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Abstract

A set A ⊂ Fp is said to be reducible if it can be represented in

the form A = B + C with B, C ⊂ Fp, |B| , |C| ≥ 2. If there are no

sets B, C with these properties then A is said to be primitive. First

three criteria are presented for primitivity of subsets of Fp. Then the

distance between a given set A ⊂ Fp and the closest primitive set is

studied.

1 Introduction

We will need

Definition 1 Let G be an additive semigroup and A,B1, . . . ,Bk subsets of

G with

|Bi| ≥ 2 for i = 1, 2, . . . , k. (1.1)

If

A = B1 + B2 + · · ·+ Bk,

then this is called an (additive) k-decomposition of A, while if a multiplica-

tion is defined in G and (1.1) and

A = B1 · B2 · ... · Bk (1.2)

hold, then (1.2) is called a multiplicative k-decomposition of A. (A decom-

position will always mean a non-trivial one, i.e., a decomposition satisfying

(1.1).)

In 1948 H.H. Ostmann [16], [17] introduced some definitions on additive

properties of sequences of non-negative integers and studied some related

problems. The most interesting definitions are:
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Definition 2 A finite or infinite set C of non-negative integers is said to be

reducible if it has an (additive) 2-decomposition

C = A+ B with |A| ≥ 2, |B| ≥ 2.

If there are no sets A, B with these properties then C is said to be primitive

(or irreducible).

Definition 3 Two sets A, B of non-negative integers are said to be asymp-

totically equal if there is a number K such that A∩ [K,+∞) = B∩ [K,+∞)

and then we write A ∼ B.

Definition 4 An infinite set C of non-negative integers is said to be totally

primitive if every C′ with C′ ∼ C is primitive.

Ostmann also formulated the following beautiful conjecture:

Conjecture 1 The set P of the primes is totally primitive.

If A is an infinite set of non-negative integers, then let A(n) denote its

counting function:

A(n) = |{a : a ≤ n, a ∈ A}| .

Inspired by Ostmann’s work, Turán asked the following question: is it true

that if A is any infinite set of non-negative integers then one can change

at most o(A(n)) elements of it up to n so that the new set A′ should be

totally primitive? Sárközy [24] gave an affirmative answer to this question

(Theorems A, B and C will be presented here in a slightly simplified form):

Theorem A There is a positive absolute constant c such that if A is an

infinite set of non-negative integers then one can change elements of it so

that the number of the elements changed in [0, n] is less than c A(n)

(log logA(n))1/2

for every n > n0 and the new set A′ is totally primitive.

Answering a question of Erdős, Sárközy [25] also proved:
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Theorem B There is a positive absolute constant c′ such that if A is an

infinite set of non-negative integers, and its complement A = {0, 1, 2, . . .}\A
satisfies

A(n) = |{a : 0 ≤ a ≤ n, a /∈ A}| < c′

(

n (log log n)2

(logn)4

)1/3

(1.3)

for n ≥ 3 then A is reducible.

Erdős also conjectured that if we change o(n1/2) elements of the set of

squares up to n, then the new set is always totally primitive. Sárközy and

Szemerédi [27] proved this conjecture in the following slightly weaker form:

Theorem C If ε > 0 and we change o(n1/2−ε) elements of the set of the

squares up to n then we get a totally primitive set.

Volkmann [28], [29] Wirsing [30] and Sárközy [19], [20] estimated the

Lebesgue measure, resp. Hausdorff dimension of the point set assigned to

reducible sets.

Hornfeck [15], Hofmann and Wolke [14], Elsholtz [5], [6], [7] and Puchta

[18] proved partial results toward Ostmann’s Conjecture 1 on the totally

primitivity of the set P of the primes. Elsholtz [8] also studied multiplicative

decompositions of shifted sets P ′ + {a} with P ′ ∼ P.

So far we have surveyed the papers written on decompositions of sets of

integers. Sárközy [26] proposed to study analogous problems in finite fields.

Observe that the notions of additive and multiplicative decompositions, re-

ducibility and primitivity can be extended from integers to any semigroup,

in particular, to the additive group of Fp and multiplicative group of F∗
p for

any prime p; in the rest of the paper we will use these definitions in this

extended sense.

First (inspired by Erdős’s problem and Theorem C on the set of squares)

it was conjectured in [26] that for every prime p the set of the modulo p

quadratic residues is primitive. (We will identify Fp with the set of the

residue classes modulo p and, as it is customary, we will not distinguish
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between residue classes and the integers representing them.) This conjecture

is still open but partial results have been proved by Sárközy [26], Shkredov

[22] and Shparlinski [23].

Dartyge and Sárközy [3] conjectured that the set of modulo p primitive

roots is primitive. This conjecture is also still open but partial results have

been proved by Dartyge and Sárközy [3] and Shparlinski [23].

Sárközy [21] also studied multiplicative decompositions of the shifted set

of the modulo p quadratic residues.

By Theorem B every infinite set A of non-negative integers satisfying

(1.3) is reducible, and by Theorem A, the upper bound in (1.3) for A(n)

cannot be replaced by O
(

n
(log logn)1/2

)

. In a recent paper Gyarmati, Konyagin

and Sárközy [11] studied the analogue of these results in finite fields: they

estimated the cardinality f(p) of the largest primitive subset of Fp. Note that

earlier Green, Gowers and Green [12], [13], and Alon [1] had studied a closely

related problem: they estimated the cardinality g(p) of the largest subset A
of Fp which cannot be represented in form B + B = A. Clearly f(p) ≤ g(p).

Improving on results of Gowers and Green, Alon proved that

p− c1
p2/3

(log p)1/3
< g(p) < p− c2

p1/2

log p
.

In [11] we proved that f(p) is much smaller than this: for p > p0 we have

p− c3
log log p

(log p)1/2
p < f(p) < p− c4

p

log p
. (1.4)

Alon, Granville and Ubis [2] estimated the number of distinct sumsets

A+B in Fp under various assumptions on the cardinality of A and B. Among

others they proved that there are 2p/2+o(p) distinct sumsets A+B in Fp with

|A| , |B| → ∞ as p → ∞. They also proved

Theorem D There are less than (1.9602)p+o(p) reducible subsets of Fp.

(So that almost all of the 2p subsets of Fp are primitive.)

In this paper our goal is to continue the study of the reducible and prim-

itive subsets of Fp and the connection between them. First in Section 2 we
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will present three criteria for primitivity of a subset A of Fp. Then in Section

3 we will show that these criteria are independent: neither of them follows

from any of the others. In Section 4 we will show that any “small” subset of

Fp can be made primitive by adding just one element. Finally, in Section 5

we will discuss a problem on the finite field analogue of Theorem A. (In the

sequel of this paper we will extend the notions of reducibility and primitivity,

and we will study these extended notions.)

2 Three criteria for primitivity in Fp.

Ostmann and others have given several criteria for primitivity of se-

quences of integers, but no primitivity criteria are known in Fp. Thus we

will present three criteria of this type, then we will illustrate their applica-

bility, and we will also study the connection between them.

Theorem 1 Assume that A = {a1, a2, . . . , at} ⊂ Fp and there are i, j with

1 ≤ i < j ≤ t such that

ai + aj − ak /∈ A for every k with 1 ≤ k ≤ t, k 6= i, k 6= j (2.1)

and

ai − aj + ak /∈ A for every k with 1 ≤ k ≤ t, k 6= j. (2.2)

Then A is primitive.

Corollary 1 If p is a prime of form p = 4k + 1 and A ⊂ Fp is defined by

A = {0, 1} ∪ {a ∈ Fp :

(

a

p

)

= 1,

(

a− 1

p

)

= −1, a 6= −1, a 6= 2},

then A is primitive.

Corollary 2 If A = {a1, a2, . . . , at} ⊂ Fp is a Sidon set, then it is primitive.
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(A set A = {a1, a2, . . . , at} is called Sidon set if the sums ai + aj with

1 ≤ i < j ≤ t are distinct.)

Proof of Theorem 1 Assume that contrary to the statement of the theorem

A is a set satisfying the assumptions, however, there are B ⊂ Fp, C ⊂ Fp

with

A = B + C, |B| ≥ 2, |C| ≥ 2. (2.3)

It follows from ai ∈ A, aj ∈ A and (2.3) that there are bu ∈ B, bv ∈ B, cx ∈ C
and cy ∈ C with

ai = bu + cx (2.4)

and

aj = bv + cy. (2.5)

Now we have to distinguish two cases.

CASE 1 Assume that bu 6= bv and cx 6= cy. Then by (2.3), (2.4) and

(2.5) we have

ai + aj = (bu + cx) + (bv + cy) = (bu + cy) + (bv + cx) = ar + as (2.6)

with ar = bu + cy ∈ A and as = bv + cx ∈ A. Then

ai 6= ar (2.7)

by (2.4) and cx 6= cy, and

aj 6= ar (2.8)

by (2.5) and bu 6= bv. (2.6), (2.7) and (2.8) contradict (2.1) (with ar in place

of ak).

CASE 2 Assume that

bu = bv (2.9)

or cx = cy; we may assume that (2.9) holds. Then (2.5) can be rewritten as

aj = bu + cy.
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By |B| ≥ 2 there is a b ∈ B with

b 6= bu. (2.10)

Then by (2.3) we have

ap = b+ cx ∈ A (2.11)

and

aq = b+ cy ∈ A. (2.12)

It follows from (2.4), (2.5), (2.9), (2.11) and (2.12) that

ai − aj = (bu − bv) + (cx − cy) = cx − cy = ap − aq

whence

ai − aj + aq = ap ∈ A (2.13)

where by (2.5), (2.9), (2.10) and (2.12)

aq = b+ cy 6= bu + cy = bv + cy = aj . (2.14)

(2.13) and (2.14) contradict (2.2) which completes the proof of Theorem 1.

Proof of Corollary 1 By the construction of the set A we have 0 ∈ A and

1 ∈ A. We will show that (2.1) and (2.2) in Theorem 1 hold with ai = 0,

aj = 1; in other words, we have

1− ak /∈ A for every ak 6= 0, 1 (2.15)

and

− 1 + ak /∈ A for every ak 6= 1. (2.16)

Consider first (2.15). By the construction of A, it follows from ak ∈ A,

ak 6= 0, ak 6= 1 that
(

ak
p

)

= 1 and
(

ak−1
p

)

= −1. Then by p = 4k + 1 we

have
(

1− ak
p

)

=

(−1

p

)(

1− ak
p

)

=

(

ak − 1

p

)

= −1.
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This implies by the definition of A that 1−ak ∈ A may hold only if 1−ak = 0

or 1 − ak = 1 whence ak = 1 or ak = 0. But it is assumed in (2.15) that

ak 6= 0, 1, thus, indeed, (2.15) holds.

Now consider (2.16). It follows from ak ∈ A and ak 6= 1 that either
(

ak−1
p

)

= −1 whence −1 + ak /∈ A or we have ak = 0 whence −1 + ak = −1

which again does not belong to A so that (2.16) holds.

Proof of Corollary 2 If |A| = 1 or 2, then A is primitive trivially. If

|A| = t > 2, then ai, aj in the theorem can be chosen as any two distinct

elements of A, e.g., we may take ai = a1 and aj = a2. (2.1) and (2.2) in

Theorem 1 hold trivially by the definition of Sidon sets which proves the

primitivity of A.

Theorem 2 If A ⊂ Fp is of the form

A = {0} ∪ A0 with A0 ⊂ (p/3, 2p/3), (2.17)

and

|A| > 4, (2.18)

then A is primitive.

Proof of Theorem 2 Assume that contrary to the statement of the theorem

(2.17) holds, however there are sets B ⊂ Fp, C ⊂ Fp with

A = B + C, |B| ≥ 2, |C| ≥ 2. (2.19)

Since 0 ∈ A, thus it follows from (2.18) that there are b0 ∈ B, c0 ∈ C with

0 = b0 + c0.

Write B′ = B+ {−b0} and C′ = C + {−c0} so that 0 ∈ B′ and 0 ∈ C′ and, by

(2.19),

B′ + C′ = B + C = A, |B′| = |B| ≥ 2, |C′| = |C| ≥ 2. (2.20)
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Represent every non-zero element of B′ and C′ by an integer from the interval

(0, p) and let B′ = {0, b′1, . . . , b′r} and C′ = {0, c′1, . . . , c′s} with

0 < b′1 < · · · < b′r < p and 0 < c′1 < · · · < c′s < p (2.21)

where r ≥ 1 and s ≥ 1, and by (2.18) and (2.20),

(r + 1)(s+ 1) = |B′| |C′| ≥ |A| > 4.

It follows that

r ≥ 2 (2.22)

or s ≥ 2; we may assume that (2.22) holds. Then by (2.20) and (2.21) we

have

b′i = b′i + 0 ∈ B′ + C′ = A, 0 < b′i < p (2.23)

for i = 1, 2, . . . , r and

c′1 = c′1 + 0 ∈ B′ + C′ = A, 0 < c′1 < p. (2.24)

By the construction of A it follows from (2.23) and (2.24) that

2
p

3
< b′i + c′1 <

4p

3
, (2.25)

and by (2.20) we have

b′i + c′1 ∈ B′ + C′ = A. (2.26)

But it follows from the construction of A that it has only a single element in

the interval
(

2p
3
, 4p

3

)

, namely p (= 0). Thus by (2.25) and (2.26) we have

b′i + c′1 = 0 for i = 1, 2, . . . , r.

By (2.22) this holds for both i = 1 and i = 2 so that

b′1 + c′1 = 0 = b2 + c′1

whence b′1 = b′2 which contradicts (2.21) and this completes the proof of

Theorem 2.
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Theorem 3 Let A ⊂ Fp and for d ∈ F
∗
p denote the number of solutions of

a− a′ = d, a ∈ A, a′ ∈ A

by f(A, d). If

max
d∈F∗

p

f(A, d) < |A|1/2 , (2.27)

then A is primitive.

Note that Corollary 2 also follows from this criterion trivially. (In the

sequel of this paper we will also apply this criterion for proving a stronger

result along these lines.)

Proof of Theorem 3 Assume that contrary to the statement of the theorem

there are B ⊆ Fp, C ⊆ Fp with

A = B + C, |B| ≥ 2, |C| ≥ 2. (2.28)

We may assume that

|B| ≥ |C| . (2.29)

By (2.28) and (2.29) we have

|A| = |B + C| ≤ |{(b, c) : b ∈ B, c ∈ C}| = |B| |C| ≤ |B|2

whence

|A|1/2 ≤ |B| . (2.30)

It follows from (2.27) and (2.30) that

max
d∈F∗

p

f(A, d) < |B| . (2.31)

On the other hand, let c and c′ be two distinct elements of C. Then by (2.28),

for every B we have a = b + c ∈ A and a′ = b + c′ ∈ A. For this pair (a, a′)

we have

a− a′ = (b+ c)− (b+ c′) = c− c′,
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and for different b values we get different solutions of

a− a′ = c− c′, a ∈ A, a′ ∈ A. (2.32)

It follows that the number of solutions of (2.32) is at least as large as the

number of b’s:

f(A, c− c′) ≥ |B| . (2.33)

Since c 6= c′ we have c − c′ 6= 0 thus (2.32) contradicts (2.31) and this

completes the proof of Theorem 3.

Now we will prove that Theorem 3 is sharp in the range 0 < |A| ≪ p1/2

(and in the next section we will also show that if a set A ⊂ Fp satisfies the

assumptions in Theorem 3 then we must have |A| ≪ p1/2):

Theorem 4 If p is large enough and k is a positive integer with

k0 < k <
1

2
p1/4, (2.34)

then there is a set A ⊂ Fp such that

|A| = k2, (2.35)

max
d∈F∗

p

f(A, d) = |A|1/2 (2.36)

and A is reducible.

Proof of Theorem 4 Write m = 2k2. By theorems of Erdős and Turán

[9], [10] and Chowla [4] the cardinality of the maximal Sidon selected from

{1, 2, . . . , N} is (1 + o(1))N1/2. Thus for k large enough there is a Sidon set

B = {b1, b2, . . . , bk} ⊂ {1, 2, . . . , m− 1} with |B| = k

(

=
(m

2

)1/2
)

.

(2.37)

Let C = {c1, c2, . . . , ck} = (2m)× B = {2mb1, 2mb2, . . . , 2mbk} and

A = B + C. (2.38)
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Then clearly A is reducible. Moreover, every a ∈ A can be written in the

form

a = bi + cj = bi + 2mbj (2.39)

with some i, j ∈ {1, 2, . . . , k}, and by (2.34) here we have

0 < bi < m, 0 < bj < m and

0 < bi + 2mbj < m+ 2m(m− 1) < 2m2 = 8k4 <
p

2
. (2.40)

(2.39) and (2.40) determine bi and cj uniquely, thus we have

|A| = |B + C| = |B| |C| = k2 (2.41)

which proves (2.35).

Finally, consider a d ∈ F
∗
p with f(A, d) > 0 so that there are a, a′ with

a− a′ = d, a ∈ A, a′ ∈ A.

Let a be of the form (2.39) and

a′ = bi′ + cj′ = bi′ + 2mbj′.

Then we have

d = a− a′ = (bi − bi′) + 2m (bj − bj′) = u+ 2mv (2.42)

with

0 ≤ |bi − bi′ | = |u| < m (2.43)

0 ≤ |bj − bj′| = |v| < m (2.44)

and, by (2.34),

|d| ≤ |u|+|2mv| = |bi − bi′ |+2m |bj − bj′ | < m+2m(m−1) < 2m2 = 8k4 <
p

2
.

(2.45)

By (2.43), (2.44) and (2.45), d determines u and v in (2.42) uniquely. If

u = bi − bi′ 6= 0 and v = bj − bj′ 6= 0 then by the Sidon property of B the
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pair u, v determines bi, bi′, bj and bj′, and thus also a and a′ uniquely so that

we have f(A, d) = 1. If u = bi − bi′ = 0 and v = bj − bj′ 6= 0 then i = i′ can

be chosen in k ways while v determines j and j′ uniquely, thus, by (2.41),

f(A, d) = k = |A|1/2 . (2.46)

Similarly, if u = bi − bi′ 6= 0 and v = bj − bj′ = 0 then j = j′ can be chosen

in k ways while i, i′ are uniquely determined thus again (2.46) holds and this

also proves (2.36).

3 Comparison of three criteria

Let F1,F2 and F3 denote the family of the subsets A of Fp that satisfy

the assumptions in Theorems 1, 2 and 3, respectively, and let L1, L2 and

L3 denote the cardinality of the largest subset belonging to F1, F2 and F3,

respectively. First we will estimate |F1|, |F2|, |F3|, L1, L2 and L3.

Theorem 5 We have

(i)

|F1| ≥ 2p/2−O(1) (3.1)

and

L1 =
p

2
+O(1). (3.2)

(ii)

|F2| = 2p/3+O(1) (3.3)

and

L2 =
p

3
+O(1). (3.4)

(iii)

|F3| ≤ exp
(

(1 + o(1)) p2/3 log p
)

(3.5)

and

L3 ≤ (1 + o(1)) p2/3. (3.6)
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Proof of Theorem 5 (i) Write

B =

{

b : −p− 3

2
≤ b ≤ p− 3

2
, 2 | b, b 6= 0, 2

}

.

We will show that if A0 ⊂ B then

A = {0, 1} ∪ A0 ∈ F1. (3.7)

It suffices to prove that such a set A satisfies (2.1) and (2.2) in Theorem 1

with ai = 1, aj = 0. For these values of ai and aj conditions (2.1) and (2.2)

become

1− a /∈ A for a ∈ A, a 6= 0, 1 (3.8)

and

1 + a /∈ A for a ∈ A, a 6= 0. (3.9)

Indeed, if a ∈ A, a 6= 0, 1 then by a ∈ A0 ⊂ B we have

−p− 1

2
≤ 1− a, 1 + a ≤ p− 1

2

and a ∈ A0 ⊂ B is even so that 1−a and 1+a are odd; thus 1−a, 1+a /∈ A0

whence (3.8) and (3.9) follow; if a = 1 then 1 + a = 1 + 1 = 2 /∈ A0 thus

again (3.9) holds.

Since clearly |B| = p
2
− O(1) thus A0 ⊂ B (and also A in (3.7)) can be

chosen in 2p/2−O(1) ways which proves (3.1).

Taking A0 = B in (3.7) we get that A = {0, 1} ∪ B ∈ F1. Thus clearly

we have

L1 ≥ |{0, 1} ∪ B| ≥ |B| = p

2
− O(1). (3.10)

In order to give an upper bound for L1 consider a set A which satisfies the

assumptions in Theorem 1 with some fixed ai, aj. Then by (2.1), for any pair

a, a′ ∈ Fp with

ai + aj − a = a′

only at most one of a and a′ may belong to A. There are at most p+1
2

such

pairs (including the pair (a, a′) with a = a′), and every element of Fp belongs
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to one of these pairs. Thus |A| is at most p+1
2

(=the number of pairs) + 2

(to also count ai and aj) =
p
2
+O(1), so that

L2 ≤
p

2
+O(1)

which, together with (3.10), proves (3.2).

(ii) The number of the sets A of form (2.17) is equal to the number of

the sets A0 ⊂ Fp with A0 ⊂ (p/3, 2p/3) which is clearly

22p/3−p/3+O(1) = 2p/3+O(1)

which proves (3.3).

The maximal cardinality of a set A of form (2.17) is at most

|A| ≤ |{0}|+ |A0| ≤ 1 + |{a : p/3 ≤ a < 2p/3}| = p

3
+O(1)

which proves (3.4).

(iii) If A ∈ F3 then (2.27) holds so that

∑

d∈F∗

p

f(A, d) <
∑

d∈F∗

p

|A|1/2 = (p− 1) |A|1/2 . (3.11)

On the other hand, clearly we have

∑

d∈F∗

p

f(A, d) =
∑

d∈F∗

p

|{(a, a′) : a, a′ ∈ A, a− a′ = d}|

= |{(a, a′) : a, a′ ∈ A, a 6= a′| = |A| (|A| − 1) . (3.12)

It follows from (3.11) and (3.12) that

|A|1/2 (|A| − 1) < p− 1. (3.13)

Now assume that contrary to (3.6) there is an ε > 0 such that for infinitely

many primes p there is an A ∈ F3 with

|A| > (1 + ε)p2/3. (3.14)
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It follows from (3.13) and (3.14) that

(1 + ε)1/2 p1/3
(

(1 + ε)p2/3 − 1
)

< p− 1

whence

(1 + ε)3/2 − (1 + ε)1/2

p2/3
< 1− 1

p
.

But for p → ∞ the limit of the left hand side is (1 + ε)3/2 (> 1) while the

limit of the right hand side is 1, thus for p large enough this inequality cannot

hold, and this contradiction proves (3.6).

It follows from (3.6) that

|F3| ≤ |{A : A ⊂ Fp, |A| ≤ L3}| =
L3
∑

k=1

(

p

L3

)

≤ p

(

p

L3

)

= pL3+1

= exp
(

(1 + o(1))p2/3 log p
)

which proves (3.5) and this completes the proof of Theorem 5. (We remark

that with a little work it could be also shown that (3.5) and (3.6) hold with

equality sign but we do not need this here.)

Note that comparing (3.1), (3.3) and (3.5) we can see that Theorem

1 covers more primitive sets than Theorem 2 and Theorem 3, and both

Theorem 1 and Theorem 2 cover much more primitive sets than Theorem

3. Moreover, by (3.2), (3.4) and (3.6) there are much larger primitive sets

covered by Theorems 1 and 2 than by Theorem 3. In spite of this Theorem

3 seems to be at least as useful and applicable as the other two theorems

since it covers almost all the thin subsets A of Fp (almost all the subsets A
with |A| ≪ p2/3); on the other hand, e.g. a set A satisfying Theorem 2 must

have a very special structure: apart from 0 ∈ A, it must lie completely in

the interval (p/3, 2p/3).

Now we will show that Theorems 1, 2 and 3 are independent.

Proposition 1 For p large enough Theorems 1, 2 and 3 are independent: for

either of the three criteria there is an A ∈ Fp which satisfies the conditions

in it but which does not satisfy the conditions in the other two theorems.
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Proof of Proposition 1 By (3.1), (3.3) and (3.5) in Theorem 1 for p large

enough there are much more subsets A ⊂ Fp satisfying the assumptions in

Theorem 1 than the ones in Theorems 2 and 3, and there are much more

subsets satisfying the assumptions in Theorem 2 than the ones in Theorem

3.

There are (many) Sidon sets A with A ⊂ (0, p/3) and |A| > 1; these sets

A satisfies the assumptions in Theorem 3 but not (2.17) in Theorem 2.

With a little work it could be shown that almost all the subsets A ⊂ Fp

with |A| =
[

1
2
n2/3

]

satisfy the inequality

2 ≤ f(A, d) < |A|1/2 for every d ∈ F
∗
p;

such a subset A satisfies the assumptions in Theorem 3 but not (2.2) in

Theorem 1.

Finally, consider the set

A = {0} ∪ {a : p/3 < a < 2p/3}.

For p large enough this set satisfies the assumptions in Theorem 2. On the

other hand, for any ai, aj ∈ A we also have −ai ∈ A since A also contains

the negative of every element of it; take ak = −ai in (2.2). Then

ai − aj + ak = ai − aj − ai = −aj ∈ A

(since the negative of aj also belongs to A) so that (2.2) in Theorem 1 does

not hold.

4 Making primitive set from a “small” subset

of Fp by adding a single element

By Theorem D almost all the subsets of Fp are primitive. But how are

the “few” reducible subsets distributed in the space formed by the subsets of
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Fp? Are there “balls” of “not very small radius” in this space such that every

subset belonging to them is reducible or the opposite of this is true: for any

fixed subset A ⊂ Fp there is a primitive subset “very close” to it? First we

will show that for “small ” subsets of Fp this is so in a very strong sense (while

for any subset A the problem will be studied in Section 5).

Theorem 6 Let p be a prime with

p > 3 (4.1)

and let A ⊂ Fp,

0 < |A| <
(

2

3
p

)1/2

− 1. (4.2)

Then there is an x ∈ Fp \ A such that the set A ∪ {x} is primitive.

Proof of Theorem 6 Fix some a ∈ A. If there is an

x ∈ Fp \ A (4.3)

such that the assumptions (2.1) and (2.2) in Theorem 1 hold with the set

Ax = A∪{x} in place of A and with a and x in place of ai and aj, respectively,

then by Theorem 1 this set Ax is primitive which proves our claim. Thus

if contrary to the statement of the theorem there is no x satisfying (4.3) for

which Ax is primitive, then for all these x values either (2.1) and (2.2) fails

with a = ai, aj = x, i.e., there is either an ak with

a + x− ak ∈ A

or an a′k with

a− x+ a′k ∈ A

so that either

x ∈ A+A+ {−a} (4.4)

or

x ∈ A−A+ {a} (4.5)
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must hold. But by (4.1) and (4.2) the total number of x values satisfying

(4.4) and (4.5) is at most

|A+A|+ |A −A| ≤ 1

2
|A| (|A|+ 1) + |A| (|A| − 1) + 1

=
1

2
|A| (3 |A| − 1) + 1 =

1

2
|A| (3 |A|+ 1) + 1− |A|

<
1

2
|A|
(

√

6p− 2
)

+ 1− |A| ≤ 1

2
|A|
√

6p− |A|

< p− |A| = |Fp \ A|

which contradicts the fact that every x satisfying (4.3) must also satisfy one

of (4.4) and (4.5), and this completes the proof of Theorem 6.

It is a natural question to ask: what can one say from the opposite side?

More precisely, let h(p) denote the greatest integer h such that for every

A ⊂ Fp with |A| ≤ h one can find an x ∈ Fp \ A for which the set A ∪ {x}
is primitive. Then by Theorem 6 for p > 39 we have

[

(

2

3
p

)1/2
]

− 1 ≤ h(p). (4.6)

On the other hand, it follows trivially from our result [11] in (1.4) that

h(p) <

[

p− c4
p

log p

]

.

This upper bound can be improved easily to

h(p) <
1

2
p+O(1). (4.7)

Proposition 2 Let p ≥ 5 and define A ⊂ Fp by

A =

[ p−1

4
]

⋃

k=0

{4k, 4k + 1}.

Then any set B ⊂ Fp with A ⊆ B is reducible.

Proof of Proposition 2 Clearly, if p ≥ 5, B ⊂ Fp and A ⊆ B then B has a

representation

B = {0, 1}+ C with |C| ≥ 2
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so that, indeed, B is reducible.

It follows from this proposition that for this set A we have

h(p) < |A| ≤ 2

[

p− 1

4

]

which proves (4.7).

There is a large gap between the lower bound (4.6) and the upper bound

(4.7); it is not clear which one is closer to h(p). Of course, the set A con-

structed in Proposition 2 possesses a much stronger property than the one

needed for h(p) < |A| so that probably the upper bound (4.7) obtained in

this way is far from the value of h(p), but the lower bound (4.6) also seems

to be far from h(p).

5 Making primitive set from any subset of Fp

by changing relatively few elements.

By Theorem D above (the result of Alon, Granville and Ubis [2]) there

are only a “few” reducible subsets in Fp. Moreover, our results and methods

point to direction that the reducible sets are not well-distributed in the sense

that there are less reducible sets among the small subsets of Fp than the

large ones. This explains that we have been able to show that from any

small subset of Fp one can make a primitive set by adding a single element

but, on the other hand, we have not been able to prove such a result for

larger subsets. Now we will prove that if instead of adding just one element

we may change more (but still relatively few) elements of the given subset

then we may make a primitive set also from larger subsets.

Theorem 7 Let p ≥ 3 be a prime and A a subset of Fp. Then by removing

at most
[

3+
√
5

2
· |A|2

p

]

elements of A and adding at most two elements of Fp\A
one can form a set B which is primitive.
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Corollary 3 If p ≥ 3 is a prime and A is a subset of Fp with

|A| <
√
5− 1

2
p1/2,

then adding at most two elements of Fp \ A one can form a set B which is

primitive.

(We remark that it follows already from Theorem 6 with a constant factor

c slightly smaller than the one in the upper bound here that if |A| < cp1/2

then by adding just one element of Fp \ A to A we can get a primitive set

B.)

In order to formulate another consequence of Theorem 7 we need one

more definition:

Definition 5 If A,B are subsets of Fp then their distance d(A,B) is defined

as the cardinality of their symmetric difference (in other words, d(A,B) is

the Hamming distance between A and B).

It follows trivially from Theorem 7 that

Corollary 4 If p ≥ 3 is a prime and A is a subset of Fp then there is a

primitive set B ⊂ Fp such that

d(A,B) ≤
[

3 +
√
5

2
· |A|2

p

]

+ 2.

Proof of Theorem 7 We will use the following lemma.

Lemma 1 Let p ≥ 3 be a prime, A ⊂ Fp. Suppose that there are u, v ∈ Fp

for which

u /∈ A+A, v /∈ A−A,
3v + u

2
/∈ A. (5.1)

Then adding at most two elements of Fp\A to A one can form a set B which

is primitive.
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Proof of Lemma 1 Let A = {a1, a2, . . . , as}. For some fixed u, v satisfying

(5.1) define as+1 and as+2 by

as+1 =
u+ v

2
, as+2 =

u− v

2
.

Then by (5.1)

as+1 + as+2 = u /∈ A+A,

as+1 − as+2 = v /∈ A−A,

as+1 − as+2 + as+1 =
u+ 3v

2
/∈ A.

In other words

as+1 + as+2 − ak /∈ A for 1 ≤ k ≤ s,

as+1 − as+2 + ak /∈ A for 1 ≤ k ≤ s+ 1.

Using Theorem 1 with i = s + 1, j = s + 2 we get that A ∪ {as+1, as+2} is

primitive, and this completes the proof of the lemma.

Now we return to the proof of the theorem. Clearly Theorem 7 is trivial

for |A| ≥ 3−
√
5

2
p (in this case

[

3+
√
5

2
· |A|2

p

]

≥ |A|, and then removing |A| − 1

elements from A we get a set which contains only one element, and thus it

is reducible), thus we may assume

|A| < 3−
√
5

2
p. (5.2)

First we prove that there exist a set A′ ⊂ A and an element u ∈ Fp such

that

u /∈ A′ +A′ and |A′| ≥ |A| − |A|2
p

. (5.3)

Indeed, for d ∈ Fp let

h(A, d)
def
= |{(a, a′) : a+ a′ = d, a, a′ ∈ A}| .

Clearly,

∑

d∈Fp

h(A, d) =
∑

d∈Fp

∑

a,a′∈A
a+a′=d

1 =
∑

a,a′∈A
1 = |A|2 .
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On the other hand, we have

pmin
d∈Fp

h(A, d) ≤
∑

d∈Fp

h(A, d) = |A|2

whence

min
d∈Fp

h(A, d) ≤ |A|2
p

. (5.4)

Let u ∈ Fp be an element with

h(A, u) = min
d∈Fp

h(A, d)
def
= t, (5.5)

and (a1, a
′
1), (a2, a

′
2), . . . , (at, a

′
t) the solutions of the equation

a + a′ = u with a, a′ ∈ A.

By (5.4) and (5.5) we have

t = h(A, u) ≤ |A|2
p

.

For A′ = A \ {a1, a2, . . . , at} the equation

a+ a′ = u, a, a′ ∈ A′ (⊂ A)

cannot be solved, thus

u /∈ A′ +A′.

This proves (5.3).

Consider a set A′ and an element u ∈ Fp for which (5.3) holds. We will

prove that there exists a set A′′ ⊂ A′ and an element v ∈ Fp with

v /∈ A′′ −A′′,

u+ 3v

2
/∈ A′′ (5.6)

and

|A′′| ≥ |A′| − 1 +
√
5

2
· |A|2

p

≥ |A| − 3 +
√
5

2
· |A|2

p
. (5.7)
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Since A′′ ⊂ A′ by (5.3)

u /∈ A′′ +A′′ (5.8)

trivially holds.

Again, for d ∈ Fp we define

f(A′, d)
def
= |{(a, a′) : a− a′ = d, a, a′ ∈ A′}| .

Let G = {v ∈ Fp :
u+3v

2
∈ A′}. Since u is fixed (see (5.3)), we have

|G| ≤ |A′| ≤ |A| . (5.9)

Clearly,

∑

d∈Fp\G
f(A′, d) =

∑

d∈Fp\G

∑

a,a′∈A
a−a′=d

1 ≤
∑

d∈Fp

∑

a,a′∈A
a−a′=d

1 =
∑

a,a′∈A
1 = |A′|2 ≤ |A|2 .

(5.10)

On the other hand, by (5.9) and (5.10) we have

(p− |A|) min
d∈Fp\G

f(A′, d) ≤ (p− |G|) min
d∈Fp\G

f(A′, d) ≤
∑

d∈Fp\G
f(A′, d) ≤ |A|2 .

(5.11)

It follows from this and (5.2) that

min
d∈Fp\G

f(A′, d) ≤ |A|2
p− |A| ≤

|A|2

p− 3−
√
5

2
p
≤ 1 +

√
5

2
· |A|2

p
. (5.12)

Let v ∈ Fp \ G be an element with

f(A′, v) = min
d∈Fp\G

f(A′, d)
def
= s, (5.13)

and (b1, b
′
1), (b2, b

′
2), . . . , (bs, b

′
s) the solutions of the equation

b− b′ = v with b, b′ ∈ A′.

By (5.12) and (5.13) we have

s = f(A′, v) ≤ 1 +
√
5

2
· |A|2

p
. (5.14)
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For

A′′ = A′ \ {b1, b2, . . . , bs}, (5.15)

the equation

b− b′ = v, b, b′ ∈ A′′ (⊂ A)

cannot be solved, thus

v /∈ A′′ −A′′. (5.16)

By v ∈ Fp \ G and the definition of G we have u+3v
2

/∈ A′. Since A′′ ⊆ A′ we

have
u+ 3v

2
/∈ A′′. (5.17)

(5.6) and (5.7) follow from (5.14), (5.15), (5.16) and (5.17). Thus we have

constructed a set A′′ ⊂ A and u, v ∈ Fp for which

u /∈ A′′ +A′′, v /∈ A′′ −A′′,
u+ 3v

2
/∈ A′′, |A′′| ≥ |A| − 3 +

√
5

2
· |A|2

p
.

Using Lemma 1 wee see that it is possible to add at most two elements

of Fp \ A′′ to A′′ so that we get a primitive set B. This completes the proof

of Theorem 7.

6 Generalizations

In order to keep our presentation more transparent and the discussions

simpler, we have decided to stick to Fp in this paper. However, we remark

that all but one of our results can be generalized easily: Theorems 1, 3, 6, 7

and Corollaries 2, 3, 4 can be extended to any Abelian groups, Theorems 2,

4, 5 and Propositions 1, 2 to cyclic groups (and Corollary 1 is the only result

whose proof goes through only in Fp).
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