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H I G H L I G H T S

� Some current debates revolve around the role of genes as leaders or followers in the evolutionary process.
� The tenet that phenotypes are leaders and genes are followers is an old one and relates to the Baldwin effect.
� This effect was not part of evolutionary thinking during the Modern Synthesis in the 1930s and 1940s.
� People working in evolutionary computation revitalized the Baldwin effect by showing how and why it could work.
� A standard population genetics treatment can achieve what many people thought was unsolvable without the Baldwin effect.

a r t i c l e i n f o

Article history:
Received 25 November 2014
Received in revised form
4 February 2015
Accepted 9 February 2015

Keywords:
Evolutionary search
Genetic algorithm
Learning
The Baldwin effect
Speed of evolution

a b s t r a c t

An increasing number of dissident voices claim that the standard neo-Darwinian view of genes as
‘leaders’ and phenotypes as ‘followers’ during the process of adaptive evolution should be turned on its
head. This idea is older than the rediscovery of Mendel’s laws of inheritance, with the turn-of-the-
twentieth-century notion eventually labeled as the ‘Baldwin effect’ as one of the many ways in which the
standard neo-Darwinian view can be turned around. A condition for this effect is that environmentally
induced variation such as phenotypic plasticity or learning is crucial for the initial establishment of a
trait. This gives the additional time for natural selection to act on genetic variation and the adaptive trait
can be eventually encoded in the genotype. An influential paper published in the late 1980s claimed the
Baldwin effect to happen in computer simulations, and avowed that it was crucial to solve a difficult
adaptive task. This generated much excitement among scholars in various disciplines that regard neo-
Darwinian accounts to explain the evolutionary emergence of high-order phenotypic traits such as
consciousness or language almost hopeless. Here, we use analytical and computational approaches to
show that a standard population genetics treatment can easily crack what the scientific community has
granted as an unsolvable adaptive problem without learning. Evolutionary psychologists and linguists
have invoked the (claimed) Baldwin effect to make wild assertions that should not be taken seriously.
What the Baldwin effect needs are plausible case-histories.

& 2015 Published by Elsevier Ltd.

1. Introduction

What role does the Baldwin effect play in evolution? By
Baldwin effect �a term coined by Simpson (1953)� we refer to

a turn-of-the-twentieth-century idea (Baldwin, 1896; Morgan,
1896; Osborn, 1896) cogently described by Maynard Smith (1987,
p. 761) as follows: “If individuals vary genetically in their capacity
to learn, or to adapt developmentally, then those most able to
adapt will leave most descendants, and the genes responsible will
increase in frequency. In a fixed environment, when the best
thing to learn remains constant, this can lead to the genetic
determination of a character that, in earlier generations, had to
be acquired afresh in each generation”. The Baldwin effect
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involves two transitions (Turney et al., 1997; Godfrey-Smith,
2003): the first has to do with the evolutionary value of
phenotypic plasticity, or some particular form of plasticity
such as learning; the second with the ‘genetic accommodation’
[i.e., evolution in response to both genetically based and envir-
onmentally induced novel traits (Griffiths, 2003; West-Eberhard,
2003; Crispo, 2007)] of the learned trait. We use genetic accom-
modation instead of the more familiar term ‘genetic assimilation’
coined by Waddington (1953) because this last term should not
be equated to the Baldwin effect (Crispo, 2007; see also West-
Eberhard, 2003, pp. 153–154). Genetic assimilation can work
with pre-existing genetic variation; the Baldwin effect (as origin-
ally posited) requires a new gene or genes.

Some towering figures in the Modern Synthesis �an expression
borrowed from the title of Julian Huxley's (1942) book � were either
indulgent with the theoretical plausibility of the Baldwin effect
(Simpson,1953) or utterly hostile towards it, recommending to discard
this concept altogether (Mayr, 1963; Dobzhansky, 1970). This advice is
followed by several influential textbooks in evolutionary biology
(Ridley, 2004; Futuyma, 2005; Barton et al., 2007) that do not even
mention Baldwin at all. However, although at present there appears
to be no clear empirical evidence for the Baldwin effect, several
authors have called for a radical revision of the consensus view and
argued that much evolution involves genetic accommodation
(Schlichting and Pigliucci, 1998; Avital and Jablonka, 2001; West-
Eberhard, 2003; Schlichting and Wund, 2014; but see Braendle and
Flatt, 2006). The current tension among evolutionary biologists
(Laland et al., 2014) is unmatched by scholars working in evolutionary
computation (Mitchell, 1996; Back et al., 1997; TurneyQ2 , 1997) and in
others disciplines (typically evolutionary psychologists and cognitive
scientists; Weber and Depew, 2003), who invoke the Baldwin effect
as a major evolutionary force that could have led to the emergence of
mind (Dennett, 1995; Deacon, 1997; Pinker, 1997) and to modern
language (Pinker and Bloom, 1990; Briscoe, 1997; Calvin and
Bickerton, 2000; Dor and Jablonka, 2001). As Yamauchi (2004, p. 3)
put it, “the Baldwin effect is particularly appealing because … It may
provide a natural Darwinian account for language evolution: It is an
especially popular idea among linguists that language evolution is
somehow saltational. This leads them to conclude that neo-Darwinian
theories are ‘incompetent’ for accounting for language evolution” (our
addition in italics). (Neo-Darwinism is used here to describe the
Modern Synthesis version of Darwinism.)

Much of the recent ‘excitement’ about the Baldwin effect stems
from a seminal paper published by computer scientists Geoffrey
Hinton and Steven Nowlan in the late 1980s (Hinton and Nowlan,
1987), which has been cited 1,101 times (Google Scholar) to date. They
developed a computational model combining a genetic algorithm
with learning by trial and error in a sexual population of chromo-
somes (the ‘organisms’) that were initially segregating at L¼20 loci
with three alleles each: 1,0, and ? This chromosome determines the
connectivity of a neural network: allele 1 at a given locus indicates
that a particular connection exists whereas allele 0 at that locus
indicates that it does not. The question marks are plastic alleles that
allow the organism to set (or not) the connection at the end of a
learning period. The neural network has only one correct configura-
tion of connections and the task the organisms had to solve was to
find this configuration out of the 2L � 106 possible configurations. We
can assume without loss of generality that the right answer is the
chromosome with all alleles1; i.e., a fully connected neural network.
The catch is that any other configuration provides no information
whatsoever about where the correct answer might be. In such
problems, there is no better way to search than by exhaustively
sampling the entire combinatorial space; a situation termed a
‘needle-in-the-haystack’ problem. In other words, there is no efficient
algorithm that can find the fitness maximum unless we introduce
some ‘trick’; namely, to somehow smooth the spiked fitness

landscape through phenotypic plasticity (Frank, 2011). Hinton and
Nowlan (1987) assumed that each organism could try up to a
maximum of G¼1000 random guesses for the settings of the ?
states; these alleles define the ‘plastic genome’. The organisms were
also given the ability to recognize whether they have found the
correct settings after goG learning trials and, in such a case, stop
guessing (see below for details). Therefore, those organisms that were
relatively fast at learning the correct configuration of alleles enjoyed a
fitness advantage and produced more offspring. In the long run
�well before 50 generations in the simulation performed by Hinton
and Nowlan (1987)� , natural selection redesigned the genotypes in
the population and the correct alleles 1 increased in frequency.
Nonetheless, they did not take over and undecided alleles ? remained
segregating at relatively high frequency because in the end organisms
were able to learn quickly and, therefore, there was not much
selective pressure to fix the ‘innately correct’ fitter alleles. (Note,
therefore, that the model that worked was the one in which what
really mattered was how close an organism got to the correct
configuration).

The scenario in Hinton and Nowlan (1987) showed (i) that the
Baldwin effect can be observed in silico, and (ii) that once the wrong
0 alleles are being eliminated by selection learning can dramatically
accelerate adaptive evolution in a flat fitness landscape with a single
isolated peak; what Ancel (2000) characterized as the ‘Baldwin
expediting effect’. Maynard Smith (1987, p. 762) explained this effect
by making a simple contrast with a population where organisms do
not learn: “In a sexual population of 1000 with initial allele frequen-
cies of 0.5, a fit individual would arise about once in 1000 generations
… Mating would disrupt the optimum genotype, however, and its
offspring would have lost the adaptation. In effect, a sexual population
would never evolve the correct settings… (or does so excessively
slowly)”. Actually, “the problem was never solved by an evolutionary
search without learning” (Hinton and Nowlan, 1987, p. 497). Con-
versely, Maynard Smith (1987) claimed that in the absence of learning
a large asexual population would include optimal individuals and the
correct settings would soon be established by selection.

The first claim about non-learning sexual organisms has been
taken for granted, whereas the second claim concerning asexual
organisms was analytically investigated by Fontanari and Meir (1990)
to answer the question: how soon is ‘soon’? Using their recursion
equation (3.1) to analyze the evolution of correct alleles, the answer is
that it would take more than 3000 generations for the population to
evolve the correct settings with initial allele frequencies 0.5 and no
mutation. Therefore, the conclusion seems to be fairly clear: in the
single-peaked fitness landscape assumed by Hinton and Nowlan
(1987) learning has a drastic effect on evolution.

Here, we show that this conclusion is generally incorrect and
requires careful considerations. The heart of the problem was also
pointed out by Maynard Smith (1987) and relates to the strong
positive epistasis in Hinton and Nowlan’s (1987) scenario. This
epistasis generates, in turn, strong positive associations between
the correct alleles in the non-learning organisms that can greatly
accelerate evolution (Appendix A). The former solution of more than
3000 generations for the asexual population to evolve the correct
settings is likely to be a gross overestimate as Fontanari and Meir
(1990) ignored the generation of linkage disequilibrium due to
directional selection. The remainder of the paper is organized as
follows. First, we discuss Hinton and Nowlan (1987) model in more
detail as it will make the reason for our skepticism about what they
have really demonstrated very clear. Second, we derive the exact
recursion equations for the asexual case and show that evolution is
indeed quite fast in this case. Third, challenging the conventional
wisdom we show that a finite population of sexual organisms that
do not learn does evolve the correct settings, and estimate the
probability of fixation and mean time to fixation of the correct
genotype as a function of population size N and chromosome length
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L. Finally, we summarize our results and point out the misconcep-
tions generated by the computer simulations in Hinton and Nowlan
(1987). The main conclusion is that their claim is untenable.

2. The simulation by Hinton and Nowlan

Hinton and Nowlan’s (1987) basic idea was to show that a haploid
sexual population of organisms with plasticity (learning ability) will
evolve towards an optimal phenotype in fewer generations than a
population of organisms that do not learn. They assumed that the
L¼20 loci code for neural connections and alleles 1 specify innately
correct connections, alleles 0 innately incorrect connections, and
alleles ? guessable (plastic) connections containing a switch that
can be on (right) or off (wrong). Learning consists of giving each
individual up to a maximum of G¼1000 random combinations of
switch settings (with equal probability for on and off) on every trial.
Those individuals that have a 0 allele at any locus will never produce
the right connectivity of the neural network. On the other hand, if the
combination of switch settings and the genetically specified connec-
tions produce the good net (i.e., a fully connected neural network)
after goG trials the individual stops guessing.

Hinton and Nowlan’s (1987) evolutionary algorithm performs
two operations. First, each organism i¼ 1; 2; :::; Nð Þ is evaluated
according to fitness, which determines the mating probability and
offspring production according to the following fitness function

wi ¼ 1þ L�1ð Þηg
G

; ð1Þ

where ηg ¼ G�gð Þ is the number of trials remaining after the
correct configuration of connections has been found. This fitness
function is central to Hinton and Nowlan (1987) argument. It
indirectly smoothes out the landscape and the organisms nearby
the attraction zone of the peak (i.e., those chromosomes with ones
and question marks that can be correctly set after goG trials)
enjoy increased fitness. The basal fitness is wi ¼ 1 if the organism
never gets the right answer after G trials, and has a maximum
value of wi ¼ L for an organism that already has all its connections
innately specified.

Second, the crossover operation picks one point 1rmrL�1ð Þ
at random from each of parents’ chromosomes to form one
offspring chromosome by taking all alleles from the first parent
up to the crossover point, and all alleles from the second parent
beyond the crossover point. Although not explicitly stated in
Hinton and Nowlan (1987), taking mrL�1 as the upper bound
guarantees that the offspring will always be a recombinant string.
None of the learning is passed on to children, which inherit the
same allelic configuration their parents had at the different loci.
Hinton and Nowlan (1987) simulation is replicated in Fig. 1.

3. Evolution without learning in an asexual population:
equations for the deterministic limit

We will consider the case where learning is absent in order to
show that the neglect of linkage disequilibrium (Fontanari and
Meir, 1990) greatly overestimates the number of generations
required for the correct genotype to become preponderant in the
population. In fact, in an infinite asexual population the prevalence
of the correct genotype takes place so rapidly that the effect of
learning (if any) is not significant.

In this case the genotypes are binary strings of size L because
without learning there is no difference between alleles 0 and ?

There are 2L different such strings and we denote their frequencies
in the infinite population at generation t by Yα tð Þ, with α¼ 1;
…; 2L. Without loss of generality, we will assume that the correct
genotype, i.e. the string 1; 1;…; 1ð Þ, corresponds to α¼1. Recalling

that the fitness wα of all genotypes but the correct one is set to the
baseline value wαa1 ¼ 1, and that the fitness of the correct
genotype is set to w1 ¼ L, we obtain

Y1 tð Þ � 1�1�Y1 0ð Þ
Y1 0ð Þ½ �1=L

exp � L�1ð Þt=L� �
; ð2Þ

in the regime tc1 for which Y1 tð Þ � 1 (see Appendix B). This
expression allows us to estimate the number of generations
needed for Y1 tð Þ to attain some arbitrary value close to one in
the modified Hinton and Nowlan (1987) scheme. Solving Eq. (2)
for t yields

t � � 1
L�1

ln Y1 0ð Þ 1�Y1 tð Þ
1�Y1 0ð Þ

� �L( )
; ð3Þ

from which we see that t increases with the logarithm of Y1 0ð Þ
rather than with a negative power of Y1 0ð Þ as in the case where
linkage disequilibrium is neglected (Fontanari and Meir, 1990).

At this stage, it is instructive for comparative purposes with
previous work (Fontanari and Meir, 1990) to derive the corre-
sponding equations for the evolution of an infinite asexual
population ignoring the generation of linkage disequilibrium. This
is important because the paper by Fontanari and Meir (1990) has
routinely been cited as giving additional support for the benefits of
learning, without realizing that their analytical treatment was
inappropriate for an asexual population. Their derivation begins
with the expression for the frequency of alleles 1 at generation
tþ1, which we denote by p tþ1ð Þ, given that one knows the
genotype frequencies at generation t; i.e.,

p tþ1ð Þ ¼ 1
L

P
αPαwαYα tð ÞP
αwαYα tð Þ ; ð4Þ

were Pα stands for the number of alleles 1 in string α. Ignoring linkage
disequilibrium transforms this equation into an autonomous recur-
sion equation for p tð Þ by assuming that Yα tð Þ ¼ p tð Þ½ �Pα 1�p½ tð Þ�L�Pα

for all α and t. This means that the abundance of a genotype depends
only on the number of alleles 1 and not on the specific location of
those alleles in the string. In addition, those abundances are com-
pletely determined by the global frequency of alleles 1 in the
population according to the previous expression. It is as if all
genotypes were disassembled and then reassembled again at random
following a procedure akin to Wilson’s (1980); that is, Fontanari and
Meir (1990) wrongly assumed L�1 recombination points. In fact, the
reason why ignoring linkage disequilibrium is an inappropriate and
uncontrolled approximation in this context, as well as its connection
to group selection, was already pointed out in Alves et al. (2000,
section V). This neglect gives the following incorrect recursion
equation (Eq. 3.1 ignoring mutation in Fontanari and Meir, 1990)
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Fig. 1. Replication of Hinton and Nowlan’s original simulation. The population is
able to quickly learn the solution as innately incorrect alleles 0 are eliminated from
the population, although the frequency of plastic alleles ? remains relatively high.
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after inserting Yα tð Þ into Eq. (4)

p tþ1ð Þ ¼ p tð Þþ L�1ð Þ p tð Þ½ �L
1þ L�1ð Þ p tð Þ½ �L : ð5Þ

For L¼ 20 and p 0ð Þ ¼ 0:25 (i.e., Y1 0ð Þ ¼ 1=240), the numerical
solution of Eq. (5) shows that it takes about t ¼ 5:2� 108 genera-
tions to reach the regime where 1�p tð Þ ¼ 10�6. This was the
reason why Fontanari and Meir (1990) concluded that learning has
a drastic effect on evolution in Hinton and Nowlan’s (1987)
scenario. However, using the correct Eq. (3) we find that only
t¼15 generations are sufficient to reach that regime.

In the same vein than Hinton and Nowlan (1987) we did not
include mutation in the foregoing treatment, but it is easy to
derive exact recursion equations for the non-learning asexual case
assuming mutation (Appendix C). In summary, the preponderance
of the correct genotype in an infinite asexual population without
learning takes place extremely fast so the effect of learning, if any,
is not significant in this case.

4. Evolution without learning in a sexual population

Having shown that Maynard Smith’s (1987, p.762) remark that
a non-learning asexual population of “many millions would breed
true, and the correct settings would soon be established by
selection” (‘soon’ is indeed very soon) is essentially correct, what
of a sexual population? In this context, it is interesting to recall
what Hinton and Nowlan (1987, p. 497) wrote (our emphasis in
italics): “The same problem was never solved by an evolutionary
search without learning. This was not a surprising result; the
problem was selected to be extremely difficult for an evolutionary
search, which relies on the exploitation of small co-adapted sets of
alleles to provide a better than random search of the space… To
preserve the co-adaptation from generation to generation it is
necessary for each good genotype, on average, to give rise to at
least one good descendant in the next generation. If the dispersal
of complex co-adaptations due to mating causes each good
genotype to have less than one expected good descendant in the
next generation, the co-adaptation will not spread, even if it is
discovered many times. In our example, the expected number of
good immediate descendants of a good genotype is below 1 without
learning and above 1 with learning.” This conclusion was echoed by
Maynard Smith (1987, p. 762): “In a sexual population of 1000
with initial allele frequencies of 0.5, a fit individual would arise
about once in 1000 generations … Mating would disrupt the
optimum genotype, however, and its offspring would have lost the
adaptation. In effect, a sexual population would never evolve the
correct settings”.

Here, we show that this conclusion is incorrect. Some hints
why this is mistaken can be gained from Eq. (5), which basically
assumes that all genotypes are disassembled and then reas-
sembled again at random following a procedure akin to Wilson’s
(1980) trait group selection framework; namely, Eq. (5) assumes
L�1 recombination points as already stated above. This wrong
assumption notwithstanding, an eventual fixation of the correct
string is attained (Fontanari and Meir, 1990).

A more straightforward demonstration that a non-learning
sexual population can find the solution to the ‘needle-in-the-
haystack’ problem is obtained by showing that the expected
number of good immediate descendants of a good genotype is
actually above 1, in stark contrast to Hinton and Nowlan’s claim
quoted before. In fact, assuming that the correct all 1 s string is
present in the population at some generation we can easily
calculate the distribution of the number of good offspring it
generates by mating with a random string following the crossover
operation in Hinton and Nowlan (1987). As indicated above, the

single offspring of each mating is generated by randomly choosing
a crossover point and taking all alleles from the first parent up to
the crossover point, and from the second parent beyond the
crossover point. Let us take the all 1 s string as the first parent
and pick another string at random from the 2L possible strings as
the second parent. The probability that the resulting offspring is an
all 1 s string is simply

ρ¼ 1
L�1

XL�1

i ¼ 1

1

2i
¼ 1
L�1

1� 1

2L�1

� �
� 1
L�1

; ð6Þ

since all crossover points are equiprobable and the second parent
must be all 1 s after the crossover point. Therefore, the mean
number of good offspring produced in L matings (the fitness of the
correct genotype is w1 ¼ L) is Lρ¼ L= L�1ð Þ41 and so the
“expected number of good immediate descendants of a good
genotype” is not below one as claimed (Hinton and Nowlan,
1987; see also Maynard Smith, 1987) but, quite the opposite, the
good genotype is expected to increase exponentially once it has
appeared in the population. This is shown in Fig. 2 using the same
parameter values (population size N¼1000, chromosome length
L¼20) than Hinton and Nowlan (1987) with allele frequencies 0.5,
where the correct genotype went to fixation in 14 out of 100
independent runs (14%) in less than 150 generations. Obviously,
the former conclusion that a non-learning sexual population
would never evolve the correct settings is just plain wrong.

As an application of Eq. (6), we can derive the mean number of
good offspring in a two-generation dynamics of a population of
size N. Assume the population at the first generation is composed
of a single correct genotype (fitness L) plus N�1 random geno-
types (fitness 1). Since two distinct parents are chosen in each
mating, the probability that the good genotype is chosen is

L
LþN�1

þ N�1
LþN�1

� L
LþN�2

; ð7Þ

where the first term is the probability that the good genotype is
the first chosen mate and the second term is the probability that it
is the second mate. As a generation comprises N such mates and
the probability of resulting a good offspring is ρ, we obtain that the
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Fig. 2. Evolutionary search without learning in a sexual population. The simula-
tions follow Hinton and Nowlan (1987) scheme with the exception that each
organism is a binary string. Initial frequencies were 0.5, population size N ¼ 1000
and chromosome length L¼ 20. A total of 100 independent runs were followed for
150 generations, and fixation of the correct genotype was observed in 14 runs
(14%). This fixation is conditional on the first appearance of the correct genotype in
the population; once it appears, its frequency increases exponentially. With the
parameters values used, the probability of occurrence of the correct genotype at the
initial generation is equal to 1=220 � 1000¼ 9:5367� 10�4. Therefore, when
N=2L{1 the probability of fixation of the correct genotype is mostly dependent
on the balance between the mean time to its first appearance by recombination
and the mean time to fixation by genetic drift of the incorrect allele 0 at any single
locus; an event that prevents the fixation of the correct genotype (mutation was
ignored in these simulations).
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mean number of good offspring in the second generation is

μ¼ NL
LþN�1ð Þ L�1ð Þ 1þ N�1

LþN�2

� �
: ð8Þ

Since we have assumed that good offspring are produced only by
mates involving the good genotypes and not by the recombination of
random strings, Eq. (8) yields a lower bound for μ but it fits the
simulation data very well in the regime Noo2L(data not shown).
Most interestingly, for large populations N44L we find that μ tends
to 2 regardless the value of L, which explains the very fast growth of
the good genotype once it appears in the population (Fig. 2).

Our findings open a number of questions. What is the prob-
ability of fixation of the correct string as a function of N and the
search space 2L? What is the expected number of generations for
the correct genotype to reach fixation? What is the scaling factor
between N and L for successful fixation? The reason why these
questions are important is the following. As discussed by Belew
(1990), Hinton and Nowlan (1987) picked the parameters in their
simulations very carefully as they assumed a population size of
N¼ 1000 organisms, and allele frequencies of 0.25 for zeros, 0.25
for ones, and 0.50 for question marks. With L¼20, on average half
of the alleles will be ? and there are 210 ¼ 1024 combinations to
try. Therefore, it is no surprise that given 1000 organisms and up
to G¼ 1000 learning trials per organism the correct settings for
the ? connections were easily found. If, for instance, we keep G
constant and let the chromosome length L to increase from 20 to
30, the time taken for the population to solve the task in Hinton
and Nowlan (1987) scenario increases exponentially (Fontanari
and Meir, 1990): with G¼ 1000 and L¼ 30 it would take more than
103 generations before an arbitrary large population of learning
organisms can find the solution (results not shown). Therefore,
both G and L need to be cautiously chosen (i.e., G=2L=2 � 1) to
sustain the claim that learning speeds up evolution in a single-
peaked fitness landscape. Nonetheless, to the extent that the
scientific community accepted that the problem was unsolvable
in any reasonable fashion without learning (e.g., Maynard Smith,
1987; Dennett, 1995, pp. 77–80; Pinker, 1997, p. 178; Puentedura,
2003; Sznajder et al., 2012), this could be considered as a relatively
‘minor’ detail in Hinton and Nowlan (1987) simulations. After all,
they provided a proof of concept and the Baldwin effect seemed to
be essential to solve their difficult adaptive task, which has
generated a growing scientific literature ever since. However, the
demonstration that a population of non-learning sexual organisms
can also find the needle in the haystack converts what appeared to
be a qualitative issue into a quantitative problem in its own right
(Fig. 3). To put it bluntly, Hinton and Nowlan’s (1987) original
claim is untenable but is anyhow interesting to explore the regime
under which learning will be of little help in their model.

4.1. Probability of fixation

We used computer simulations to estimate the probability of
fixation of the correct genotype (denoted as P1). The simulations
followed Hinton and Nowlan (1987) scheme. In particular, the
population consists of N binary strings of length L and update is
parallel; i.e., generations do not overlap. To create the next generation
from the current one, we perform N matings. The two parents of a
mating are different individuals that are chosen at random from the
current generation with probability proportional to fitness (w1 ¼ L is
the fitness of the correct genotype and wαa1 ¼ 1 is the fitness of all
genotypes but the correct one). The single offspring of each mating is
generated after applying the one point crossover operation (see
above). The initial population is generated randomly by choosing
the L digits of each string as 0 or 1 with equal probability.

For different string lengths, the probability of fixation P1 as a
function of N is plotted in Fig. 4A, and as a function of the rescaled

variable ξ¼N1:9=2L in Fig. 4B. The probability P1 is estimated as
the fraction of simulations in which we observed the fixation of
the correct genotype. The number of simulations varied from 107

to 104 so as to guarantee that a statistically significant number of
correct fixations have occurred. The variable ξ reveals the way N
must scale with L in order to maintain P1 invariant, resulting thus
in the collapse of the data of Fig. 4A into a single universal scaling
function, which seems to be well approximated by the fitting
function f ξð Þ ¼ 1�exp �0:353� ξ0:7

� 	
as shown in Fig. 4B. We note

that for a finite asexual population the corresponding scaling is
given by ξ¼N=2L (data not shown). Thus, with L¼ 20 fixation
P1Z0:99ð Þ of the correct genotype in the sexual case is almost
guaranteed when NZ10;170; that is, with a population size well
below the size of the solution space N=2L ¼ 0:0097


 �
. The reason

for this can be understood from the following heuristic argument.
Assume for simplicity that once the all 1 s string appears in the
population its eventual fixation will occur because its frequency
will increase exponentially (see above). With No2L, the correct
genotype will be present at the initial population with probability
N=2L, which is quite low for N¼ 10;170 and L¼ 20. It will likely
arise through recombination with the same probability N=2L at
each generation (we ignore the fact that allele frequencies will
drift apart from their initial frequency of 0.5), which means that
the probability of no occurrence of the correct genotype decreases
with the number of generations as 1�N=2L


 �t
. With a large

enough population size genetic drift will not be very important
and the correct genotype will eventually appear and spread to
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Fig. 3. Evolutionary search with (A) and without (B) learning in a sexual popula-
tion. (A) The simulation uses Hinton and Nowlan (1987) algorithm with allele
frequencies of 0.25 for zeros, 0.25 for ones, and 0.50 for question marks; but
different parameter values for population size (N ¼ 2500), chromosome length
(L¼ 16), and maximum number of learning trials per organism (G¼ 250). With
L¼ 16 there are 28 ¼ 256 combinations to try as an average for the settings of ?
alleles; that is, we kept the same relationship G=2L=2 ¼ 0:977 than Hinton and
Nowlan’s original simulation. (B) The simulation follows Hinton and Nowlan (1987)
scheme with the exception that each organism is a binary string. Initial frequencies
were 0.5, population size N ¼ 2500 and chromosome length L¼ 16. The point here
is that in this scenario the claim that learning allows organisms to evolve much
faster than their non-learning counterparts does not seem to be fully justified.
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fixation. Maynard Smith (1987) previous argument needs to be
rewritten as follows: In a sexual population of 1,000 with initial
allele frequencies of 0.5, a fit individual would arise about once in
1,000 generations. Once it appears, it will reach fixation in few
generations (actually, the probability of fixation in this case is
P1 ¼ 0:172; Fig. 4A). In a sense, low-fitness strings that exhibit
concatenated sequences of the correct allele 1 can be thought of as
cryptic sequences (Rajon and Masel, 2011, 2013) since it is the
recombination process between them that produces the high-
fitness string.

4.2. Mean time to fixation

The previous computer simulations also allowed estimating the
(conditional) mean time to fixation of the correct genotype (denoted as
T1). For different string lengths, T1 is plotted as a function of the
number of strings N in Fig. 5A, and as a function of the ratio between N
and the size of the solution space N=2L in Fig. 5B. For L420 we find
that the height of the T1 peak increases as 2L=2 which, most interest-
ingly, coincides with the form the number of learning trials G scales
with the string length L. In particular, for L¼ 20 we find (mean7SD)
T1 ¼ 1747142 generations with N¼ 103, and T1 ¼ 28714 genera-
tions with N¼ 105. In other words, when N=2L � 0:1 themean time to
fixation of the correct genotype is similar to Hinton and Nowlan (1987)
situation with learning (Fig. 1). In general, for fixed L and very large N
we have that T1 grows with log N and is practically insensitive to L.
This is in sharp contrast with what happens with learning because
both L and G have to increase simultaneously G=2L=2 � 1


 �
, otherwise

the time taken for the population to solve the task in Hinton and

Nowlan (1987) scenario increases exponentially (Fontanari and Meir,
1990) as pointed out above.

As expected, for any population size such that Noo2Lthe
evolutionary search takes exponentially long in the sequence length
L to hit the high fitness peak. Chatterjee et al. (2014) have recently
offered a mathematical proof for this result by considering a class of
fitness landscapes in which peaks are surrounded by extended, flat
valleys. Interestingly and perhaps not so differently from Hinton and
Nowlan (1987) rationale, to solve the ‘puzzle’ of exponentially long
evolutionary times, Chatterjee et al. (2014) proposed a new evolu-
tionary mechanism – the regeneration process – which would allow
evolution to work on polynomial time scales.

To sum up, in the single-peaked fitness landscape learning speeds
up evolution whenever the ratio between the maximum number of
allowed guesses per organism G and the size of the ‘guessing space’
2L=2 is on the same order, i.e. G=2L=2 � 1, and the ratio between
population size N and the size of the solution space 2L in non-learning
organisms is N=2Lo0:1. That is, with G¼ 1000, L¼ 20 and 1000
organisms as in Hinton and Nowlan (1987) the 106 � 2Lqueries to the
fitness function per generation accomplish the same result than
sampling 105 � 2L=10 genotypes per generation in the non-learning
situation (one extra genotype is worth 10 queries). Decrease the ratio
G=2L=2 below 1 and keep the ratio N=2L around 0.1 and the result is
that non-learning sexual organisms will start doing better than their
learning equivalents.

4.3. Exploring other models of recombination

The successful fixation of the good genotype once it appears in
the population is critically dependent on the expected number Lρ
of good offspring after recombination, where ρ is the probability
that any single offspring is an all 1 s string. As we have previously
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Fig. 4. ProbabilityQ5 of fixation P1ð Þ of the correct genotype in a non-learning sexual
population as a function of population size N. (A) plots from left to right
chromosome lengths L¼ 8 (red, times signs), 10 (green, squares), 12 (blue,
diamonds), 15 (magenta, inverted triangles), 18 (cyan, triangles) and 20 (black,
circles). Each symbol represents the fraction of the simulations in which we
observed the fixation of the correct genotype and the lines are guides to the eyes.
For N ¼ 1000 and L¼ 20 we find P1 ¼ 0:172. (B) is the same but the probability of
fixation is plotted against the rescaled variable ξ¼N1:9=2L . The solid grey line is the
fitting function f ξð Þ ¼ 1�exp �0:353� ξ0:7

� 	
. (For interpretation of the references

to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Conditional mean time to fixation T1ð Þ of the correct genotype in a non-
learning sexual population as a function of population size N. (A) plots from bottom
to top chromosome lengths L¼ 8 (red, times signs), 10 (green, squares), 12 (blue,
diamonds), 15 (magenta, inverted triangles), 18 (cyan, triangles) and 20 (black,
circles). For L¼ 20 we find (mean7SD) T1 ¼ 1747142 generations with N ¼ 103,
and T1 ¼ 28714 generations with N ¼ 105. (B) is the same but the mean time to
fixation is plotted against the ratio between the population size and the size of the
solution space N=2L


 �
. The lines are guides to the eyes. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of
this article.)
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shown, Lρ41 in the one point recombination scenario assumed by
Hinton and Nowlan (1987). Our question now is to what extent
this result is robust to a more general recombination model.

Here we follow the stochastic multilocus method of Fraser and
Burnell (1970) and model recombination as a random walk along
the length of the two parental chromosomes, changing from one
to the other within the constraint of the probability of such a
change; namely, the recombination rate among two adjacent loci.
Under the assumption that the probability of recombination
between any two loci is constant and equal to r, the probability
that a mate between a L loci good genotype and a random
genotype produces a good offspring is

ρ¼ 1�rð Þρ1þrρ2; ð9Þ

where ρ1 is the probability that the offspring is the good genotype
when the random walk starts from the all 1 s parent, and ρ2 is the
same probability when the random walk starts from the other
random parent. Here

ρ1 ¼ 1�rð ÞL�1þ
XL�1

k ¼ 1

rk 1�rð ÞL�1�k
XL�M

i ¼ 0

O�1þ i

i

� �
L� i�O�1
L�M� i

� �
2iþO� L;

ð10Þ

and

ρ2 ¼ 1�rð ÞL�12� Lþ
XL�1

k ¼ 1

rk 1�rð ÞL�1�k
XL�M

i ¼ 0

E�1þ i

i

� �
L� i�E�1
L�M� i

� �
2iþE� L;

ð11Þ

where M¼ kþ1, O is the number of odd numbers in the sequence
1; 2; 3; :::; M, i.e., O¼M=2 if M is even and O¼ Mþ1ð Þ=2 if M is
odd; and E is the number of even numbers in the same sequence,
i.e., E¼M=2 if M is even and E¼ M�1ð Þ=2 if M is odd. As before,
the mean number of good offspring genotypes is Lρ; the product
between the fitness of the good parental genotype and ρ.

Eqs. (10) and (11) allow us to set an upper bound for r such that
Lρ41 (Fig. 6). These results agree perfectly with simulation results
(not shown). Thus, with L¼ 20 the upper bound is around
r¼ 0:156, which is a large recombination rate between adjacent
loci. For instance, a recombination frequency of only r¼ 10�3 in
our analysis would correspond to a chromosome with 1,000 loci
and a map length of approximately 100 centimorgans; about the
map length of each of the two major chromosomes of Drosophila
melanogaster (Comeron et al., 2012), which together contain about
80% of the species’ genome. Therefore, the conclusion that once
the good string appears recombination would do little harm to its
spread by selection seems to be robust. This conclusion was
checked by performing 100 independent simulation runs as in
Fig. 2 but now using the stochastic multilocus recombination
method of Fraser and Burnell (1970) with r¼ 0:15. The correct
genotype went to fixation in 12 runs (12%) in less than 150
generations (results not shown).

5. Conclusions

As pointed out by Dennett (2003), many scholars including
himself thought that Hinton and Nowlan (1987) and Maynard
Smith (1987) had shown clearly and succinctly how and why the
Baldwin effect worked, to the extent that in his bestseller book
“Consciousness Explained” he (Dennett, 1991, p. 186) wrote that
“thanks to the Baldwin effect, species can be said to pretest the
efficacy of particular different designs by phenotypic (individual)
exploration of the space of nearby possibilities”. We grant this sort
of claims as misleading for two reasons. First, it takes for granted
the happening of an effect that still waits for convincing empirical
support after more than 100 years since its original inception.
Second, it disregards the countless times proved effectiveness of
standard neo-Darwinian selection to evolve complex biological
traits (Futuyma, 2005; Orr, 1999) and contribute to some of the
major evolutionary transitions (Maynard Smith and Szathmáry,
1995; Michod, 1999).

Yeh and Price (2004) speculated that colonization and estab-
lishment of a new population of dark-eyed juncos in coastal
California was facilitated by a plastic response in breeding season,
and claimed that their results provide the first quantitative
evidence of Baldwin’s proposition that plasticity aids individuals
to deal with novel situations. Baldwin (1896) certainly deserves
the merit of “setting out a nascent theory of the evolution of
phenotypic plasticity” (Scheiner, 2014, p. iii); however, it should be
remembered that the Baldwin effect involves two transitions: the
evolutionary value of phenotypic plasticity and the genetic accom-
modation of the induced trait. Because Yeh and Price (2004) did
not prove that breeding season – a highly plastic trait (Dawson,
2008) � was genetically accommodated, we do not think their
paper can be cited as a clear example of Baldwin effects (Crispo,
2007). Simpson’s (1953) careful scrutiny made on the plausibility
of Baldwin effects also applies here.

Our aim here was not to dismiss Hinton and Nowlan’s (1987)
seminal contribution persuasively demonstrating the feasibility of
the Baldwin effect. Their short paper offers pima facie evidence of
Haldane’s conviction that “if you are faced by a difficulty or a
controversy in science, an ounce of algebra is worth a ton of verbal
argument” (Maynard Smith, 1965, p. 239), which is undoubtedly the
reason behind the huge positive influence of their work. Hinton and
Nowlan (1987) showed how the Baldwin effect could happen, but
our present results show that there is no need for Baldwin effects to
happen �at least in the proposed scenario.

Some previous criticisms and extensions of Hinton and Nowlan’s
(1987) work focused on the problem of how plasticity and react-
ion norms can smooth fitness landscapes, and have emphasized
that learning accelerates evolution only under certain conditions
(e.g., Ancel, 2000; Anderson, 1995; Behera and Nanjundiah, 1995).
Although the special assumptions in the Hinton and Nowlan (1987)
model are likely unrealistic and the needle-in-the-haystack problem
may hardly ever be relevant to evolution anyway, we do not think
this sort of criticisms are fatal to their conceptual work. It is again
interesting to recall what Hinton and Nowlan (1987, p. 501) wrote at
the end of their paper: “We therefore conclude with a disjunction:
For biologists who believe that evolutionary search spaces contain
nice hills (even without the restructuring caused by adaptive
processes) the Baldwin effect is of little interest, but for biologists
who are suspicious of the assertion that the natural search spaces
are so nicely structured, the Baldwin effect is an important mechan-
ism that allows adaptive processes within the organism to greatly
improve the space in which it evolves.” This is a clever ending and
warns against attempts to disprove their model by simply assuming
different fitness landscapes. Granting that the fitness landscape is
flat with a single isolated peak as Hinton and Nowlan (1987)
assumed, the key question to answer is whether or not their basic
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Fig. 6. Expected number of good offspring when an all 1 s parental chromosome
mates with L random chromosomes. The curves plot Lρ, where ρ is the probability
that any single offspring is an all 1 s string given by Eq. (9) following the stochastic
multilocus recombination method of Fraser and Burnell (1970).
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claims are indeed correct. The answer is not, and this single fact
invalidates their conclusion.

It is critical to clarify what we have and have not shown here.
We have shown that finding a needle-in-the-haystack without
learning is a trivial enterprise for a large population of asexual
organisms, as well as for a sexual population depending on the
scaling factor between population size and the search space.
Therefore, Hinton and Nowlan’s (1987) ‘genes as followers’ sce-
nario (West-Eberhard, 2003) for the Baldwin effect could also be
reframed into the traditional (Modern Synthesis) perspective that
genes are ‘leaders’ and phenotypes are ‘followers’ during the
process of adaptive evolution.

We have not shown that Baldwin effects are unlikely to happen in
nature. Although we are not completely hostile but share Simpson’s
(1953) skepticism about the concept, to prove or disprove Baldwin
effects is ultimately an empirical question. It should also be clarified
that our doubts on the actual relevance of Baldwin effects should not
be taken as a criticism to the role of behavior in evolution
(Duckworth, 2009; Corning, 2014), as it is already obvious by
contrasting Mayr’s (1963) hostility towards Baldwin effects and his
vindication of behavior as an important pacemaker or driver of
evolutionary change (Mayr, 1960). Actually, one of us has conjectured
that behavioral thermoregulation has been responsible for the fading
of adaptive latitudinal clines (Castañeda et al., 2013); the so-called
‘Bogert effect’ (Huey et al., 2003). One thing is to assume that by
choosing a specific temperature the organisms mitigate fluctuations
in their thermal environment and little selection for temperature-
related changes occur as we did, and quite another is to suppose that
this behavior helps the survival of the organisms until hereditary
variation favored by natural selection in the new environment can be
accommodated (Baldwin effect).

To conclude, the demonstration that a standard neo-Darwinian
account without learning can easily solve Hinton and Nowlan’s
(1987) harsh task should move “Baldwin boosters” (Weber and
Depew, 2003) to their winter retreats. Interested colleagues,
including ourselves, are invited to come up with a more convin-
cing case for a fascinating and potentially important mechanism.
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Appendix A

Epistasis in a single-peaked fitness landscape

In the scenario without learning the neural connections are also
specified by L loci but now with two alleles each, 1 and 0, because in
this situation there is no difference between alleles 0 and ?. Since
there is no smoothing out of the fitness landscape the fitness

function is

wi ¼
L if the organism has all correct alleles 1
1 otherwise

�
ðA:1Þ

With L¼ 2 the haplotype frequencies xi and the corresponding
fitness values are given by the following table

Locus 1
1

1 x1 ¼ p1p2þD x3 ¼ q1p2�D

Locus 2 w1 ¼ 2 w3 ¼ 1 p2
0 x2 ¼ p1q2�D x4 ¼ q1q2þD

w2 ¼ 1 w4 ¼ 1 q2
p1 q1 1

ðA:2Þ

where D D¼ x1�p1p2
� 	

is the linkage disequilibrium due to the
non-random association of alleles within haplotypes. The multi-
plicative fitness epistasis is

E0 ¼ ln
w1w4

w2w3

� �
¼ 0:6931 ðA:3Þ

For the haploid case Felsenstein (1965) has shown that direc-
tional two-locus selection will tend to generate linkage disequili-
brium of the same sign as the multiplicative epistatic parameter.
This is illustrated here by iterating the standard recursion equa-
tions to calculate gametic frequencies after selection:

x01 ¼w1 x1�rDð Þ=w
x02 ¼w2 x2þrDð Þ=w
x03 ¼w3 x3þrDð Þ=w
x04 ¼w4 x4�rDð Þ=w

ðA:4Þ

where r is the amount of recombination between the two loci and

w¼
X4
i ¼ 1

wixi: ðA:5Þ

Assuming D0 ¼ 0 and p1 ¼ p2 ¼ 0:1, the linkage disequilibrium
over time is plotted in Fig. A1 for two extreme recombination
values r¼ 0; r¼ 0:5ð Þ. D can increase up to near its theoretical
maximum 0.25.

Felsenstein (1965) also showed that if the linkage disequilibrium
generated by epistatic selection is positive, tighter linkage acceler-
ates the change in allelic frequencies. Therefore, the analytical
recursion equations to analyze the evolution of allele frequencies
in Hinton and Nowlan’s (1987) model without learning (Fontanari
and Meir, 1990) are expected to grossly overestimate the speed of
evolution as they did not take into account the generation of linkage
disequilibrium.
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Fig. A1. Generation of gametic linkage disequilibrium without learning.
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Appendix B

Exact recursion equations for the non-learning asexual case

We will consider the case where learning is absent in order to
show the effect of neglecting the generation of linkage disequili-
brium due to selection. In this case the genotypes are binary strings
of size L because without learning there is no difference between
alleles 0 and ? There are 2L different such strings and we denote
their frequencies in the infinite population at generation t by Yα tð Þ,
with α¼ 1;…; 2L. Without loss of generality, we will assume that
the correct genotype, i.e. the string 1; 1;…; 1ð Þ, corresponds to
α¼ 1. Recalling that the fitness wα of all genotypes but the correct
one is set to the baseline value wαa1 ¼ 1, and that the fitness of the
correct genotype is set to w1 ¼ L, we can immediately write the
recursion equations

Y1 tþ1ð Þ ¼ w1Y1 tð ÞP
αwαYα tð Þ ¼

LY1 tð Þ
1þ L�1ð ÞY1 tð Þ; ðB:1Þ

Yαa1 tþ1ð Þ ¼wαa1Yαa1 tð ÞP
αwαYα tð Þ ¼ Yαa1 tð Þ

1þ L�1ð ÞY1 tð Þ: ðB:2Þ

The denominator of the fractions in the right-hand-side of
these equations is the average fitness of the population. It is also of
interest to calculate the frequency of alleles 1 at generation t,
which we denote by p tð Þ. To simplify this calculation, let us assume
that at generation t ¼ 0 the frequencies of all genotypes different
from the correct one take on the same value, say Yαa1 0ð Þ ¼ Y2 0ð Þ.
Hence, Eq. (B.2) guarantees that these frequencies will always
remain identical, i.e., Yαa1 tð Þ ¼ Y2 tð Þ for all t. With this assump-
tion, it is straightforward to write an equation for p tð Þ

p tð Þ ¼ 1
L

X
α

PαYα tð Þ ¼ Y1 tð Þþ 2L�1�1

 �

Y2 tð Þ ¼ 2L�1 1þY1 tð Þ½ ��1

2L�1
;

ðB:3Þ

were Pα stands for the number of alleles 1 in string α and we have
used the normalization condition Y1 tð Þþ 2L�1


 �
Y2 tð Þ ¼ 1. For

large L, Eq. (B.3) reduces to p tð Þ ¼ 1þY1 tð Þ½ �=2.
Thus, the study of the case of evolution without learning reduces

to finding the solution of Eq. (B.1) that yields the frequency of the
correct genotype Y1 tð Þ as a function of the generation number t. For
tc1 we can rewrite the recursion Eq. (B.1) as the ordinary
differential equation

dY1

dt
¼ L�1ð Þ Y1 1�Y1ð Þ

1þ L�1ð ÞY1
; ðB:4Þ

the solution of which is simply

Y1 tð Þ
1�Y1 tð Þ½ �L

¼ Y1 0ð Þ
1�Y1 0ð Þ½ �L

exp L�1ð Þt½ �: ðB:5Þ

Since we are interested in the regime tc1 for which Y1 tð Þ � 1,
this equation can be further rewritten as

Y1 tð Þ � 1�1�Y1 0ð Þ
Y1 0ð Þ½ �1=L

exp � L�1ð Þt=L� �
; ðB:6Þ

This expression is useful because it allows us to estimate the
number of generations needed for Y1 tð Þ to attain some arbitrary
value close to one. In fact, solving Eq. (B.6) for t yields

t � � 1
L�1

ln Y1 0ð Þ 1�Y1 tð Þ
1�Y1 0ð Þ

� �L( )
; ðB:7Þ

from which we see that t increases with the logarithm of Y1 0ð Þ
rather than with a negative power of Y1 0ð Þ as in the case where
linkage disequilibrium is neglectedQ3 [37].

Appendix C

Exact recursion equations for the non-learning asexual case assuming
mutation

We sketch the derivation here solely to emphasize the equiva-
lence between the asexual case and the well-known single-peak
fitness landscape of the quasispecies model (Eigen, 1971). The
analysis simplifies greatly if one assumes that the relevant feature
to distinguish the strings is the number of correct alleles they have
without regard to their specific positions in the string. Provided
that the initial condition is consistent with this assumption (i.e., all
strings with the same number of alleles 1 have the same initial
frequencies) the derived recursion equations are exact for the
single peak landscape.

We begin by grouping all strings into Lþ1 classes, i¼ 0; 1;…; L,
according to the number of alleles 1 they have. The frequencies of
those classes are simply Πi ¼

P
αYαδiPα , where δij is the Kronecker

delta. Hence ΠL ¼ Y1 since P1 ¼ L and there is only one string with L
alleles 1. The idea is to derive a recursion equation for the class
frequencies rather for the string frequencies, which amounts to
reducing the number of equations from 2L to Lþ1. The probability
that a string with j 1 s mutates to a string with i 1 s is given by

Mij ¼
Xb
k ¼ a

j

k

� �
L� j

i�k

� �
1�uð ÞL� i� jþ2kuiþ j�2k; ðC:1Þ

where μ is the per site probability of mutation. Here,
a¼ max 0; iþ j�Lð Þ and b¼ min i; jð Þ. In particular,

MiL ¼
L

i

� �
1�uð ÞiuL� i: ðC:2Þ

With this in mind we can write the recursion equation for the
frequency of strings with i 1 s as

Πi ¼
1
w

LMiLΠLþ
XL�1

j ¼ 0

MijΠj

2
4

3
5; ðC:3Þ

where w¼ 1þ L�1ð ÞΠL. Note that this is the equation for Eigen’s
(1971) model in the single-peak fitness landscape. In particular, the
reproduction rate of the ‘master sequence’ (i.e., the all 1 s string) is L,
which is identical to the sequence length. Hence, we expect the
error threshold transition to take place at uc � 1�1=L1=L � 0:139 for
L¼ 20. Simulation results (not shown) indicate that this figure is a
good approximation.
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