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A novel method to determine the elastic modulus
of extremely soft materials

Tamás Stirlinga and Miklós Zrı́nyiab

Determination of the elastic moduli of extremely soft materials that may deform under their own weight

is a rather difficult experimental task. A new method has been elaborated by means of which the elastic

modulus of such materials can be determined. This method is generally applicable to all soft materials

with purely neo-Hookean elastic deformation behaviour with elastic moduli lower than 1 kPa. Our novel

method utilises the self-deformation of pendent gel cylinders under gravity. When suspended, the

material at the very top bears the weight of the entire gel cylinder, but that at the bottom carries no

load at all. Due to the non-uniform stress distribution along the gel sample both the stress and the

resulting strain show position dependence. The cross-sectional area of the material is lowest at the top

of the sample and gradually increases towards its bottom. The equilibrium geometry of the pendant gel

is used to evaluate the elastic modulus. Experimental data obtained by the proposed new method were

compared to the results obtained from underwater measurements. The parameters affecting the

measurement uncertainty were studied by a Pareto analysis of a series of adaptive Monte Carlo

simulations. It has been shown that our method provides an easily achievable method to provide an

accurate determination of the elastic modulus of extremely soft matter typically applicable for moduli

below 1 kPa.

Introduction

The elastic modulus of materials is an important characteristic
of their mechanical behaviour. The conventional method of
determination is usually based on unidirectional elongation or
compression. In the case of soft materials it is difficult to
perform reliable measurements. The effect of deformation
under the specimen’s own weight can be decreased by measur-
ing the elastic modulus in a liquid having the same density as
that of the material. However, finding an appropriate liquid,
which has the same density but does not react with the material
and does not alter its mechanical properties, can sometimes be
both challenging and expensive, especially in the case of
complex materials. The other technical difficulty arises from
gripping the end of a soft sample between the specimen clips
during elongation measurements, which results in inhomoge-
neous deformation. At unidirectional compression the barrel
distortion may cause experimental error. Due to these phenom-
ena measurements based on unidirectional stress–strain
dependence are difficult to evaluate. Although alternative
methods do exist, such as the bending cylinder under gravity

by Peng et al.,1 these methods are only feasible for materials
that are still harder than those discussed herein. The main
motivation of the present work was to develop a method which
exploits the deformation of the suspended cylindrical samples
under their own weight. In this work we have studied the
unidirectional stress–strain properties of extremely soft materials,
i.e. materials that have moduli below 1 kPa.

Theoretical background

On the basis of the rubber elasticity theory,2–5 it is possible to
express the elastic free energy density as a function of the
principal deformation ratios lx, ly and lz. These quantities are
defined as the ratio of deformed and undeformed dimensions
corresponding to the directions x, y and z, respectively.

ael ¼ a0 þ
1

2
� G � lx2 þ ly2 þ lz2 � 3

� �
(1)

where ael represents the elastic part of the free energy density, G
means the elastic modulus and a0 stands for the free energy
density of the undeformed gel sample (lx = ly = lz = 1). As the
volume of the sample remains constant during deformation,
the product of the principal deformations equals one.

lx�ly�lz = 1 (2)

It is known that in general the elastic properties of gels cannot
be satisfactorily described by the Gaussian network models.
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Another widely used model for the description of such materials
is the Mooney–Rivlin model. The free energy density function of
an incompressible Mooney–Rivlin material is:

W = C1�(I1 � 3) + C2�(I2 � 3) (3)

where I1 and I2 are the first and second strain invariants:

I1 = lx
2 + ly

2 + lz
2 (4)

I2 = lx
2�ly

2 + lx
2�lz

2 + ly
2�lz

2 (5)

However, there is much experimental evidence showing that if
the swelling degree exceeds a certain value, a virtual idealization
of mechanical properties occur and C2 can practically be considered
as zero.6–8 This means that for highly swollen networks the
Gaussian model can provide an adequate approximation.

The stress–strain dependence of a unidirectional deformed
gel sample may be expressed on the basis of eqn (1) and (2). Let
us consider a cylindrical gel extended along its axis z, so that
the circular symmetry is maintained. Let h0 and h be the initial
(reference) and the deformed length of the cylinder, respectively.
Then the principal deformation ratio along the axis z is lz = h/h0

and lx ¼ ly ¼
ffiffiffiffiffiffiffiffiffi
1=lz

p
for all other directions perpendicular to

the z axis. Therefore eqn (1) can be rewritten as:

a lzð Þ ¼ a0 þ
1

2
� G � lz2 þ 2 � lz�1 � 3

� �
(6)

The stress can be derived from eqn (6) using a standard
method.2–5 The result is called the neo-Hookean law:

sN = G�(lz � lz
�2) (7)

where the nominal stress, sN, is defined as the ratio of the
equilibrium elastic force and the undeformed cross-sectional
area of the sample.

The neo-Hookean law described in eqn (7) is generally
applicable in most cases, but the suspension of a sample made
of an extremely soft material results in more complex geometries
due to the inhomogeneity of stress distribution across the length
of the sample (see Fig. 2). In order to describe the spatial
dependence of the equilibrium cross-sectional area in a suspended
sample we propose a model, which assumes that the sample is
deformed into a series of cylinders or prisms as shown in Fig. 1.

The gel cylinder at the very top bears the largest weight,
therefore this part is the longest and the narrowest. Each
proceeding cylinder bears less weight and is therefore shorter
but wider than the previous. At the bottom, the gel piece carries
no load at all, therefore it undergoes no deformation. In order
to give a better estimation of the elastic modulus it was thought
beneficial to use a more generalized form of the neo-Hookean
law, which utilizes more experimental data. Therefore, we
included not only the elongation, but also the contraction of
a given segment of the gel. The neo-Hookean law can thus be
written in the following form:

sR(n) = G�[le
2(n) � lr

2(n)] (8)

where n denotes the sequential number of each sample segment,
starting from the top of the sample, sR stands for the real stress,

le is the vertical deformation ratio defined as the ratio of the
suspended and unsuspended length of a segment, and lr means
the horizontal deformation ratio of suspended and unsuspended
diameters of a gel segment.

Eqn (8) can be derived from eqn (7) by taking into con-
sideration the conservation of volumes (lx�ly�lz = le�lr

2 = 1) as
well as the general relationship between nominal and real
stresses.

sNðnÞ ¼
FðnÞ
A0
¼ FðnÞ

AðnÞ �
AðnÞ
A0
¼ sRðnÞ �

d2 � p
�
4

d02 � p=4
¼ sRðnÞ � lr2ðnÞ ¼ sRðnÞ �

1

leðnÞ
(9)

where F(n) is the force affecting the cross-sectional area, A(n) is
the cross-sectional area of the n-th part of the suspended gel
piece and A0 means the unsuspended cross-sectional area, d
and d0 are the diameters of the corresponding cross-sections. It
must be mentioned that, in the case of a suspended sample, the
actual geometry between two adjacent marks is not really a
cylinder, but more a conical frustum. In order to facilitate
modelling, each conical frustum was mathematically trans-
formed into a hypothetical cylinder with the same height and
volume as the corresponding conical frustum, and a diameter,
dcalc. This diameter was calculated from the equality of volumes:

dcalc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ d �DþD2

3

s
(10)

where dcalc is the equivalent diameter of the hypothetical
cylinder, and d and D are the measured upper and lower
diameters of the conical frustum, respectively.

In the proposed model – despite the continuous spatial
dependence of stresses and deformations – the real stress
decreases step-by-step from the top of the specimen towards
its bottom, in accordance with the amount of load under each

Fig. 1 Concept of the model. A cylindrical sample is deformed into a
series of cylinders as a result of suspension, each with its own length,
diameter and weight.
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segment. This latter is considered to be constant within each
individual segment.

The only relevant measurable quantity related to the forces
affecting a sample segment is the total weight of the sample.
According to the presented model, each segment is affected by
the total weight of segments below it but not by the segment in
question and not by those above it. Therefore, if the sample is
divided into ‘‘n’’ number of segments, then the first segment is
affected by the weight of the other ‘‘n � 1’’ segments, the
second by the other ‘‘n � 2’’ and so on. The last segment is not
affected by any other and thus remains undeformed. As the
density of the sample was assumed to be constant during
deformation, the weight affecting a certain segment was con-
sidered to be proportional to its volume, and was calculated
accordingly. In order to calculate sR, weights were multiplied by
the gravitational acceleration and were divided by the cross-
sectional area of the segment, which was calculated from the
equivalent diameter of each hypothetical cylinder. As sR refers
to real stresses, and not nominal stresses, the required cross-
sectional areas were those of the suspended sample and those
of the unsuspended.

According to the model, if the position dependent sR, le and
lr data can be determined via measurement of each sample
segment, then plotting sR against [le

2(n) � lr
2(n)] yields a linear

curve, and the slope provides the shear modulus of the sample.
This is only true however as long as G is constant, i.e. for small
to moderate deformations and constant temperature.

Experimental
Sample preparation

For the experiments, gel systems of polyvinyl alcohol (PVA)
swollen to equilibrium in water were used. The samples were
prepared from high molecular weight polyvinyl alcohol
(M = 124 000–186 000 g mol�1, Aldrich) cross-linked with glu-
taraldehyde (Merck) in water under acidic conditions (pH E 2).
The PVA concentration of these hydrogels was 4.5 wt% during
preparation and their crosslink density (CD), which is the
molar ratio of monomer units to crosslinkers in the system,
ranged between 300 and 400. The polymer solution, the cross-
linking agent, and the catalyst (1 : 1 HCl, VWR) were manually
mixed in beakers and were afterwards poured into cylindrical
containers. After the crosslinking reaction took place the gels
were removed from the containers and were put in distilled
water. The water was then removed and changed several times
in order to get rid of remnants of unreacted materials. Before
elastic measurements, the gel cylinders were removed from
water, and while unsuspended, they were marked with paint
throughout their length at quasi-equidistant intervals (approx. 1 cm).

Determination of the elastic modulus by the pendant gel
method

Samples were glued to a cork at their upper ends, afterwards
they were marked at quasi-equidistant intervals and then they
were suspended using a extensometer as shown in Fig. 2. The

extensometer allowed for smooth lifting of the samples which
was very important especially in the case of the softest samples,
as it prevented them from tearing at the top, where internal
stresses were close to the tensile strength of the materials.
Photographs were taken of both the unsuspended and the
suspended samples. All photographs were individually calibrated
using a digital caliper. The picture resolution was initially 10 pix
per mm, but was later increased to 100 pix per mm. The accuracy
of distance measurements was estimated to be �5 pix. During
evaluation of the photographs sample diameters were measured
at each mark along with the distances of adjacent marks.

To give the most precise estimation of the sample weight at
the time of suspension, the weight of the samples was mea-
sured both before and after suspension along with the exact
times of each weight measurement. As the exact time of the
photograph taken in suspension was also recorded, the exact
weight of the sample in suspension could be estimated by
linear interpolation. Although the weight reduction during the
measurement was usually only a few percent (around 3–5% in
most cases, probably due to evaporation), all stresses were
calculated from sample weights, therefore it was thought
beneficial to determine sample weights as accurately as possible.
The accuracy of the analytical balance, provided by its manu-
facturer, was 0.0001 g.

Unidirectional extension measurements

If an extremely soft gel sample is put into an environment
which has a density similar or equal to its own, then the

Fig. 2 A suspended cylindrical sample. Unsuspended length was approx.
100 mm, suspended length was approx. 125 mm. Crosslink density was 350.
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extension due to its own weight will be reduced, and the
modulus of the material can be measured by stress–strain
measurement in an extensometer. For our hydrogel samples
we used distilled water. Such an experiment is shown in Fig. 3.

Due to the extreme softness of our materials, it was impossible
to keep the ends of the samples within the specimen clips of the
extensometer. Therefore, samples were glued to corks which were
cut at their opposite sides to a proper size, and it was the corks
which were gripped by the specimen clips of the extensometer.
The instrument used in these measurements was an Instron 5942
extensometer (0.5 kN capacity, 726 mm vertical test space).

Results and discussion
Determination of the elastic modulus by the pendant gel
method

In order to implement the concept presented in Fig. 1 and
formulated by eqn (8), le, lr, and sR must be determined
properly for all the n segments of the sample.

The distances between two adjacent marks and the diameters
at each mark were measured for all samples and the equivalent
diameters were calculated by eqn (10) for each sample segment,
both suspended and unsuspended. le is the ratio of suspended
and unsuspended distances, and lr is the ratio of the suspended
and unsuspended equivalent diameters.

Experimental data of le and lr values of succeeding sample
segments are presented in Fig. 4–6 for three hydrogels with
three different crosslink densities, 300, 350 and 400, respec-
tively. It can be seen that while the deformation of most

segments changes according to the model, i.e. each vertical
deformation ratio is lower and each horizontal deformation
ratio is higher than that of the preceding sample, those of the
first two and the last sample segments are different from which
was anticipated and cannot be justified by the proposed model.
Deviations at the top of the samples are probably due to the
gluing required to be able to suspend the samples, while those
at the very bottom are due to the difficulty in measuring the
geometries of complex shapes and the priority of properly
estimating the volume of the last sample segment (which is
required for all stress calculations) compared with the precise
measurement of the elongation and radial contraction of an
individual sample segment. Although these segments were also
involved in all calculations, they produced outliers in most
cases, and were omitted from the plots which were used to
determine the modulus.

Experimental data were analysed on the basis of eqn (8). As
the result of an ordinary least squares regression is correct only
if the underlying assumptions are true, and is sensitive to the
violation of its assumptions (e.g. homoscedasticity, independency

Fig. 3 Stress–strain measurements of a hydrogel in water.

Fig. 4 Elongation and radial contraction of each sample segment in a
sample (CD_300_2). n is the sequential number of each sample segment
from the top to the bottom of the sample.

Fig. 5 Elongation and radial contraction of each sample segment in a
sample (CD_350_2). n is the sequential number of each sample segment
from the top to the bottom of the sample.
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and normal distribution of errors) and especially sensitive to
outliers, it was thought more convenient to apply a robust linear
regression model to evaluate experimental results.

To visualize the goodness of fit, the modulus calculated as
the slope of this linear curve was used to simulate the location
of each mark on the suspended sample from that of the

unsuspended, by applying the neo-Hookean law to each sample
segment. The results are shown in Fig. 8.

As can be seen in Fig. 8 the linear regression did not produce
a good fit, and it seems like the real modulus of the sample is
lower than the estimate. The difference was thought to be
associated with the sensitivity of the model to measurement
uncertainties and the general applicability of the linear model
to this problem.

There are various reasons for the low precision of the model.
Following a bottom-up approach, the first thing to consider is
the uncertainty associated with measurement results. The
theory and calculations presented herein are in accordance
with the relevant international standards.9,10 Measurements in
general have imperfections that give rise to errors. These errors
can be systematic or random in nature. Systematic errors or
‘biases’ are errors which have a certain quantifiable effect on all
measurement results. If a recognized effect on a measurement
result can be quantified and proves to be significant in size
relative to the required accuracy of the measurement, a correction
can be applied to compensate for the effect. Random errors on the
other hand are unpredictable and arise from stochastic processes
which give rise to variations in repeated observations of the
measurand. If a general quantity ‘‘F’’ to be determined is a
function of parameters ‘‘x1’’, ‘‘x2’’,. . ., ‘‘xn’’, then the uncertainty
of ‘‘F’’ could be estimated by a Pythagorean addition:

sF 2 ¼ dF
dx1

� �2

�sx1 2 þ
dF
dx2

� �2

�sx2 2 þ . . .þ dF
dxn

� �2

�sxn 2 (11)

In our experiments the quantity ‘‘F’’ to be studied is the modulus
and its uncertainty arises from the uncertainty of weight and
distance measurements. According to the GUM,9,10 the uncer-
tainty of a weight measurement can be approximated by uniform
distribution from the accuracy of the analytical balance, if it is
provided by the manufacturer. Similarly, the uncertainty of dis-
tances measured by the caliper can also be estimated by uniform
distribution from the accuracy provided by its manufacturer.
Regarding the photographs it was assumed that all distances
can be measured with the same �5 pix accuracy, and the

Fig. 6 Elongation and radial contraction of each sample segment in a
sample (CD_400_1). n is the sequential number of each sample segment
from the top to the bottom of the sample.

Fig. 7 Elongation, radial contraction and stress–strain relationship of an
approx. 100 mm long sample (CD = 350). Shear modulus was calculated
according to the described model.

Fig. 8 Location of each mark on the unsuspended and suspended
sample. Measured and simulated results.
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uncertainty of a distance measurement can be approximated by
triangular distribution, which is the distribution of the sum of
two uniformly distributed variables. The various sources of
uncertainties and their estimated values are summarized in
Table 1.

According to eqn (11) and Table 1, the uncertainty of a photo-
graph calibration can be estimated by the following equations:

c ¼ l ðpixÞ
l ðmmÞ (12)

and

sc2 ¼
dc

dl ðpixÞ

� �2

�slðpixÞ2 þ
dc

dl ðmmÞ

� �2

�slðmmÞ
2

¼ 1

l ðmmÞ2 � c2 � slðmmÞ
2 þ slðpixÞ

2
� � (13)

where c is the photograph resolution or the calibration ratio, l (pix)
is the calibration distance measured in pix and l (mm) is the same
distance measured by the caliper in mm. The same way the
uncertainty of a distance measurement can be estimated from
the following equations:

l ðmmÞ ¼ l ðpixÞ
c

(14)

and

slðmmÞ
2 ¼ dl ðmmÞ

dl ðpixÞ

� �2

�slðpixÞ2 þ
dl ðmmÞ

dc

� �2

�sc2

¼ 1

c2
� l ðmmÞ2 � sc2 þ slðpixÞ

2
� � (15)

where l (pix) and l (mm) are not calibration distances anymore, but
the actual distances on the sample to be measured.

Based on these considerations the adjustable parameters
which contribute to the uncertainty of the modulus are the
initial geometrical parameters of the sample (length, diameter
and the number of sample segments) and the parameters of the
calibration (calibration distance and calibration ratio). By
assigning values to these quantities one can calculate an
estimation of the modulus, and by altering these values one
can screen for those effects which contribute the most to the
estimated uncertainty.

Although the above equations provided proof for the para-
meters which come into consideration, the uncertainty of the
modulus cannot be expressed in such a simple form but only by
a numerical model, therefore the propagation of its uncertainty
cannot be easily studied by the same method.

The general idea of a Monte Carlo propagation of uncer-
tainty calculation is the repeated sampling from the probability
distributions of each parameter and the calculation of the desired
quantity from each sample taken. The result of the simulation
will be a histogram of the desired quantity. The parameters
altered in our simulations are presented in Table 2.

For each set of parameters, suspended geometries were
calculated from the unsuspended geometries by the neo-
Hookean law, assuming a fixed 500 Pa modulus for the sample.
This represented a situation when everything was measured
precisely and there was no uncertainty associated with
measurement results. Afterwards, random samples were taken
around each calculated data assuming a given level of uncer-
tainty (Table 1), and from the random samples the modulus
was calculated by robust linear regression. The procedure
involved an increasing number of Monte Carlo trials (adaptive
Monte Carlo method), until the result of interest i.e. the
standard deviation of the modulus has been stabilised, which
usually required trials in the magnitude of 105. Based on
Table 2 a 2n full factorial simulation experiment was designed,
and the effect of each parameter on the 0.95 coverage interval of
the modulus was investigated. The effects are summarized in a
Pareto chart in Fig. 9.

Based on Fig. 9 the parameters responsible for the majority of
uncertainties are the photograph resolution, or calibration ratio c,
the calibration distance lc, and their interaction lc:c. A response
surface was constructed to illustrate these effects (Fig. 10).

The response surface indicates that by improving the calibration
i.e. increasing the resolution of the photographs and the calibration
distance, the precision of the model can be significantly increased.
This is shown in Fig. 11 and 12.

Unidirectional extension measurements

During the measurements the rod and the clips of the extens-
ometer were also partially immersed in distilled water. These
parts were made of materials that had different density than
the density of the distilled water in which they were immersed,

Table 1 Sources of uncertainty in our measurements

Measurand Symbol Accuracy (�) Distribution Uncertainty

Weight sm
2 0.0001 (g) Uniform

sm2 ¼ 0:00012

3
ðgÞ

Distance (caliper) sl (mm)
2 0.02 (mm) Uniform

slðmmÞ
2 ¼ 0:022

3
ðmmÞ

Distance (photograph) sl (pix)
2 5 (pix) Triangular

slðpixÞ2 ¼
52

6
ðpixÞ

Table 2 Parameters altered during Monte Carlo trials

Symbol Lower (�) Higher (+) Dimension

Calibration distance lc 10 50 mm
Calibration ratio c 10 100 pix per mm
Initial sample length h0 50 100 mm
Initial sample diameter d0 10 20 mm
Number of sample segments N 5 10 —

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
6 

M
ar

ch
 2

01
5.

 D
ow

nl
oa

de
d 

by
 B

ud
ap

es
t U

ni
ve

rs
ity

 o
f 

T
ec

hn
ol

og
y 

an
d 

E
co

no
m

ic
s 

on
 1

0/
09

/2
01

5 
09

:1
8:

55
. 

View Article Online

http://dx.doi.org/10.1039/c4sm02325k


4186 | Soft Matter, 2015, 11, 4180--4188 This journal is©The Royal Society of Chemistry 2015

and were gradually removed from water during the course
of the measurements, which resulted in time dependent
buoyancy. Based on two consecutive measurements for each
sample, the time dependent buoyancy was quantified and
taken into correction.

The curve labelled ‘‘Sample’’ shows the classical unidirectional
stress–strain relationship of a sample under distilled water. After
the measurement, which lasted until 40 mm extension, the
distilled water was removed from the container, the sample was
cut off from the lower cork, leaving it hanging from the upper
cork, then the distilled water was returned to the container, and
the sample was returned to its initial position. Afterwards, the
measurement was performed again, resulting in the curve labelled
‘‘Blind’’. The position of the dashed vertical line indicates a state
of deformation where le = 1. Data points to the right of the dashed
line were omitted from further analysis. Results of the second
measurement were then subtracted from those of the first, and
the modulus was estimated as the slope of the resulting curve,
using a cross-sectional area which was calculated from the average
of the measured unsuspended diameters of the sample (Fig. 13).

Improved evaluation of experimental data

Fig. 7 and 11 show a linearization of the neo-Hookean law
where the slope of the fitted linear curve is an estimation of the

shear modulus itself. However, due to the fact that the ordinate
of the plot is derived from two weight measurements and
a distance measurement, and the abscissa is derived from
the second power of a series of individual distance measure-
ments, it had to be verified that the assumptions of
linear regression e.g., weak exogeneity (negligible variance
of predictor variables), homoscedasticity (constant variance
of the response variable), or the independence of errors

Fig. 9 Pareto chart of effects based on a 2n full factorial experimental
design of adaptive Monte Carlo simulations.

Fig. 10 Response surface of the effects of photograph resolution and the
calibration distance on the 0.95 coverage interval of the modulus.

Fig. 11 Elongation, radial contraction and stress–strain relationship of an
approx. 100 mm long sample (CD E 350). Resolution was increased from
10 pix per mm to 100 pix per mm.

Fig. 12 Location of each mark on the unsuspended and suspended
sample. Measured and simulated results.
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are all met. In this process small sample Monte Carlo simula-
tions (50 samplings) were performed for a given sample
(G = 500 Pa, h0 = 100 mm, d0 = 20 mm, N = 10) under two
different conditions (worst case:0 c = 10 mm per pix,
l (mm) = 10 mm; best case: c = 100 mm per pix, l (mm) =
50 mm). The results are presented in Fig. 14 and 15. From the
two figures it is obvious that imprecise calibration produces
strong exogeneity which damages homoscedasticity, resulting
in potentially big errors in the calculated modulus and thus
bad correlations between measured and simulated sample
geometries.

The figures indicate that if one is capable of producing high
resolution photographs, then linear regression is applicable,
but otherwise other methods are required to determine the
most probable modulus of the sample.

Non-linear regression is a convenient alternative as it
takes the unsuspended distances as its input and applies
the neo-Hookean law to the unsuspended distances in a
certain modulus range, and finds the modulus, which pro-
duces the best fit. The result of such an approximation

for the sample previously presented in Fig. 8 is presented
in Fig. 16. The figure shows that the actual modulus of
the sample was lower than the one calculated by linear
regression.

Fig. 13 Unidirectional extension of a hydrogel sample under distilled
water (CD_400_1).

Fig. 14 Simulated measurements (G = 500 Pa, c = 10 pix per mm,
l (mm) = 10 mm, h0 = 100 mm, d0 = 20 mm, N = 10).

Fig. 15 Simulated measurements (G = 500 Pa, c = 100 pix per mm,
l (mm) = 50 mm, h0 = 100 mm, d0 = 20 mm, N = 10).

Fig. 16 Location of each mark on the unsuspended and suspended
sample. Measurement and simulations. Simulations were run using moduli
from both linear and non-linear approximations.

Table 3 Shear moduli estimated by robust linear and non-linear regres-
sion. RSS is the residual sum of squares between measured and simulated
distances for both linear and nonlinear regression. Conv. is the shear
modulus estimated from the results of conventional unidirectional
stress–strain measurements performed in distilled water

GR lin regr
(Pa)

RSS
(mm2)

Gnonlin regr
(Pa)

RSS
(mm2)

Conv.
(Pa)

CD300_1 749.2 82.313 1006.8 2.7240 863.8
CD300_2 779.2 61.85 862.6 6.43 749.7
CD300_3 621.6 48.50 680 8.03 614.6
CD350_1 388.4 16.889 417.1 3.4993 462.1
CD350_2 438.4 294.93 496.2 33.11 565.8
CD350_3 439.6 938.75 581.6 17.22 616.6
CD400_1 177.4 346.50 195.5 29.648 173.3
CD400_2 362.4 171.86 365.5 169.36 343.9
CD400_3 313.4 86.37 314.6 86.01 334.1
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Comparison with conventional unidirectional extension
measurements

It must be stressed that the ‘‘conventional’’ method is not
conventional at all, due to its various limitations (e.g. difficul-
ties in choosing a proper medium) described earlier. In our
case however, distilled water proved to be a proper medium,
therefore if the proposed method provided good results, the
calculated moduli needed to be comparable with those deter-
mined by the conventional method. Results are presented in
Table 3.

Table 3 shows that the results of the proposed new method
and the so called ‘‘conventional’’ method differs by no more
than approx. 20% which is acceptable, given the limitations of
the conventional method.

Conclusions

In our work we have developed a new method to determine the
modulus of extremely soft materials from their deformation
under their own weight. The method is generally applicable to
all kinds of soft materials irrespective of material composition
with the restrictions that a cylindrical sample must be prepared
from them and their deformation must be purely elastic and
lack any form of plasticity. Test results with polyvinyl alcohol
hydrogels show good correlation with those from underwater
measurements which provide experimental proof for the
applicability of the new method. The most important para-
meters affecting measurement uncertainty are the resolution of
the photographs taken and the distances used for the calibra-
tion. The higher the resolution of the photograph and the
calibration distances, the higher moduli the method can accu-
rately determine, but for most commonly available imaging
equipment, the measurement uncertainty due to pixel density
constraints restricts the use of the method to moduli below
1000 Pa. The accuracy of modulus determination can be further

increased by substituting non-linear regression for linear
regression.
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