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Abstract. Mesoporous silica aerogel particles of ca. 5 µm in diameter can be conveniently 

produced by grinding in aqueous phosphate buffer at pH 7. The pores in the suspended aerogel 

particles are spherical and their diameter is 18 – 20 nm, as measured by NMR cryoporometry. 

NMR diffusiometry revealed that diffusion of water is hindered inside the pores of the aerogel. In 

spite of steric hindrance, bulk water and pore water exchange rapidly on the millisecond 

timescale in the suspension, indicating a highly interconnected pore network. The adsorption of 

methylene blue (MB), as a model compound, was studied on the silica aerogel particles. The 

process was followed by on-line UV-Vis spectrophotometry after injecting the dye into the 

aerogel suspension. Biphasic kinetics was observed with the first process complete in ca. 80 s and 

the second in ca. 600 s. A detailed kinetic model was developed for the interpretation of the 

results. It postulates a relatively fast adsorption process with Langmuir-type kinetics, and the 

aggregation of aerogel particles covered by the dye on the longer timescale. The aggregates are 

involved in a reversible sedimentation process which actually remove MB from the suspension. 
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INTRODUCTION 

In recent years, functionalized mesoporous silica aerogels has gained significance in 

various applications.1-5 The distinctive pore structure and the charged surface of the aerogel 

especially facilitates the adsorption of polar molecules and cations.6-8 This generated increasing 

demand for thorough description of the kinetics and thermodynamics of the adsorption processes 

on these advanced materials. Adsorption of small molecules on mesoporous silica aerogel are 

fast, thus only limited kinetic and mechanistic information is available regarding these processes 

in the literature. In contrast, there are numerous reports on adsorption studies applied for the 

removal of environmental pollutants from wastewater, or to account for effective heterogeneous 

catalysis.9-13 

The evaluation of the experimental data on fast adsorption kinetics is often simplified, 

because the adsorption usually cannot be followed with sufficiently high time resolution, i.e. 

there are not enough data points in the time resolved experiments for a sophisticated evaluation. 

The main reason for the low time resolution is that the kinetic data are collected by off-line 

analysis in most cases. Measuring a data point by sampling and analyzing the system off-line 

takes at least 1 to 5 min, while a fast adsorption process is usually complete in a few minutes. To 

overcome this problem and follow fast adsorption processes with high time resolution, 

specialized on-line analytical techniques such as quartz microbalance measurements,14, 15 optical 

spectroscopy16, 17 and flow-cell spectrophotometry18, 19 can be implemented. 

The main objective of this study is the understanding of the intimate nature of the 

adsorption properties of mesoporous hydrophilic silica aerogel particles suspended in water. We 

characterize the pore size distribution and the structure of the pore network of the aerogel by two 

porometry methods and by NMR diffusiometry. The common cationic dye methylene blue (MB) 

was selected to be the model compound in fast adsorption kinetic experiments, solely, because it 

is still widely applied in adsorption and catalytic studies.20, 21 We developed a novel, on-line UV-

Vis spectrophotometric method to follow the adsorption kinetics with 1 s time resolution. We 

show that in spite of common perceptions, sophisticated spectrophotometry is suitable to provide 

reliable and reproducible kinetic data in a heterogeneous system. Thus, the same methodology 

may be suitable for monitoring fast adsorption processes in other systems.  

Finally, we postulate an advanced kinetic model based on Langmuir-type kinetics22-26 for 

the interpretation of the kinetic and spectroscopic results. 
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EXPERIMENTAL 

Chemicals and solutions 

Methanol (reagent grade), absolute ethanol (reagent grade), acetone (reagent grade), 25w% 

ammonia solutions (reagent grade), tetramethyl orthosilicate (TMOS) (purum p.a.), acetylacetone 

(ReagentPlus) and methylene blue (purum p.a.) were obtained from Sigma-Aldrich (USA). These 

reagents were used without further purification. Ion exchanged and Milli-Q Synthesis A10 ultra-

filtered (EMD Millipore, Billerica, MA, USA) water was used to prepare all solutions. The 

resistivity of this water was never smaller than 18.2 MΩ, and its organic content was less than 10 

ppb. This water is referred to as DI water in the rest of this paper. pH was measured by a 

Metrohm 6.0234.110 combination glass electrode attached to a Metrohm 721 NET Titrino 

titrating unit. The electrode was calibrated by two buffers according to IUPAC recommendations 

and the reading was converted into –log[H+].27 The ionic strength was adjusted in all experiments 

by using NaH2PO4 – Na2HPO4  25 mM – 25 mM buffer (I = 0.10 M). 

 

Aerogel preparation 

Silica aerogel was synthesized by the classical sol-gel process.8, 28 First, two solutions (“A” 

and “B”) were prepared. Solution “A” was made from tetramethyl orthosilicate (TMOS, 3.00 

mL) dissolved in methanol (7.00 mL). Solution “B” contained methanol (15.0 mL), distilled 

water (3.00 mL) and aqueous ammonia solution (1.00 ml of 6.2 M). Solutions “A” and “B” were 

mixed under stirring, then poured into a PTFE-lined plastic mold and sealed. An alcogel formed 

in 24 h, which was transferred into a perforated frame and aged in a mixture of methanol (250 

mL) and ammonia solution (25 wt%, 20 mL) for one day. After 24 h, methanol was gradually 

replaced by acetone in five steps. Acetone was extracted from the gel by liquid carbon dioxide 

and the gel was dried under supercritical conditions29 according to a general procedure detailed in 

our earlier study.30 Finally, the crude aerogel was heated at 500 °C for 8 h in a furnace under 

aerobic conditions to get the final calcined form. This calcined silica aerogel was used for all 

experiments, and referred to simply as “aerogel” in the rest of this paper. 

 

Aerogel characterization 

Scanning electron microscopic (SEM) images were recorded on a Hitachi S-4300 

instrument (Hitachi Ltd., Tokyo, Japan). A monolithic aerogel sample of ca. 4 mm was embedded 
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in Wood’s metal to decrease the possibility of accumulation of electric charge on the highly 

insulating aerogel. All fresh fracture surfaces were covered by a sputtered gold conductive layer. 

Typically, 10 – 30 kV accelerating voltage was used for taking SEM images. Nitrogen gas 

porosimetry measurements were performed on a Quantachrome Nova 2200e surface area and 

porosity analyzer (Quantachrome Instruments, Boynton Beach, FL, USA) after the samples were 

outgassed under vacuum at 300 °C for 3 h. IR spectra were recorded on a Jasco FT/IR 4100 

spectrometer (JASCO Applied Sciences, Halifax, Canada). The aerogel was milled and pelleted 

into KBr for recording transmission IR spectra. Aerogel particles suspended in phosphate buffer 

were monitored by using an inverted microscope (Axio Observer A1, Zeiss) equipped with a high 

speed CCD camera. 

 

NMR measurements 

For NMR measurements, the aerogel was suspended in DI water by the use of a Potter-

Elvehjem tissue grinder, and centrifuged at 8000×g. The resulting slurry contained 2.3 times 

more bulk water than pore water (as discussed later in relation to the NMR cryoporometry 

experiment). This slurry was introduced into a Teflon NMR tube, and used for NMR 

diffusiometry and cryoporometry experiments. 1H-NMR spin echo and diffusion ordered 

spectroscopic (DOSY) experiments were performed with a Bruker Avance II 400 NMR 

spectrometer using standard pulse programs provided with the spectrometer. MestreNova 8.1 

software was used for FID post processing. 

 

NMR diffusiometry. Standard protocols were implemented.31 A stimulated spin echo pulse 

sequence was employed using bipolar gradient pulses to decrease eddy currents (BIPLED) at 298 

± 0.2 K. Typical parameters for diffusion experiments were: diffusion time () from 16 to 150 ms 

and length of gradient pulse () from 1.6 to 4 ms. The diffusion data were evaluated according to 

the well-known expression given in Eq. 1: 
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The pulsed gradient strength (G) was increased with 64 square-equidistant steps from 0 to 

approximately 50 Gauss cm–1. The coefficient Dobs
2 was calculated for each experiment by 

fitting the exponential curve of Eq. 1 to the measured echo intensity (I) as a function of G2, and 

using the known parameters. The real diffusion coefficient (D) was calculated after calibration, 

which was based on measuring the diffusion of D2O in water by this method. 

NMR cryoporometry. The theory and applications of NMR cryoporometry were discussed and 

analyzed in detail by Strange et. al., Petrov and Furó.32-34 The physico-chemical background of 

the method is given by the modified Gibbs_Thomson equations, which describe the melting and 

freezing point depressions of liquids in confined spaces.  

 

 

 

 

In Eq. 2a, Tm is the melting point depression expressed as a difference between the phase 

transition temperature of the bulk (T0) and the confined liquid (Tm). Kc is the cryoporometric 

constant, nm is the geometric factor describing melting and rp stands for the average pore radius. 

In Eq. 2b, the symbols denote the corresponding parameters for freezing. The values of Tm and 

Tf, and nm and nf are different, because melting and freezing of liquids in confined spaces show 

a hysteresis in general. In NMR cryoporometry, the amount of liquid water is quantified at 

different temperatures during melting- freezing cycles.33 The water signal intensity is plotted as a 

function of temperature and the melting and freezing points of the confined liquid are determined 

from the inflection of the two hysteresis curves. 

The aerogel slurry was cooled to −15 C in a Teflon NMR tube. The probe head was also 

cooled to this temperature using a built-in regulator for stabilizing and regulating the temperature 

with air flow through a Bruker BSCU-05 cooling unit. The temperature was calibrated using 

glycol and methanol.35 After temperature equilibration, the 1H NMR spectrum of the sample was 

recorded by a spin echo sequence. The typical echo time was 1.5 ms, the length of the 90° pulse 

was 10.2 μs. The sample was melted by elevating the temperature to 4 °C in 0.2 °C steps by using 
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an automated program. From 4 °C, the sample was cooled to −14 °C in 0.2 °C steps and freezing 

was monitored. In most freezing experiments, the sample was not completely melted before 

freezing cycle in order to avoid overcooling. Data evaluation is detailed in the Discussion. 

 

Adsorption experiments 

For the kinetic experiments the aerogel was suspended in a pH 7 phosphate buffer up to the 

maximum concentration of 340 µg/ml by the use of a Potter-Elvehjem tissue grinder and 

intensive sonication. The most convenient way to follow the kinetics of the adsorption of MB on 

aerogel particles was by simply injecting an aqueous MB solution into an aerogel suspension 

under continuous stirring and following the spectral change on-line by a UV-Vis 

spectrophotometer. As it was reported earlier, the drawback of this method is that some time is 

required for complete homogenization of the system after the injection.36 The general protocol for 

adsorption measurements was the following. A cuvette containing 1.5 – 2.0 mL aerogel 

suspension was placed into the cell holder of the spectrophotometer, thermostated to 25 °C and 

stirred by a Teflon coated 2 × 8 mm magnetic rod at 1000 rpm. Spectrophotometric detection was 

started, and a few seconds later, 10 – 500 µL buffered MB solution was promptly injected into 

the cuvette by a pipette. Absorbance change was followed in the 200 – 400 nm wavelength range 

for at least 900 s with a minimum time resolution of 1 s. The moment of injection can clearly be 

identified in the recorded kinetic traces. The time needed for complete homogenization following 

the injection was determined to be 8 s. 

The UV-Vis spectra were recorded in a custom built spectrophotometer equipped with an 

AvaSpec-ULS-2048LTRC CCD detector manufactured by Avantes (Apeldoorn, The 

Netherlands). The specifications of the instrument are detailed elsewhere.37 The detector was 

typically operated with 15 ms integration time and 20 – 50 subsequent spectra were averaged for 

smoothing. In these experiments, steady absorbance decay was detected, which was attributed to 

the depletion of the dye from solution due to adsorption on aerogel. 

 

Data treatment. 

The experimental data were fitted to the appropriate expressions using Levenberg-

Marquardt least squares procedures with the Micromath Scientist 2.0 software (Micromath 

Scientific Software, St. Louis, MO, USA). Simultaneous non-linear fitting of multiple kinetic 
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curves recorded under different initial conditions (global kinetic analysis) was performed with the 

program package ZiTa38, 39  using the GEAR algorithm.40 

 

 

RESULTS AND DISCUSSION 

Characterization of the aerogel 

The calcined aerogel monolith is transparent with only a hint of opalescence due to Raleigh 

light scattering. The SEM image of a freshly fractured surface is shown in Fig. 1. The aerogel is 

built up from spherical particles of ca. 50 nm in diameter, which is a characteristic structural 

feature of silica aerogels.8, 28 The porosity of the dry aerogel was measured by the N2 adsorption 

technique. The adsorption and desorption isotherms together with the pore size distribution 

calculated by the non-linear DFT method are shown in the Supporting Information. Pores of 15 – 

17 nm in diameter dominate the structure. Their distribution in the logarithmic scale is unimodal. 

 

 

 

Figure 1. SEM micrograph of a fresh fracture surface of the calcined silica aerogel. 

 

 

The transmission IR spectrum of the aerogel is shown in Fig. S1 in the Supporting 

Information. An interesting feature of the spectrum is the presence of a peak at 960 cm–1. This IR 

peak can be assigned to Si–OH stretching,41 and its clear presence indicates that a relatively large 
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amount of terminal Si–OH bonds formed during synthesis, making the aerogel highly 

hydrophilic. 

 

Properties of the aerogel suspension 

Particle size and aggregation. The microscopic image of the fresh suspension is shown in Fig. 

S2A in the Supporting Information. As shown, uniform, homogeneous particles of ca. 5 µm in 

diameter can be generated by this method. However, the suspension tends to age and the fine 

particles aggregate to ca. 100 µm multi-particle blocks (Fig. S2B in the Supporting Information). 

The aggregation is complete in about 2 h, regardless whether the suspension is stirred or not. 

Afterwards, the aged suspension is stable. The size distribution of the aerogel particles during the 

course of aging is shown in Fig. 2. This figure was generated by counting the particles of 

different sizes in the micrographs. The final, stable suspension was used for all the experiments 

described in this paper, unless explicitly stated otherwise. 

 

 

 

Figure 2. Aging of the aerogel suspension. The weight percent composition of the suspension is given by 

the height of the colored columns. The size distribution of the aerogel particles (< 10 µm) and aggregated 

blocks (> 10 µm) are shown in the legend. 

 

 

Porosity. The pore size distribution of the aerogel suspension was studied by NMR 

cryoporometry following the methodology of Petrov and Furó,33 as described in the 
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Experimental. Figure 3A shows the water signal intensity as a function of temperature obtained in 

one melting-freezing cycle. The intensities at the plateau (3.07 × 10−4 arb. unit) and after 

complete melting (10.24 × 10−4 arb. unit) are proportional to the amount of confined water and 

the total amount of water, respectively. Thus, the relative amount of bulk water to confined water 

is about 2.3 in the aerogel slurry. The inflexion points on the experimental curves occur at T0 = 

273.2 K, Tm = 267.4 K and Tf = 264.2 K. The Tm : Tf ratio found in this study is almost exactly 

2 : 3, confirming that the shape of the pores are predominantly spherical in the aerogel. 

According to theoretical considerations, nm = 2 and nf = 3 when the pores are spherical.33 The 

cryoporometric constant for water is 30 K nm.42 The pore size distribution of the aerogel was 

reconstructed both from the melting and the freezing curves by using Eqs. 2a and 2b (nm = 2, nf = 

3), respectively. The individually calculated points were fitted to the log-normal distribution as 

shown in Fig. 3B. Pores of 18 – 20 nm in diameter dominate in the suspended aerogel particles. 

This result is in excellent agreement with the pore size distribution determined by N2 adsorption 

experiments for the dry aerogel, confirming that the average pore size of the aerogel does not 

change when it is suspended in water. 

 

 

 

Figure 3. Melting (red) and freezing (blue) curves of the aerogel suspension measured by NMR 

cryoporometry. The position of the inflection points and the height of the plateaus are indicated in the plot. 

B: Log-normal size distribution of the pores in the aerogel particles. Reconstructed from Fig 3A assuming 

spherical pores (red: from the melting curve, blue: from the freezing curve). 
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Water self-diffusion in the pores. The interconnectivity of the pore network of the suspended 

aerogel was studied by NMR diffusiometry. The intensity decay in a diffusion experiment is 

clearly single exponential at every diffusion time (vide infra). This observation is strengthened by 

the inverse Laplace transformation of the data, as shown in the Supporting Information (Fig. S3). 

The single exponential decay means that the exchange between the confined and bulk water is 

fast on the diffusion timescale, thus only the weighted average of the two diffusion coefficients 

can be determined. In comparison, there are cases when the two diffusion domains, confined and 

bulk, can be observed separately, e.g. in the case of silica xerogels, when the exchange process is 

slow enough.43 The rate of exchange increases with the increasing permeability of pores. Thus, 

our experimental results predict high permeability of pore walls in the aerogel suspension. Fitting 

Eq. 1 to the single exponential decay yields D = (1.9 ± 0.1) × 10–5 cm2 s–1 for the self-diffusion 

coefficient of water in the aerogel suspension. When the exchange of bulk and pore water is fast, 

the experimental diffusion coefficient, D, is the weighted average of the diffusion coefficients in 

the two domains (Eq. 3).44 

 

 

 

where xi is the molar fraction of water and Di is the diffusion coefficient of water in a given 

diffusion domain. The self-diffusion coefficient of water in bulk was measured independently: 

Dbulk = 2.4 × 10–5 cm2 s–1. The relative amounts of bulk and pore water are known from the NMR 

cryoporometric measurements, thus Dpore = 9.4 × 10–6 cm2 s–1 from Eq. 3. The following 

arguments lend further support to the results presented here. On the basis of the Einstein 

equation, the average time needed for a water molecule to move from one end to the other of a 5 

µm aerogel particle through the pores is estimated to be 4.4 ms with Dpore = 9.4 × 10–6 cm2 s–1 

taking into account three dimensional motion. The shortest observation time in our diffusion 

experiments was 16 ms. It follows that one water molecule could travel in, through and out of an 

aerogel particle at least 4 times within this time frame, i.e. a thorough exchange could indeed 

occur between bulk and pore water. The value of Dpore obtained here agrees reasonably well with 

5 × 10–6 cm2 s–1, which was measured in silica xerogels with ca. 5 nm wide, highly 

interconnected pores.43 The similarity of these diffusion coefficients strongly suggests analogies 
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between the two systems and implies that the pores inside the mesoporous aerogel particles are 

also highly interconnected. A further observation in the suspended aerogel is that the measured 

diffusion coefficient (D) is independent of the diffusion time, which was varied by changing  

from 16 ms to 150 ms, while  was kept constant (4 ms). This observation can be interpreted by 

considering that the majority of the water molecules experience the hindrance of the wall of the 

18 – 20 nm wide pores even under the shortest diffusion time. Consequently, the diffusion within 

the pore is somewhat slower than in the bulk. However, fast exchange between the two domains 

still remains feasible and averages the diffusion coefficients. In other words, the diffusion 

coefficient in the pore is always in the “hindered regime” and independent of the diffusion 

time.43, 45 

 

Kinetics of the adsorption of MB on aerogel particles. 

Kinetic experiments were performed at pH 6.9 in 50 mM phosphate buffer (I = 0.10 M) 

following the general protocol described in the Experimental. In the first set of experiments, the 

initial concentration of the aerogel was kept constant in the suspension (340 µg/mL), while the 

initial concentration of MB (cMB) was varied between 2.5 and 36 µM. In the second set of 

experiments the concentration of the aerogel was varied between 17 and 340 µg/mL at constant 

cMB = 24 µM. When MB solution is injected into an aerogel suspension, about 8 s is required for 

complete dispersion of the dye.36 After this initial period, a steady decrease in absorbance was 

detected with biphasic kinetic characteristics. The first step is complete in ca. 80 s and the second 

step takes about 600 s. Representative kinetic curves are shown in Fig. 4. During the adsorption 

experiments the aerogel particles became visibly colored and aggregated to large (0.5 – 1.0 mm) 

blocks, which partly settled from the suspension even under continuous stirring. 
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Figure 4. Kinetic curves detected after injecting MB solutions into aged aerogel suspensions. The initial 

concentration of the aerogel was constant (340 µg/mL), and the initial concentrations of MB were 2.5, 7.4, 

9.9, 14.8, 22.0, 29.1 and 36.1 µM. Kinetic curves are shown from 8 s after injection. Green dots are 

experimental data points. Continuous red lines are the results of global data fitting to the kinetic model 

given in Scheme 1. c(NaH2PO4+Na2HPO4) = 50 mM; pH = 6.93; 25 °C; 1000 rpm stirring. 

 

 

Adsorption isotherm. The aerogel was centrifuged after each kinetic experiment and the 

remaining amount of dissolved MB was quantified by spectrophotometry. These data were 

treated as individual batch adsorption measurements, and the adsorption isotherm was 

constructed accordingly (Fig. 5). The total absorbance change measured during each kinetic 

experiment is also shown in Fig. 5. As expected, the amount of adsorbed MB calculated from the 

absorbance of the centrifuged solution is the same as given by the total absorbance change during 

a kinetic experiment. The experimental isotherm was fitted with the Langmuir model: 

 

MB + S             SMB              (4) 
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where MB is dissolved methylene blue, S represents an unoccupied adsorption site on the aerogel 

and SMB is the adsorbed dye occupying an adsorption site. Kads is the Langmuir equilibrium 

constant. The total concentration of MB is cMB. The total concentration of the aerogel is cgel in 

g/L units. The number of adsorption sites on the aerogel particles is s in mol/g units. Thus, s 

represents the adsorptive capacity of the aerogel. Square brackets denote equilibrium 

concentrations. θS and θSMB represent the surface coverage of free and occupied sites, 

respectively. The absorbance change due to the depletion of dissolved MB is ΔA. The molar 

absorbance of MB at 292 nm is ε = 3.62×104 M–1 cm–1 and the optical path length of the cuvette 

is l = 1.000 cm. The experimental isotherm of Fig. 5 was fitted with Eq. 6 by using the know 

parameters. The fit is excellent, and the following parameters were estimated: Kads = (1.8 ± 0.2) × 

105 M–1, s = 48 ± 5 µmol/g. 
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Figure 5. The experimental isotherm of the adsorption of MB on aerogel particles. The y axis displays the 

absorbance change accompanying the depletion of the dye from solution due to adsorption. Brown dots: 

measured by the batch method. Green dots: determined from the kinetic experiments. Brown line: best fit 

by Eq. 6. c(gel) = 340 µg/mL; c(NaH2PO4+Na2HPO4) = 50 mM; pH = 6.93; 25 °C; 1000 rpm stirring. 

 

 

The validity of Beer’s law. The measured absorbance of the suspension with MB is the 

superposition of two components: the absorbance of dissolved MB and the apparent absorbance 

of the aerogel particles due to light scattering. The additivity of the absorbances of heterogeneous 

and homogeneous components has been tested in several systems earlier. To some extent, the 

results confirm that the absorbances of the components are additive in a limited concentration 

range.18, 19, 46 In Figure 6A, we present the spectrum of a well stirred aerogel suspension, the 

spectrum recorded immediately after the addition of MB to this suspension, the difference 

spectrum of these two and, finally, the spectrum of a pure MB solution of the same concentration. 

The difference spectrum and the spectrum of the pure MB solution are practically identical 

confirming that the apparent absorbance arising from the light scattering of the suspension and 

the absorbance of dissolved MB is additive in the studied wavelength range. The apparent 

absorbance of a series of aerogel suspensions are shown in Fig. 6B. The absorbance vs. cgel plot is 

linear with zero intercept. Figure S4 shows the absorbance of MB measured immediately after 

adding the dye to an aerogel suspension. At this instance, practically no MB is absorbed and the 

concentration of free MB is cMB. Furthermore, the aerogel is not yet altered by adsorption. The 

absorbance vs. cMB plot in Fig. S4 is linear and the intercept gives the absorbance of the original 

suspension. In conclusion, Figs. 6A, 6B and S4 undoubtedly demonstrate that the heterogeneous 
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system of the aerogel and MB obeys Beer’s law without any deviation within the experimental 

errors in the applied concentration and wavelength range. Accordingly, any absorbance change 

observed in this system is solely due to chemical and physical processes associated with specific 

interactions. 

 

 

 

Figure 6. A: a) The spectrum of a well stirred aerogel suspension (331 µg/mL), b) the spectrum recorded 

immediately after the addition of MB to this suspension, c) the difference spectrum of these two, d) the 

spectrum of the pure MB solution (10.2 µM). B: Absorbance versus concentration plot of the aerogel 

suspension. The absorbance is due to the light scattering of the suspension. c(NaH2PO4+Na2HPO4) = 50 

mM; pH = 6.91; 25 °C; 1000 rpm stirring. 

 

 

The excellent linearity seen in Figs. 6 and S4 is probably due to the unique positioning of the 

collimator lenses in the Avantes fiber-optic spectrophotometer.37 In accordance with Beer’s law, 

the absorbance at the instance of mixing MB and the aerogel is given by: 

 

 

where A0, A0
MB and A0

gel are the absorbances of the mixture, dissolved MB and the suspended 

aerogel. The initial (total) concentrations of MB and the aerogel is cMB and cgel, respectively. The 

optical pathlength is l, and εMB and εgel are the molar absorbance of MB and the apparent molar 

absorbance of the aerogel, respectively. 
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Kinetic model. The concentration of dissolved MB decreases in time after MB is added to the 

aerogel suspension due to adsorption. The light scattering of the aerogel also decreases because a 

portion of the particles covered by MB aggregate into large blocks (0.5 – 1 mm), which settle 

down in the suspension, i.e. disappear from the light path. The aggregation of the aerogel 

particles is accelerated by MB, because the cationic dye masks the negative surface charge of the 

particles upon adsorption, thus, reducing the Coulomb distraction between them. 

First, the initial rate (v0) was determined as a function of initial MB (cMB) and aerogel (cgel) 

concentrations (Figs. S5A and S5B in the Supporting Information). The initial rate is proportional 

to the initial concentrations of both components in the well-stirred system. The non-zero intercept 

in the v0 vs. cgel curve is due to the adsorption of MB on the surface of the quartz cuvette, as it 

was confirmed in adsorption experiments in the absence of the aerogel.36 The results confirm that 

the initial adsorption process is first order with respect to both the dye and the adsorbent. These 

findings also indicate that the simplest kinetic model, i.e. the Langmuir model,22, 25, 26 can be 

applied to describe the reversible adsorption of MB on aerogel particles in the whole 

concentration range. 

In order to adequately interpret the observed biphasic kinetics (cf. Fig. 4), the adsorption 

facilitated aggregation of aerogel particles also needs to be taken into account during the 

evaluation of the data. The evidence for the aggregation of aerogel particles following the 

adsorption of MB is the steady decrease of absorbance at wavelengths where MB does not absorb 

(e.g. at 800 nm), as seen in Fig. S6A. For the sake of simplicity, the aggregation is assumed to be 

second order with respect to particles covered by MB. 

The kinetic model incorporating both the adsorption and the aggregation steps is given in 

Scheme 1, together with the rate laws describing the system. Four species are defined in Scheme 

1 which are in equilibrium with each other: MB, aerogel with empty active sites (S), aerogel with 

occupied active sites (SMB) and aggregate. The sites of the aggregate are also occupied. The 

contribution of these species to the measured absorbance signal at time t can be given by 

modifying eq. 7: 

 

 

By substituting the time-dependent concentrations of these species defined in Scheme 1: 
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where At is the measured absorbance, and ε denotes the molar absorbance of each species. 

Integrating the ordinary differential equation system of Scheme 1 gives At as a function of 

reaction time. By using this method, the kinetic curves in Fig. 4 were fitted simultaneously by 

minimizing the difference between the measured and calculated absorbance values. The non-

linear global fitting was performed by the software ZiTa. This software solves the input 

differential equation system numerically using the GEAR algorithm, and iteratively finds the 

optimum values of the rate constants and molar absorbances as parameters of a Levenberg-

Marquard least-squares. The independently measured molar absorbances of MB and the aerogel 

were included with fixed values in the calculations. The fit of the kinetic traces is reasonably 

good at every cMB, as shown in Fig. 4. The estimated rate constants are given in Scheme 1. The 

estimated value of ε*
gel is the same within the experimental error as the independently determined 

εgel, implying that the adsorption of MB on aerogel does not affect the apparent absorbance of 

these particles. This assumption is reasonable if we consider that the pores in the aerogel particles 

are fully interconnected and MB is probably adsorbed mainly within the pores. The estimated 

value of εaggr is zero within the error limits, meaning that the contribution of the aggregates to the 

absorbance is practically zero. This is not unexpected because the effect of light scattering 

(considered as virtual absorbance here) decreases with increasing particle size. In addition, the 

aggregates are removed from the light path via sedimentation. The contribution of this process to 

the kinetics is involved in the k4 step in the model. The adequate fit lends strong support to the 

kinetic scheme postulated here. 

Another model to describe biphasic kinetics could be constructed by assuming that MB 

adsorbs to aerogel particles on multiple different sites,47 e.g. first on the surface and later in the 

pores. This multi-step adsorption of MB, however, can be ruled out because NMR diffusiometry 

showed that small molecules can enter and exit the pores of the aerogel uninhibited on a few 

milliseconds timescale. Thus, adsorption must be uniform throughout a particle during the 

observed adsorption process (80 s). 
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R1) MB + S → SMB   k1 = (1.09 ± 0.03) × 103 M–1 s–1 

R2) SMB → MB + S   k2 = (2.0 ± 0.1) × 10–2 s–1 

R3) 2 SMB → aggregate k3 = (1.4 ± 0.1) × 102 M–1 s–1 

R4) aggregate → 2 SMB  k4 = (3.1 ± 0.1) × 10–3 s–1 

 

 

 

 

 

 

 

 

 

Scheme 1. Kinetic model detailing the adsorption of methylene blue (MB) on aerogel particles. A free 

adsorption site on the aerogel is symbolized by S, and an occupied site by SMB. The first process (R1 and 

R2) is the reversible adsorption of the dye, and the second process (R3 and R4) is the reversible 

aggregation of those aerogel particles which are covered by MB. The time-dependent concentrations of 

dissolved MB, free and covered aerogel particles and aggregates are [MB], [S], [SMB] and [aggr], 

respectively. The initial (total) concentrations of MB and the aerogel are cMB and cgel, respectively. Time-

dependent surface coverage is θ. The adsorptive capacity of the aerogel is s = 48 µmol/g. 

 

 

Results obtained with fresh suspension. The adsorption experiments were performed with fresh 

aerogel suspension as well. As discussed before, the fresh suspension contains homogeneous 

aerogel particles with 5 – 10 µm diameter, while the aged suspension contains mainly larger (20 

– 100 µm) blocks aggregated from the fine particles (Figs. 2, S2A and S2B). All kinetic 
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experiments detailed above were repeated with aerogel suspensions prepared immediately before 

each measurement. Representative kinetic traces are shown in Fig. 7. The absorbance decrease 

due to the aggregation of aerogel particles following the adsorption of MB is shown in Fig. S6B. 

The methodology of data evaluation was exactly the same as detailed before. The adsorptive 

capacity of the fresh suspension was found to be s = 274 ± 46 µmol/g, ca. 5 times the capacity of 

the aged suspension. The bigger capacity is consistent with the fact that aerogel particles do not 

yet form larger blocks (cf. Fig. 2.), and thus the effective specific surface of the aerogel is higher. 

The kinetic model of Scheme 1 fits the measured kinetic curves (cf. Fig.7) very well, the 

estimated rate constants are: kfresh
1 = (9.3 ± 0.4) × 101 M–1 s–1, kfresh

2 = (1.18 ± 0.06) × 10–2 s–1, 

kfresh
3 = (1.38 ± 0.07) × 102 M–1 s–1, kfresh

4 = 0 s–1. Interestingly, rate constant of R1 is lower in the 

freshly prepared solution. An obvious explanation cannot be given for this observation. Perhaps it 

is due to a slower effective mass transfer towards smaller particles drifting faster in a well stirred 

heterogeneous system. It is also interesting to note that the MB facilitated aggregation of the 

aerogel particles in the fresh suspension is practically irreversible, because the fitted rate constant 

for the disaggregation (R4 in Scheme 1) is zero within experimental error. This observation is in 

agreement with the model because aggregation is relatively fast in the fresh suspension and the 

reverse step does not have a significant contribution to the overall process. This is not surprising, 

as it was established before that the small aerogel particles tend to aggregate even in the absence 

of agents masking their surfaces charge (cf. Fig. 2). 
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Figure 7. Kinetic curves detected after injecting MB solutions into fresh aerogel suspensions. The initial 

concentration of the aerogel was constant (341 µg/mL), and the initial concentrations of MB were 9.9, 

14.8, 22.0, 29.1, 36.1 and 45.3 µM. Kinetic curves are shown from 8 s after injection. Green dots are 

experimental data points. Continuous red lines are the results of global data fitting to the kinetic model 

given in Scheme 1. c(NaH2PO4+Na2HPO4) = 50 mM; pH = 6.96; 25 °C; 1000 rpm stirring. 

 

 

CONCLUSIONS 

In this paper, we show the possibility to follow the kinetics of fast adsorption processes 

occurring in suspensions on-line, with high time resolution by using conventional UV-Vis 

spectrophotometry. The kinetics of the adsorption of methylene blue (MB) on silica aerogel 

particles was investigated to demonstrate the basic concept of such studies. The aerogel was 

characterized by porosimetry, scanning electron microscopy, NMR cryoporometry and NMR 

diffusiometry. The pore size distribution was determined. In the kinetic experiments, the 

suspension of aerogel particles was stirred in a standard cuvette placed in a fiber-optic 

photometer, and MB was promptly injected into it. The depletion of the dissolved dye could be 
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followed conveniently with a 1 s time resolution by on-line photometry using a fast CCD 

detector. Biphasic kinetics was observed, the two phases of the overall process were complete in 

about 80 s and 600 s. The time resolution of the applied method made possible to collect 

sufficient amount of experimental data for a sophisticated kinetic analysis. An appropriate kinetic 

model was postulated and the corresponding rate constants were determined. It was confirmed 

that the fast adsorption process follows Langmuir-type kinetics. On the longer timescale, the 

aggregation of the aerogel particles covered by MB take place.  The mechanistic conclusions 

obtained from the kinetic studies are consistent with the characteristic features of the aerogel 

reported in this study. 
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