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Abstract 17 

Energy dependent collision-induced dissociation (CID) of the dimers [2M+Cat]+ of the 18 

noscapine and hydrastine stereoisomers was studied where Cat stands for Li+, Na+, K+ and 19 

Cs+ ions. These dimers were generated “in situ” from the electrosprayed solution. The 20 

survival yield (SY) method was used for distinguishing the noscapine and hydrastine dimers. 21 

Significant differences were found between the characteristic collision energies (CE50, i.e. the 22 

collision energy necessary to obtain 50% fragmentation) of the homo- (R,R; S,S) and 23 

heterochiral (R,S; S,R) stereoisomers. To distinguish the enantiomer pairs L-, D-tyrosine 24 

([M+Tyr+Cat]+) and L-, D-lysine ([M+Lys+Cat]+) were used as chiral selectors. Furthermore, 25 

these heterodimers [M+amino acid+Cat]+ were also applied to determine the stereoisomeric 26 

composition. It was found that the characteristic collision energy (CE50) of the noscapine and 27 

hydrastine homodimers ([2M+Cat]+) was inversely proportional to the ionic radius of the 28 

cations. Furthermore, the activation energy of fragmentation of the noscapine and hydrastine 29 

dimers was also estimated using a simple collision model and supported by high level 30 

quantum chemical calculations. 31 

 32 
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Introduction 1 

Noscapine is an isoqiunoline alkaloid derived from opium. Noscapine has medical benefits 2 

[1,2], it has been used as a natural antitussive agent for decades without any toxic effects. 3 

Furthermore, this alkaloid shows antitumor activity in various cancers like breast, lung and 4 

colon cancer [3-7]. Noscapine has two chirality centres at the positions of C(3) and C(5’), 5 

resulting in four stereoisomers of this compound of which, however, only one stereoisomer, 6 

the (-)-α-noscapine can be found in nature. The other noscapine isomers can be prepared by 7 

synthetic methods. 8 

Hydrastine is another natural alkaloid with similar structure to that of the noscapine. The only 9 

difference is the lack of the methoxy group at the C(4’) position. All of the hydrastine isomers 10 

are encountered in different plants, however, the synthesis of these isomers is also known. 11 

The chemical structures of noscapine and hydrastine are presented in Scheme 1. 12 

 13 

Scheme 1 14 

 15 

In general, the enantiomers have different effects on the human body [8,9]. Sometimes, the 16 

enantiomers can show adverse effects, therefore, the separation and identification of the 17 

enantiomers are crucial. Several methods have been developed using mass spectrometry to 18 

identify the stereoisomers and to determine the enantiomeric composition. The enantiomers 19 

can be distinguished using chiral selectors by forming diasteroisomers. The chiral mass 20 

spectrometric methods can be divided into five basic groups [10]: the kinetic method [11], the 21 

host-guest method [12-14], the ion/molecule equilibrium method [15], the CID method 22 

[16,17] and the ion mobility spectrometry method [18,19]. The CID mass spectrometric 23 

methods for chiral recognition are working with chiral selectors, and using the intensity ratios 24 

at defined collision energy as the source of the chiral information.  25 

In this paper, a novel tandem mass spectrometric approach for the differentiation of the 26 

stereoisomers of both noscapine and hydrastine in the presence and in the absence of chiral 27 

selectors by applying the survival yield (SY) method is presented. One of the main advantages 28 

of the SY method compared to a common CID method is that the survival yield curves are 29 

constructed based on the intensity ratios at more, different collision energies which can 30 

produce more accurate results. Furthermore, based on the SY method the activation 31 

parameters can also be estimated [20]. 32 
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The fragmentations of the homodimers formed and the ones with chiral selector were studied. 1 

As chiral selector the L,D-lysine and the L,D-tyrosine were used since the pure amino acids 2 

and their derivatives are easily available. Furthermore, the chiral recognitions of the amino 3 

acids were achieved by many methods [11, 21] that suggest the amino acids can be used as 4 

universal chiral selectors. 5 

 6 

Experimental 7 

Chemicals 8 

Noscapine and hydrastine stereoisomers were synthesized as described in Ref [22, 23]. The 9 

different stereoisomers are labelled with numbers as it can be seen in Scheme 1. The D-10 

tyrosine was purchased from Sigma Aldrich (St. Louis, United States). L-, D-lysine and the L-11 

tyrosine from Reanal (Budapest, Hungary) and methanol from VWR Radnor (United States) 12 

were used without further purification. Lithium, sodium, potassium and caesium chloride 13 

were obtained from Sigma Aldrich (St. Louis, United States). 14 

 15 

Sample preparation 16 

Noscapine and hydrastine were dissolved in methanol at a concentration of 0.025 mM. The 17 

concentration of the chiral selector was five times higher than those of noscapine and 18 

hydrastine. To obtain the corresponding adducts LiCl, NaCl, KCl and CsCl were added to the 19 

noscapine and hydrastine solutions to obtain 2 mM concentration of the salts. 20 

 21 

Electrospray Quadrupole Time-of-Flight MS/MS (ESI-Q-TOF) 22 

A MicroTOF-Q type Qq-TOF MS instrument (Bruker Daltonik, Bremen, Germany) was used 23 

for the MS/MS measurements. The instrument was equipped with an electrospray ion source 24 

where the spray voltage was 4 kV. N2 was utilized as drying gas. The drying temperature was 25 

180 °C and the flow rate was 4.0 L/min. For the MS/MS experiments, nitrogen was used as 26 

the collision gas and the collision energies were varied in the range of 1-39 eV (in the 27 

laboratory frame). The pressure in the collision cell was determined to be 1.2×10-2 mbar. The 28 

precursor ions for MS/MS were selected with an isolation width of 4 m/z units. The mass 29 

spectra were recorded by means of a digitizer at a sampling rate of 2 GHz. The spectra were 30 

evaluated with the DataAnalysis 3.4 software from Bruker. 31 

 32 

 33 
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Determination of the survival yield (SY) and the characteristic collision energy (CE50) 1 

The efficiency of the fragmentation was determined quantitatively by the survival yield 2 

method (SY). The experimental SY curves were built according to equation 1:  3 

 



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p

I

I
SY  (1) 4 

where Ip and ∑If are the intensity of the precursor ion and the sum of all fragment ion 5 

intensities, respectively. Additionally, the SY curve can be described by a two-parameter 6 

sigmoid function [24] based on equation 2. 7 
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where a and b are constants and CE is the laboratory frame collision energy. These constants 9 

(a and b) were determined by fitting the calculated curve to the measured one applying a 10 

spreadsheet software. The value of the collision energy at SY=0.5 (CE50) can be expressed by 11 

eq. 3. using the parameters of eq. 2. 12 

 13 

 
b
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CE50   (3) 14 

Based on eight independent measurements the confidence interval of the CE50 value 15 

determination is ±0.007 eV at 95% significance level. 16 

 17 

Estimation of the activation energy of the fragmentation 18 

A simple collision model was used to estimate the activation energy (Eo) of the fragmentation 19 

of noscapine and hydrastine dimers [20]. The model computes the internal and kinetic energy 20 

changes in a quadrupole type mass spectrometer. Using the Rice–Ramsperger–Kassel (RRK) 21 

theory the internal energy dependent rate constant of the fragmentation can be determined. 22 

The model was used for the construction of the SY curves. Fitting the calculated SY curve to 23 

the measured one the activation energy of the fragmentation can be estimated. The parameters 24 

of the collision model were determined using Leucine enkephaline as a “calibrant”. The 25 

collision cross-sections were estimated by scaling it by the mass ratio of the noscapine and 26 

hydrastine dimers to Leucine enkephaline. The numbers of effective oscillators was 27 

proportioned by the degrees of freedom (DOF). The energy transfer efficiency was kept 28 

constant as obtained for Leucine enkephaline. 29 

 30 

 31 
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Quantum chemical calculations 1 

Density Functional Theory (DFT) calculations were performed by the B3LYP exchange-2 

correlation functional [25] where 6-31+G(d) were the standard split-valence basis sets [26]. 3 

For the alkali metal ions we have chosen the Ermler–Christiansen relativistic effective core 4 

potential (RECP) basis set [27-29]. Geometry optimizations were carried out in vacuum. The 5 

relative energies are Gibbs free energies obtained by frequency analysis. All of these 6 

calculations were carried out using the Gaussian 09 software package [30]. The lack of 7 

imaginary frequencies in vibrational spectral calculations was taken to verify that the 8 

calculated stationary points on the potential energy surfaces (PES) represented true minimal. 9 

 10 

Results and discussion 11 

Differentiation of the dimers of the stereoisomers 12 

The collision induced dissociations (CID) of the noscapine and hydrastine dimers [2M+Cat]+ 13 

were studied using sodium, potassium and caesium ions as the cationizing agents. These 14 

stereoisomeric dimers were generated “in situ” under electrospray conditions. The formation 15 

of this type of noncovalent dimers is specific to the ESI [31,32]. Fig. 1 shows the MS/MS 16 

spectrum of the sodiated noscapine 1 (R,S) dimers produced under ESI-conditions. 17 

 18 

Fig. 1. 19 

 20 

The m/z 436 product ion was identified as the single, sodiated noscapine ([M+Na]+). In the 21 

MS/MS spectrum of the sodiated noscapine 1 (R,S) homodimer ([2M+Na]+), only the 22 

sodiated noscapine ion ([M+Na]+) appeared as the product ion. The same fragmentation was 23 

observed in the case of hydrastine homodimers. The MS/MS spectra of the potassiated and 24 

ceasiated dimers are similar to those of the sodiated ones presented in Fig. 1. Therefore the 25 

fragmentations of the homodimers are considered as simple unimolecular dissociations. The 26 

lithiated homodimers were also studied. However, these homodimers suffer fragmentation 27 

before the dissociation of the dimers. Thus, the energetics of the fragmentation of the lithiated 28 

homodimers cannot be compared to those of the sodiated, potassiated and the ceasiated 29 

homodimers. The results of the study of the lithiated homodimers are therefore presented in 30 

the supplementary information. To study the energy dependent dissociation of the dimers the 31 

SY curves were constructed. The SY curves of the sodiated noscapine (a) and hydrastine (b) 32 

dimers are presented in Fig. 2. 33 
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 1 

Fig. 2. 2 

 3 
As seen in Fig. 2, significant difference can be found between the SY plots of the sodiated 4 

dimers of the noscapine stereoisomers compared to those of the hydrastine stereoisomers. The 5 

survival yield curves of the sodiated hydrastine enantiomers are closer to each other than 6 

those of the noscapine enantiomers as it can be seen in Fig. 2 insets. The characteristic 7 

collision energies (CE50) were determined from the SY curves. Table 1 shows the CE50 values 8 

and the normalized CE50 values of the noscapine and hydrastine dimers using different 9 

cations. 10 

 11 

Table 1. 12 

 13 

As Table 1 shows, less difference can be found between the characteristic collision energies 14 

of the homodimers generated from the enantiomers than between those of the epimers. 15 

However, based on the normalized characteristic collision energies in every case, the suitable 16 

ionized homodimers can be found for the differentiation. Furthermore, all of the stereoisomers 17 

can be ordered based on their normalized characteristic collision energies. With the help of 18 

this determined order the stereoisomers can be identified. As an example it was found that the 19 

CE50 values for the sodiated dimers of the noscapine ([2M+Cat]+) stereoisomers decrease in 20 

the order of noscapine 1 (R,S) > noscapine 2 (S,R) >noscapine 3 (R,R) > noscapine 4 (S,S). 21 

 22 

Distinction of the stereoisomers with chiral selectors 23 

The dimers of the amino acid - noscapine and hydrastine stereoisomers are generated “in situ” 24 

in the electrospray ion-source. The fragmentations of the four stereoisomers of noscapine- 25 

amino acid and hydrastine-amino acid dimers were also studied using collision energy 26 

dependent CID MS/MS. These mixed dimers required lower collision energies to reach the 27 

same extent of fragmentation as the corresponding homodimers. The MS/MS spectra of the 28 

sodiated noscapine 3, (R,R)-L-tyrosine dimers are presented in Fig. 3. Beside the precursor 29 

ion only the sodiated single noscapine appeared in the MS/MS spectra like it was in the case 30 

of the homodimers. The results of the lithiated homodimers can be found in the 31 

supplementary information. Similar fragmentation patterns were observed for hydrastine and 32 

using lysine as the chiral selector. 33 

 34 
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Fig. 3. 1 

 2 
Neither the cationized L-, D-lysine nor the L-, D-tyrosine has appeared in the MS/MS spectra, 3 

indicating that noscapine and hydrastine have higher affinity to the sodium ion than to the 4 

amino acids. Using the SY curves obtained by energy dependent CID experiments the CE50 5 

values of all of the heterodimers were determined. The SY plots of the sodiated dimers of the 6 

noscapine stereoisomers and L-tyrosine are shown in Fig. 4. 7 

 8 

Fig. 4. 9 

 10 

Fig. 4 shows that significantly larger shift can be found between the survival yield curves of 11 

the heterodimers than between those of the homodimers. Furthermore, the heterodimers need 12 

significantly lower collision energies to reach the same extent of fragmentation. The 13 

potassiated and the ceasiated heterodimers cannot be studied because these dimers suffer 14 

fragmentation under even the lowest collision energy. 15 

The normalized CE50 values of the heterodimers are presented in Table 2. The noscapine-16 

tyrosine and noscapine-lysine dimers have similar CE50 values in spite of the fact that the 17 

lysine has fewer degrees of freedom (DOF). It may suggest that the binding energy of the 18 

cation to the amino acid is higher in the case of noscapine-lysine dimers. In addition, higher 19 

differences in the CE50 values can be found for the sodiated heterodimers involving tyrosine 20 

than for those involving the lysine.  21 

 22 

Table 2 23 

 24 

The heterodimers have considerably lower CE50 values than the homodimers but the 25 

differences between the stereoisomers are significantly larger. 26 

The cross-chiral effect [33] appeared as it can be seen in the CE50 values of the heterodimers, 27 

using the D-amino acids the order of CE50 values is the opposite between the enantiomers 28 

compared to the dimers with L-amino acids. For example, the order of the CE50 values for the 29 

sodiated noscapine- L-tyrosine ([M+L-Tyr+Na]+) is: noscapine 1 (R,S) > noscapine 2 (S,R) > 30 

noscapine 4 (S,S) > noscapine 3 (R,R). On the contrary, using D-tyrosine the order is altered 31 

as follows: noscapine 2 (S,R) > noscapine 1 (R,S) > noscapine 3 (R,R) > noscapine 4 (S,S). 32 

Despite the inversion of the CE50 values of the enantiomers, the difference between the 33 

epimers is similar. This inversion can help in the identification of the stereoisomers. 34 
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 1 

Determination of the stereoisomeric composition 2 

The stereoisomeric excess (se%) and the stereoisomeric purity (sp%) were calculated using 3 

equation 4 and 5, respectively. 4 

 
)(S

)(100
se%

21

21

S
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


  (4) 5 

 
2

100%
sp%




se  (5) 6 

where S1 and S2 indicate the amounts of two different stereoisomers. 7 

To determine the stereoisomeric composition, the heterodimers were studied since the 8 

differences between the CE50 values of the stereoisomers are more significant than in the case 9 

of the homodimers. As an example Fig. 5 shows the characteristic collision energy of the 10 

hydrastine 2 (S,R) and hydrastine 3 (R,R) mixtures as a function of the stereoisomeric excess 11 

(a) and the stereoisomeric purity (b). L-tyrosin and sodium were used as the chiral selector 12 

and the ionizing agent, respectively. As can be seen in Fig. 5, linear correlation was found 13 

between the stereoisomeric excess / stereoisomeric purity and the characteristic collision 14 

energy, allowing to use this correlation as a calibration curve for the determination of the 15 

stereoisomeric composition. 16 

 17 

Fig. 5. 18 

 19 

Mixtures for calibration were made from standard samples with known stereoisomeric 20 

composition. Two different calibration series were used to check the validity of the 21 

calibration. The two calibration series were measured on two different days. The differences 22 

between the corresponding CE50 values are less than 2.5 %. To test the calibration curve 23 

validity, mixtures with different stereoisomeric composition were measured. These test 24 

mixtures were measured three times. Table 3 contains the composition of the test solutions, 25 

the measured and calculated stereoisomeric purity of the hydrastine 2 (S,R) and the standard 26 

deviation of the stereoisomeric purity. 27 

 28 

Table 3 29 

 30 
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The measured stereoisomeric purity of the test mixtures are in good agreement with the 1 

calculated data. The results show that the stereoisomeric purity can be determined with good 2 

accuracy in the full range. 3 

 4 

Estimation of the activation energy of the fragmentation of the homo- and hetorodimers 5 

In further experiments, the activation energy of the fragmentation (Eo) was calculated, as it 6 

was described in the experimental section. As seen in Figs. 1 and 3, only one product ion, i.e. 7 

the cationized noscapine ([M+Cat]+) appeared in the MS/MS spectra of the dimers. Hence, the 8 

activation energy of the dissociation of the dimers in the gas phase can be estimated. The 9 

calculated Eo values and the corresponding pre-exponential factors are presented in Table S6-10 

S8 in the Supplementary Information. As seen in the tables, the sodiated homodimers have the 11 

highest activation energy. Furthermore, as it can be expected, .parallel with the increase of the 12 

cation size the activation energy of the fragmentation is decreasing.  13 

For the activation energy of the fragmentation of the sodiated noscapine ([M+Na]+) a value of 14 

1.11 eV was calculated. For the sodiated heterodimers the activation energy of the 15 

fragmentation was calculated to be around 0.5 eV. Therefore, the sodiated heterodimers 16 

dissociate at significantly lower collision energy than the sodiated noscapine. It suggests that 17 

the sodiated heterodimers are fragmented before the single sodiated noscapine, as it can be 18 

seen in the MS/MS spectrum of the sodiated heterodimers in Fig. 3. 19 

It should be noted, that with the use of different cations the CE50 values of the noscapine and 20 

hydrastine homodimers can be altered in a wide range. Values of CE50 decrease with the 21 

ionizing cation size which is in line with the charge density of the ions. Figs. S8 and S9 in the 22 

Supplementary Information show the calculated CE50 values of the noscapine and hydrastine 23 

homodimers ([2M+Cat]+) as a function of the reciprocal of the ionic radius of the cation. As it 24 

can be seen in Figs. S8 and S9, linear correlation was found between the CE50 values and the 25 

reciprocal of the ionic radius. Table 4 shows the slopes, the intercepts and the correlation 26 

coefficients of the linear trend lines of the CE50 versus reciprocal ionic radius for the 27 

noscapine and hydrastine homodimers.  28 

 29 

Table 4 30 

 31 

As Table 4 shows, very good correlations were obtained, and the slopes and the intercepts are 32 

similar for all the trend lines. 33 
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Furthermore, closely linear correlation was also found between the estimated activation 1 

energy of the fragmentation of the noscapine and hydrastine homodimers ([2M+Cat]+) and the 2 

reciprocal of the ionic radius of the ionizing cation. As examples, Fig. 6 shows the activation 3 

energy values of the fragmentation of noscapine 1 (R,S) and hydrastine 4 (S,S) homodimers 4 

as a function of the reciprocal of the ionic radius of the cation. 5 

 6 

Fig. 6. 7 

 8 

The correlations presented in Fig. 6 reflect that the smaller cations have higher charge density, 9 

creating stronger bonds.  10 

 11 

Quantum chemical calculations 12 

To obtain more information on the structure and the energetics of the homodimers high level 13 

quantum chemical calculations were carried out. The density functional theory (DFT) 14 

calculations were performed on the dimers of noscapine 1 (R,S) and noscapine 4 (S,S) 15 

cationized with Na+, K+ and Cs+ ions. The most stable [M+Cat]+ was generated by the 16 

coordination of the alkali metal ions to the oxo group at C1 and the methoxy group at C7. The 17 

coordination of the alkali metal ions are the same for all cationized noscapines. The calculated 18 

structures of the dimers are shown in Fig. 7. 19 

 20 

Fig. 7. 21 

 22 

As seen in Fig. 7, the calculated structures for the cationized noscapine dimers ([2M+Cat]+) 23 

depend significantly on the cation. The sodiated noscapine dimers possess square planar 24 

geometry. On the contrary, potassiated and caesiated noscapine dimers reveal pyramidal 25 

arrangement. The structure of the potassiated noscapine dimer is a distorted pyramid, while 26 

the caesiated noscapine dimer reveals also pyramidal structure, however, with less distortion. 27 

Based on the DFT calculations the activation and the Gibbs free energies were determined for 28 

the dissociation channel of eq. 6. 29 

 30 

 [2M + Cat]+  → [M + Cat]+ + [M]    (6) 31 

 32 



11 

 

The Gibbs free energies and the estimated activation energies for the above process (eq. 6.) 1 

are presented in Table 5. 2 

 3 

Table 5 4 

 5 

According to the data of Table 1, both the DFT calculation and the estimated activation 6 

energy values show that the dimers of noscapine 1 (R,S) require higher energy for the 7 

fragmentation than those of noscapine 4 (S,S). Furthermore, both the Gibbs free energy 8 

calculated by DFT and the estimated activation energy values decrease with the increasing 9 

size of the cation. Thus, the trends and the values of the activation energies for the 10 

fragmentation are in good agreement with the calculated Gibbs free energies. 11 

 12 

Conclusions 13 

Noscapine and hydrastine stereoisomers with two chirality centres were distinguished on the 14 

basis of the energetics of the fragmentation using tandem mass spectrometry. The dimers of 15 

the stereoisomers which were generated in the ESI ion-source were studied. Based on the 16 

order of the CE50 values of the homodimers the stereoisomers can be identified. Beside the 17 

homodimers, the dimers of noscapine and hydrastine with amino acids were also investigated. 18 

With the use of the chiral selectors the difference between the CE50 values increases and 19 

further information can be obtained about the stereoisomeric composition, which can be 20 

determined with good accuracy. 21 

Furthermore, the activation energies of the fragmentations were estimated. The activation 22 

energies of the fragmentations of the single sodiated noscapine ([M+Na]+) and the sodiated 23 

noscapine heterodimers were found to be different around 0.5 eV which explains, why the 24 

MS/MS spectrum of the sodiated noscapine heterodimers shows only one product ion 25 

originated from the fragmentation of the heterodimers of the noscapine. In addition, linear 26 

correlation was found between the CE50 values and the reciprocal of the ion radius of the 27 

cation, which are in good agreement with the result of DFT calculations. 28 

It can be concluded that our tandem mass spectrometric method is capable of identifying the 29 

noscapine and hydrastine stereoisomers and determining the stereoisomeric composition. In 30 

addition, this tandem mass spectrometric approach can be extended to other classes of 31 

stereoisomeric compounds.  32 

 33 
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Legends for Schemes and Figures 1 
 2 

Scheme 1. 3 
The chemical structures of noscapine and hydrastine. 4 

 5 
Fig. 1. 6 

The MS/MS spectrum of the sodiated noscapine 1 (R,S) dimers. 7 

 8 
Fig. 2. 9 

The survival yield (SY) of the sodiated noscapine (a) and hydrastine (b) homodimers as a 10 
function of the collision energy. Figure insets show the zoomed survival yield versus collision 11 

energy curves in the range of 12.5 to 13.5 eV. 12 

 13 
Fig. 3. 14 

The MS/MS spectrum of the sodiated noscapine 3 (R,R)-L-tyrosine heterodimers. 15 
 16 

Fig. 4. 17 
The survival yield versus (SY) collision energy curves of the sodiated noscapine- L-tyrosine 18 
heterodimers. The figure inset shows the zoomed survival yield curves in the range of 5.5 to 19 

6.5 eV. 20 
 21 

 Fig. 5.  22 
The characteristic collision energy of the hydrastine 2 (S,R) and hydrastine 3 (R,R) mixtures 23 
as a function of the stereoisomeric excess (a) and the stereoisomeric purity (b), respectively.  24 

 25 
Fig. 6. 26 

The activation energy values of the fragmentation of noscapine 1 (R,S) and hydrastine 4 (S,S) 27 
homodimers as a function of the reciprocal of the ionic radius of the cation. 28 

 29 
Fig. 7. 30 

The calculated structures of the noscapine dimers cationized with the three different cations. 31 
a), b), and c) show the excised structures of the sodiated, potassiated and caesiated dimers, 32 

respectively 33 
34 
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Table 1. The CE50 and the normalized CE50 values of the homodimers cationized with 1 
different alkaline metal cations 2 
 3 

CE50 (eV)  normalized CE50 

  Na+ K+ Cs+ Na+ K+ Cs+ 

Noscapine 1 (R,S) 14.00 7.78 4.84 1.000 1.000 1.000 

Noscapine 2 (S,R) 13.83 7.55 4.84 0.988 0.970 1.000 

Noscapine 3 (R,R) 12.64 6.53 3.96 0.903 0.839 0.818 

Noscapine 4 (S,S) 12.57 6.48 3.89 0.898 0.833 0.804 

       

Hydrasitne 1 (R,S) 13.80 6.39 3.32 1.000 0.853 0.876 

Hydrasitne 2 (S,R) 13.79 6.30 3.25 0.999 0.841 0.858 

Hydrasitne 3 (R,R) 13.17 7.36 3.75 0.954 0.983 0.989 

Hydrasitne 4 (S,S) 13.22 7.49 3.79 0.958 1.000 1.000 

 4 
 5 
Table 2. The CE50 and the normalised CE50 values of the sodiated heterodimers 6 
 7 

 CE50 (eV) normalized CE50 

 L-Lys D-Lys L-Tyr D-Tyr L-Lys D-Lys L-Tyr D-Tyr 

Noscapine 1 (R,S) 5.64 5.40 5.37 5.06 1.000 0.956 1.000 0.967 

Noscapine 2 (S,R) 5.41 5.65 4.88 5.23 0.959 1.000 0.909 1.000 

Noscapine 3 (R,R) 4.75 4.95 3.95 4.38 0.842 0.876 0.736 0.837 

Noscapine 4 (S,S) 4.85 4.63 4.34 3.91 0.860 0.819 0.808 0.748 

         

Hydrasitne 1 (R,S) 6.88 6.70 6.78 6.38 1.000 0.977 1.000 0.973 

Hydrasitne 2 (S,R) 6.68 6.86 6.47 6.56 0.971 1.000 0.954 1.000 

Hydrasitne 3 (R,R) 5.19 5.32 3.94 4.34 0.754 0.776 0.581 0.662 

Hydrasitne 4 (S,S) 5.35 5.16 4.46 4.12 0.778 0.752 0.658 0.628 

 8 
 9 
Table 3. The composition of the test solutions and the measured and calculated 10 

stereoisomeric purity of hydrastine 2 (S,R). 11 

 12 

Composition (%) 

ep% hydrastine 2 

calculated (%) 

ep% hydrastine 2 

measured (%) 

standard 

deviation 

Hydrastine 2 

(S,R) 

Hydrastine 3 

(R,R) 

70 30 70.0 73.2 0.440 

10 90 10.0 11.7 0.915 

50 50 50.0 52.4 0.681 

 13 
14 
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 1 
Table 4. The slopes, the intercepts and the correlation coefficients (R2) of the linear trend 2 

lines of the CE50 versus reciprocal ionic radius of the ionizing cations (Na+, K+, and Cs+) for 3 

the noscapine and hydrastine homodimers. 4 

 5 

 slope intercept R2 

Noscapine 1 2.41 -9.64 1.000 

Noscapine 2 2.38 -9.49 0.999 

Noscapine 3 2.30 -9.86 0.999 

Noscapine 4 2.23 -9.95 0.999 

Hydrastine 1 2.77 -13.34 1.000 

Hydrastine 2 2.81 -13.65 1.000 

Hydrastine 3 2.45 -10.67 0.994 

Hydrastine 4 2.45 -10.64 0.994 

 6 
Table 5. The calculated Gibbs free energies and the activation energies of the fragmentation 7 
of the dimers ([2M+Cat]+) 8 
 9 

 Calculated Gibbs free energy 
(eV) 

Activation energy of the 
fragmentation (eV) 

 Noscapine 1 Noscapine 4 Noscapine 1 Noscapine 4 
Na+ 0.75 0.74 0.71 0.67 
K+ 0.36 0.30 0.54 0.51 
Cs+ 0.29 0.27 0.47 0.46 

 10 
11 
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Scheme 1 1 
 2 
 3 

R: OMe (-)-alpha-noscapine
R: H (-)-beta-hydrastine

R: OMe (+)-alpha-noscapine
R: H (+)-beta-hydrastine

R: OMe (-)-beta-noscapine
R: H (-)-alpha-hydrastine

R: OMe (+)-beta-noscapine
R: H (+)-alpha-hydrastine
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