be switched back
into its original status, hence it will not be bad anymore.

We apply the same algorithm iteratively. After at most ℓ sweep sequences the entire cycle C
will be processed. This finishes the construction of the required swap sequence (and the
required realization sequence).

Meanwhile we also proved the following important observation:

Lemma 15. Along our procedure each occurring auxiliary matrix bMðX þ Y � ZÞ is at most
swap-distance one from a matrix with at most three bad positions: with at most two 2-values
and with at most one −1-value in the same column, which does not coincide with the center of
the forbidden star.

The Analysis of the Swap Sequences Between “Milestones”
What remains is to show that the defined swap sequences between Hi andHi+1 satisfy condi-
tions (Θ), (O) and (X) of Theorem 12. The first one is easy to see, since we can process a cycle
of length 2ℓ in ℓ−1 swaps. Therefore the derived constant c in (Θ) is actually 1.

Now we introduce the new switch operation on 0/1 matrices with forbidden positions: we
fix the four corners of a submatrix (none of them is forbidden), and we add 1 to two corners in
a diagonal, and add −1 to the corners on the other diagonal. This operation clearly does not
change the column and row sums of the matrix. For example if we consider the matrixMG of a
realization of dF and make a valid swap operation, then this is equivalent to a switch in this
matrix. The next statement is trivial but very useful:

Lemma 16. If two matrices have switch-distance 1, then their Hamming distance is 4. Conse-
quently if the switch-distance is c then the Hamming distance is bounded by 4c.

We prove that property (O) holds for auxiliary matrices:
Theorem 17. For any realizations X and Y and for any realization Z on a swap sequence

from X to Y there exists a realization K such that

dð bMðX þ Y � ZÞ;MKÞ � 16:

Due to Lemmas 15 and 16 it is enough to show that:

Lemma 18. Any matrix bMðX þ Y � ZÞ with constant column sums (this does not necessarily
hold for the center of the forbidden star) and with at most three bad positions (where there are at
most two 2-values and at most one −1-value) can be transformed into a valid MK adjacency
matrix with at most three switch operations.

Approximate Counting of Graphical Realizations

PLOS ONE | DOI:10.1371/journal.pone.0131300 July 10, 2015 14 / 20



Proof. Consider now a given bM which is not necessarily a valid adjacency matrix of a realiza-
tion. We show in figures the submatrix in this matrix that describes the current alternating
cycle C. If it happens that s 2 C then we choose a submatrix representation such that the center
s of the forbidden star is in the first column. (We choose this submatrix as an illustration tool,
but we still consider the entire matrix to work with.) We know that this matrix contains at
most two 2-values and at most one 1-value. All three positions are adjacent to the center u1 of
the sweeping sequence (see Fig 1), hence they are in the same column.

For simplicity we denote the center of the sweep as well the column with u. The forbidden
positions are denoted with ✠. Any column (except column 1) may contain at most one of
them, and any row may contain at most two of them. Finally, in the figures the character �
stands for a character which we are not interested in. That is, it can be 0 or 1 or ✠.

We distinguish multiple cases, depending on the occurring of values 2 and −1.
Case 1. Column u has one bad position, which can be −1 or 2, or it has two 2-values. Con-

sider at first the case when bM½uw	 ¼ �1. By definition this means that chord uw is an edge in
Z but non-edge in both X and Y. So vertex w 2W has at least one adjacent edge, therefore the
row-sum in its row is at least 1. Therefore there are at least two positions in row w with entries
1. They are in column u1 and u2. At least one of them, say u1, differs from s. Since the column

sums are constant, therefore there exists at least two rows w1 such that bM½uw1	 ¼ 1 whilebM½u1w1	 ¼ 0 or ✠. However, there can be at most one forbidden position in u1, so at least in
one of the rows the entry is 0. Using these positions for the corresponding switch it eliminates
the bad position without creating a new one. (See Fig 2.)

Before we continue, we prove an important observation:

Observation If w belongs to the alternating cycle C and bM½uw	 ¼ 2 then row w contains at
least two 0-values.

Indeed, there are α forbidden chords in row w. Since w is in an alternating cycle, therefore d

(w)� jUj−α−1. Therefore the sum of row w in bMðX þ Y � ZÞ � jU j � a� 1: But it contains
a 2 and it does not contain -1 therefore there are at least two 0’s in it.

When the single bad value in bM is 2 then, due to our previous Observation, in its row there
are two 0’s. And with them one can repeat the reasoning which we used about the unique
−1-value.

Finally, when there are two 2-values which raises a very similar situation. Here we can do
the same procedure independently on both rows. In this case, however, we need two switch
operations.

Fig 2. Case 1 ✠ = forbidden � = 0/1/✠.

doi:10.1371/journal.pone.0131300.g002
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Case 2.Here we assume that there is one 2-value and one −1-value in column u. For exam-

ple bM½uw1	 ¼ 2 and bM½uw2	 ¼ �1. Again, in row w2 there are at least two 1-values.

Case 2a Assume at first that we have u1 2 U s.t. bM½u1w2	 ¼ 1 and bM½uw1	 6¼ ✠. Then the

corresponding switch will produce bM½u1w1	 ¼ 1=2 while the other three positions are 0 or 1.

(See Fig 3.) If now bM½u1w1	 ¼ 2 then we are back to Case 1, and one more switch eliminates
the last bad position as well. So we needed at most two switches.

Case 2b It can happen, that there are only two 1-values in row w2 and both are facing with
forbidden positions in row w1. Then at least one 0 in row w2 faces a chord in row w1. (See
Fig 4) The appropriate switch kills 2 bad chords and can make at most one −1-value. At this
point we are either finished or back to Case 1.

Case 3. Finally suppose that there are three bad positions, two 2-values at positions uw1 and
uw2 and one −1-value at position uw3. Now both rows w1 and w2 contain at least two 0’s. If any
of them face a 1 in row w3 then an appropriate switch annihilates one 2 and one −1 and does
not create new bad position. We are back to Case 1. Altogether we need two switches.

If this is not the case then we consider the following: assume that bM½u1w1	 ¼ 0: Since the

column sums are the same, and we assumed that bM½u1w3	 ¼ 0 therefore there exists a row w4 s.

t. bM½u1w4	 ¼ 1 while bM½uw4	 ¼ 0: Then we can switch this 2-value without making a new bad
position. After that we are back to Case 2. Altogether this requires at most three switches. The
proof of Lemma 18 is finished.

If this is not the case then we consider the following: assume that bM½u1w1	 ¼ 0: The column

sums are the same, and we assumed that bM½u1w3	 = 0 or ✠. Therefore the difference between
column sums in u and u1 is 1 due to rows w1 and w3, and the difference increase at least 1 for
row w2, where against a 2-value in column u there is either 1 or 0 in column u1. Therefore
there exists at least two further rows, where there is a 1 in column u1 against a 0 or ✠ in column
u. Since column u can contain at most one ✠, one of the rows must contain a 0. Let it be

denoted by w4. Hence bM½u1w4	 ¼ 1 while bM½uw4	 ¼ 0: Then we can switch this 2-value with-
out making a new bad position. After that we are back to Case 2. Altogether this requires at
most three switches. We finished the proof of Lemma 18.

There was no word yet about condition (X) in Theorem 12. We discuss this in the next Sec-
tion, because the magnitude of parameter B heavily depends on. To finish the Theorem 12, let
us assume for now that we have the proper upper bound on B. Then (O) in Theorem 12 and
therefore the theorem itself is proved as well. Thus, our Markov chain is rapidly mixing as The-
orem 10 stated.

Fig 3. Case 2a ✠ = forbidden � = 0/1/✠.

doi:10.1371/journal.pone.0131300.g003
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Some further technical details of the Sinclair’s method
In the last two sections we proved the rapidly mixing nature of our proposed MCMCmethod
on the 1F1S restricted degree sequence problems through a special instance of Sinclair’s
method, developed in [6]. However, we need slightly generalize this method in order to finish
the proof.

Let’s recall that the method takes two realizations, X and Y, of the same degree sequence. It
considers all possible ordered circuit decompositions of the symmetric difference of the edge
sets, then it uniquely decomposes each such decomposition into an ordered sequence
C = C1, . . ., Cm of oriented cycles. Based on this latter decomposition the method determines a
well defined unique path between X and Y in the Markov chainG.

To find this unique path the method first defines a sequence of “milestones”. These are dif-
ferent realizations X =H0,H1, . . ., Hm−1,Hm = Y of the degree sequence where the edge set of
any two consecutive realizations Hi−1, Hi differ exactly in the edges along the cycle Ci. (Until
this point no swap operation happened.)

In the next phase, for any particular i = 0, . . .,m−1 the method determines a sequence of
valid swap operations transforming Hi−1 into Hi—describing a unique path Z0, Z1, . . ., Zℓ
between Hi−1 andHi in the Markov chainG. This sequence of course depends on the available
swap operations. In [6] these are the usual (bipartite) circular C4-swap operations. In this work
these correspond to the restricted swap operations. These operations, while exchanging chords
in the realizations along the alternating cycle Ci, also use some further chords. Therefore the
edge set of any Zj is not completely contained by E(X) [ E(Y); there exist a small number of
edges in Zj which are non-edges in X and in Y, or non-edges in Zj but are edges in X and Y. If
Zj is between the milestones Hi−1 and Hi, then Ck for k� i−1 alternates in Zj, and Ci alternates
with a “small error”: there is a very small number of vertices where the alternation does not
hold.

Sinclair’s method requires this number to be small. In the original application this number is
actually one (See [6], Section 5, (F)(c).) In the original application this number is actually one.
Here, as we saw in Section “Milestones”, this number is three: that many bad chords may occur
after any particular ReDeSe. As we saw all these chords are adjacent to the same vertex u1.

These numbers are used by our method to determine the size of a parameter set B. This
parameter set must have a polynomial size. When we have one bad chord, then it is determined
by its end points—there are at most n2 possibilities for them. This contributes with an n2 multi-
plicative factor to the size of B. When we have at most three bad chords, then they can be

Fig 4. Case 2b ✠ = forbidden � = 0/1/✠.

doi:10.1371/journal.pone.0131300.g004
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chosen in at most n4 ways: vertex u1 is fixed (n different choices), while the other three end
points can be chosen at most n3 independent ways. Altogether it contributes with an at most n4

multiplicative factor to the size of B. This remark finishes the proof for the case of 1F1S
restricted swap operations.

1F1S Restricted Degree Sequence Problem is a Self-Reduced
Counting Problem
In Computer Science there are two special complexity classes, FPRAS and FPAUS, which are
concerned with the approximability of counting problems. One can find detailed definitions
for these complexity classes, for example, in [7]. Here we only give a sketchy description of the
points that are important to our case.

Roughly speaking a counting problem is in FPRAS (Fully Polynomial Randomized Approx-
imation Scheme) if the number of solutions can be estimated fast with a randomized algorithm,
such that the estimation has a small relative error with high probability.

A counting problem is in FPAUS (Fully Polynomial Almost Uniform Sampler) if the solu-
tion can be sampled fast with a randomized algorithm that generates samples following a distri-
bution being very close to the uniform one.

It is easy to see that a counting problem is in FPAUS if there is a rapidly mixing Markov
chain for which

• a starting state can be generated in polynomial running time;

• one step in the Markov chain can be conducted in polynomial running time; and

• the relaxation time of the Markov chain grows only polynomially with the size of the
problem.

The Markov chain we defined in the 1F1S problem satisfies all these requirements.
Jerrum, Valiant and Vazirani proved that any self-reducible counting problem is in FPRAS

iff it is in FPAUS [7]. A counting problem is self-reducible if the solutions for any problem
instance can be generated recursively such that after each step in the recursion, the remaining
task is another problem instance from the same problem, and the number of possible branches
at each recursion step is polynomially bounded by the size of the problem instance.

Clearly, a graph with prescribed degree sequence can be built recursively by telling the
neighbors of a node at each step, then removing the node in question and reducing the degrees
of the selected neighbors. However, this type of recursion does not satisfy all the requirement
for being self-reducible since there might be exponentially many possibilities how to select the
neighbors of a given vertex.

On the other hand, the degree sequence problem with a forbidden one factor and one star is
a self-reducible counting problem. Indeed, consider the center of the (possibly empty) star, s 2
U, and the vertex v 2 V with the smallest index for which (s, v) is a chord. Any solution for the
current problem instance belongs to one of the following two cases:

• The chord (s, v) is not present in the solution. In this case, extend the size of the star by add-
ing chord (s, v) to the forbidden set, and do not change the degrees. This is another problem
instance from the 1F1S problem, whose solutions are the continuations of the original prob-
lem belonging to this case.

• The chord (s, v) is present in the solution. In this case, extend the size of the star by adding
chord (s, v) to the forbidden set, and decrease both ds and dv by one. The new degree
sequence is still a bipartite 1F1S restricted degree sequence which is half-regular in class U
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(except, possibly, at vertex s), and the solutions of this new problem extended with the previ-
ously decided step provide solutions to the original problem.

Since the 1F1S counting problem is a self reducible counting problem, and we proved that it is
in FPAUS therefore it is also in FPRAS: via our sampling process one can solve the approxi-
mate counting problem with high probability.

We finish this paper with a short analysis of the connections between our approach and the
paper [18] of Jerrum, Sinclair and Vigoda. Their seminal result from 2004 solved the uniform
sampling problem of perfect 1-factors of a given graph. As their Corollary 8.1 pointed out this
method can be applied for uniform sampling of the set of all possible realizations of a given f-
factor of a complete graph. It also proves that the problem is in FPAUS therefore in FPRAS as
well.

Since the restricted degree sequence problem in general is equivalent to the f-factor prob-
lem, therefore our 1F1S ReDeSe problem is only a special case of the f-factor problem, so the
JSV result applies to it. This describes the similarity.

The important differences lay in the swap operations applied in the JSV method and in the
Kannan-Tetali-Vempala Markov chain. In the JSV method a special graphG is introduced for
the sampling via Tutte’s gadgets. Then the swap operations are working on the graphG with
the unintended result that for a (sometimes very long) sequence of swaps does not change at all
the generated f-factor. Combining this issue with the known relative slow mixing time of the
Jerrum-Sinclair-Vigoda’s Markov chain, the resulted approach in not suitable for any practical
application.

Our Markov chain operates in the original graph and each jump provides a new realization
of the original degree sequence problem. Therefore our Markov chain is presumably much
faster than the JSV chain, furthermore the JSV theorem does not proves the rapidly mixing
nature of our Markov chain. Similarly it does not prove that this Markov chain is a self reduc-
ible procedure.
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