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Abstract 1 

The classical Holling type II functional response, describing the per capita predation as function 2 

of prey density, was modified by Beddington and DeAngelis to include interference of predators 3 

that increases with predator density and decreases the number of killed prey. In the present paper 4 

we further generalize the Beddington–DeAngelis functional response, considering that all 5 

predator activities (searching and handling prey, fight and recovery) have time duration, the 6 

probabilities of predator activities depend on the encounter probabilities, and hence on  the prey 7 

and predator abundance, too. Under these conditions, the aim of the study is to introduce a 8 

functional response for fighting predator and analyse the corresponding dynamics, when 9 

predator-predator-prey encounters also occur. 10 

From this general approach, the Holling type functional responses can be also obtained as 11 

particular cases. In terms of the activity distribution, we give biologically interpretable sufficient 12 

conditions for stable coexistence. We consider two-individual (predator-prey) and three-13 

individual (predator-predator-prey) encounters. In the three-individual encounter model there is a 14 

relatively higher fighting rate and a lower killing rate. Using numerical simulation, we 15 

surprisingly found that when the intrinsic prey growth rate and the conversion rate are small 16 

enough, the equilibrium predator abundance is higher in the three-individual encounter case. The 17 

above means that, when the equilibrium abundance of the predator is small, coexistence appears 18 

first in the three-individual encounter model. 19 

Key-words: activity distribution, Beddington-DeAngelis functional response, fighting between 20 

predators, population dynamics, prey-predator system  21 

22 
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1. Introduction 1 

In biological systems the interactions between individuals take time. The functional response 2 

(see e.g. Holling 1959) takes into account the handling time decreasing the number of active 3 

hunting predators. Furthermore, the abundance-dependent and time-consuming intra-specific 4 

interaction may decrease the number of hunting predators. The idea that predator abundance has 5 

an effect on the functional response is well-studied in ecology (e.g. Abrams 1994; Akcakaya et 6 

al. 1995; Abrams & Ginzburg 2000). From theoretical point of view, Beddington (1975) and 7 

DeAngelis et al. (1975) independently introduced a functional response that accounts for the 8 

predators’ interference.  9 

From experimental point of view, while e.g. Fussman et al. (2005) showed that consumer has an 10 

effect on the functional response only at extraordinary high abundances, e.g. Mech (2007) found 11 

that the best fit functional response includes predator abundance dependence.  12 

In a ‘paper wasp - shield beetle’ system, e.g. Schenk et al. (2005) pointed out that the functional 13 

response depended on both prey and predator abundances, and both direct (e.g. aggression) and 14 

indirect (depletion of prey) interference mechanisms were at work in their system.  15 

In this paper we will consider a one prey − one predator system: in the prey population there is 16 

an indirect competition (e.g. depletion of recourses) and between the predators there is a direct 17 

interaction, i.e. when two predators encounter, they fight with each other. In this case fight does 18 

not only take time, but we can also assume that during the fighting occasional injury may 19 

happen, and during recovery the predators stop all other activities, including hunting (e.g. Witz 20 

1990). Furthermore, fighting also decreases the biomass of the predators (e.g. Riechert 1988). 21 
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Our aim is to develop a model derivation method in which two ecological phenomena can be 1 

dealt with at the same time: intra-specific competition between predators (e.g. Chase et al. 2002), 2 

and time duration of predator activities. If the predator can do only one activity at a time, the 3 

interference between predators and the predation process are not independent, or putting it more 4 

explicitly: Holling (1959) emphasized the importance of time constraint in predation; 5 

Beddington (1975) and DeAngelis et al. (1975) pointed out that the predators’ interference 6 

decreases the functional response. Now we are interested in the effect of the time constraint on 7 

the competition coefficient between predators, and on the functional response simultaneously, 8 

when predator competition and predation are not independent.  9 

We will start from the activity distribution of a predator. We assume that probabilities of the 10 

predator activities depend on the abundances of prey and predator populations, since the 11 

encounter probabilities do. From the activity distribution of a predator, the functional response 12 

and the number of fights per time unit can be calculated. The main point is that fighting between 13 

predators and hunting can not be handled separately, since they don’t occur at the same time.  14 

In Section 2 we introduce a general model for the considered situation. In Section 3, a particular 15 

class of the general model is studied: two-individual encounter models are considered where the 16 

focal individual cannot encounter with a prey and other predator at a time, in the same perception 17 

range. This is the consequence of the assumption that prey do not aggregate and are randomly 18 

distributed between perception ranges, and  we can neglect the case when there are one prey and 19 

another predator in one perception range at the same time. The well-known Beddington-20 

DeAngelis model is obtained as a particular case of this class.  In Section 4 the case is considered 21 

when the predator abundance is large enough, so the assumption that the focal predator does not 22 
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encounter with a prey and a predator at the same time, is not acceptable. For simplicity, the 1 

independence of the prey and predator distributions is supposed. It is shown that these three-2 

individual encounter models can lead to qualitatively different dynamic behaviour. In Section 5, 3 

simulation results of two- and three-individual encounter models are compared. Section 6 is 4 

dedicated to the discussion of the results. Finally, in Appendices 1-3, conditions for the 5 

coexistence and asymptotic Lyapunov stability are obtained.  6 

 7 

2. Functional response based on general predator activity distribution, the corresponding 8 

population dynamics and stable coexistence 9 

To derive the functional response we will consider the following class of the predation processes. 10 

Predator is only locally omniscient, which has two consequences: First, the predator can observe 11 

a prey and/or a conspecific only in a given “small” area called “perception range”. Second, 12 

before arriving, predator has no information on a given perception range, thus it checks the 13 

perception ranges randomly. The perception ranges are classified by their contents, they may be 14 

empty, contain a prey and/or a conspecific. The distribution of different perception ranges 15 

depends on the abundance of prey and predator. We will concentrate on a short time period T 16 

(for instance one day), while the change in abundances can be neglected. In other words, during 17 

time T the predators can not kill too many prey and/or other predators. 18 

In summary, during the visiting process, the encounter probabilities depend on the prey and 19 

predator abundances; these encounter probabilities do not change during the time period T; focal 20 
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predator finds a random series of different kind of perception ranges and all following encounter 1 

events are independent.  2 

According to encounter possibilities, assume a predator has four activities. Activity 1: the 3 

predator encounters no prey and no predator. Activity 2: the predator encounters and fights with 4 

another predator (this event also includes recovery from injuries). (In a more structured model it 5 

might be included that, in case of different sizes, the smaller conspecific predator escapes.) 6 

Activity 3: the predator finds and attacks but misses a prey. Activity 4: the predator finds, 7 

attacks, kills and handles a prey. (E.g. in case of Arthropods, this event also includes capture, 8 

handling and ingestion of prey, but also the time after cleaning mouthparts, antennae and legs.) A 9 

natural assumption is that these activities rule out each other.  10 

Clearly, these activities take time and have either energy (or equivalently biomass) intake, or 11 

energy loss. An observer can find the following activity distribution at fixed population 12 

abundances:  13 

In Table 1 below, iT  is the average time duration of the i-th activity, ST  the searching time; FT  14 

the average “time cost” of fighting with a predator; MT  the attack time; HT  the digestion time. 15 

Let x be the abundance of prey and y that of predator,  yxpi ,  denotes the probability of i-th 16 

activity. E.g.  yxp ,1  denotes the probability that the predator is searching in an empty 17 

perception range. We note that, these probabilities, apart from the abundances, may also depend 18 

on the spatial distribution of prey and predator (e.g. Kratina, Vos & Anholt 2007; Nachman, 19 

2006); on habitat complexity (e.g. Hillebrand & Cardinale 2004; Grabowski 2004) and on the 20 

behaviour of predator and/or prey.  21 
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Finally, ic0  denotes the net energy intake from the i-th activity: 1c  is the cost of searching,  1 

2c  the average cost of fighting activity (cost of searching plus cost of fighting), 3c  the cost of the  2 

activity of missed attack (cost of searching plus cost of attack), and 4c  the value of activity of 3 

successful predation (the value of prey minus the cost of searching and cost of attack).  4 

 5 

Table 1 6 

Now, we use the basic approach of Holling’s functional response derivation (Holling 1959), 7 

namely we will calculate the average interaction rates per unit time, during a fix time duration T. 8 

We mention that optimal forager theory postulates that the forager maximizes its average net 9 

energy intake per unit time (Stephens & Krebs 1986; Turelli et al. 1982). Furthermore, to build 10 

up a population dynamics, we also need the time average interaction rates.  11 

Now we derive the average number of predator-prey and predator-predator interactions, per unit 12 

time. These interaction rates depend on the abundances of the considered species and on the time 13 

duration of activities. We assume that during the considered time period T, the abundance of 14 

prey and that of predator do not change much. In other words, the activity distributions are 15 

constant functions of x and y within T. These assumptions allow us to use the same activity 16 

distributions during time period T, see Garay & Móri (2010). We have proved that in unit time, 17 

the expected number of i-th activities can be estimated by 
 
 yxpT

yxp

j

jj

i

,

,


. The intuitive 18 

background of this estimation is the following: During time T , we take independent samples 19 

from the given activity distribution. Since the activity distribution does not change during T, the 20 
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average time duration of an activity is  yxpT
j

jj , . Thus during T, the average number of 1 

activity events is 
 yxpT

T

j

jj ,
. Based on independent repetitions,  yxpi ,  part of the average 2 

number of activity events is the number of i-th activities. Thus during unit time, the expected 3 

number of i-th activities is estimated by 
 
 yxpT

yxp

j

jj

i

,

,


. In particular, the functional response is 4 

given by 
 
 yxpT

yxp

j

jj ,

,4


, and the average number of fights during unit time is 

 
 yxpT

yxp

j

jj ,

,2


. 5 

Now substituting the above interaction rates into the standard ecological model (e.g. Arditi et al. 6 

2004), yields the following canonical population dynamics:  7 
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where r1 is the intrinsic growth rate of prey, a/r1 the carrying capacity for the prey, and r2 the 9 

intrinsic mortality rate of predator. The novelty of dynamics (1) is that in each interaction rate it 10 

takes account of the time durations of all considered predator activities. For instance, the fight 11 

between predators is a kind of competition. In lots of dynamical models (see e.g. Haque 2011, 12 

and the references in there) the competition coefficient does not depend on the time constraint in 13 

the predation process. However, if the predator can do only one activity at a time and each 14 

interaction has fixed average time duration, then the functional response and the competition 15 



 9 

coefficient are not independent, since the time constraints connect them, as we can see in 1 

dynamics (1).  2 

 3 

Consistence of the model 4 

In dynamic models of ecology, a basic requirement is that the positive and nonnegative orthants 5 

are invariant and all trajectories are bounded. Each trajectory of prey is nonnegative, if 6 

  0,04 yp , which always holds, since if there is no prey, then the predator cannot encounter 7 

with a prey. Furthermore, each prey trajectory is bounded, since for 
a

r
x 1 , the prey density is 8 

strictly decreasing, independently of the predator density. Moreover, each predator trajectory is 9 

also nonnegative. In Appendix 1A), we have proved that, if the functional response tends to zero 10 

for predator density tending to infinity, then dynamics (1) is bounded.  This condition seems 11 

natural, since when the predator density is large enough compared to the prey density, then the 12 

predator always fight. For details see Appendix 1.A).  13 

 14 

Coexistence 15 

Coexistence takes place if the prey can survive, and the predator can establish a population. 16 

Firstly, the prey does not die out, if r2 is greater than the intake by the functional response when 17 

prey density is near zero. This condition seems natural, since it means that the predator cannot 18 

survive when the prey density is small enough. Secondly, as for the predator, coexistence is 19 

guaranteed by the following minimal condition: consider a stable prey population without 20 

predator, then the prey density is r1/a. If a predator arrives in this prey population, and the former 21 

can establish a population, then coexistence occurs (for details see Appendix 1). Thirdly, if 22 

dynamics (1) is bounded and the two species coexist, then there is always an equilibrium or a 23 
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periodic orbit of the dynamics (1). Fourthly, we note that since in dynamics (1), the probabilities 1 

of different activities are arbitrary continuous functions, all kind of coexistence may happen: 2 

stable equilibrium or stable cycle (for details see Appendix 1). 3 

 4 

Stable equilibrium coexistence 5 

In Appendix 2, using the linearization method of stability theory, we show that the fulfilment of 6 

the following conditions (2)-(5) imply locally stable coexistence (i.e. local asymptotic stability of 7 

the interior equilibrium). 8 

(2) At the equilibrium, the growth rate of prey resulting from the carrying capacity is less than 9 

the decay rate of the prey abundance by the predation pressure (i.e. less than the marginal rate of 10 

increase of the functional response with respect to the prey abundance).  11 

(3) At the equilibrium the relative rate of increase of the net biomass intake with respect to the 12 

prey abundance is smaller than the relative rate of increase of the average time duration of an 13 

activity with respect to the predator abundance. 14 

(4) At the equilibrium, the relative rate of decrease of the functional response with respect to the 15 

predator abundance should be large enough. The smaller the equilibrium predator abundance is, 16 

the higher this threshold is. 17 

(5) At the equilibrium, the relative rate of increase of the net biomass intake with respect to               18 

the prey abundance is greater than the relative rate of increase of the average time duration of an 19 

activity with respect to the predator abundance. 20 

 21 

In Appendix 3 we show that an appropriately defined dissipativity is a general sufficient 22 

condition for globally stable coexistence in dynamics (1) (i.e. for global asymptotic stability of 23 
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an interior equilibrium). To this end, we adapted the notion of dissipativity of a Lotka-Volterra 1 

system to our case. The term “dissipative” here is based on the fact that the interaction decreases 2 

the biomass of the system, which is a generalization of the well-known notion of dissipativity in 3 

Lotka-Volterra systems. We note that, in our case, in each interaction the biomass strictly 4 

decreases: The competition between prey and the interaction between predators has negative 5 

effect on the biomass. Furthermore, during predation the biomass of killed prey is greater than 6 

the increase in predator biomass, since there is a cost of attack and digestion as well. So, from 7 

biological view, we think system (1) is usually dissipative, but we can not proof this conjecture.  8 

The consequences of the above activity distribution based modelling are illustrated with the 9 

following cases. 10 

 11 

3. Two-individual encounter model  12 

Now we consider a probabilistic model of the simplest case, when only two-individual 13 

encounters are possible, in other words, the focal predator cannot encounter with a prey and 14 

another predator at a time in the same perception range. This is implied by the assumption that 15 

prey do not aggregate and are randomly distributed between perception ranges, i.e. there is only 16 

at most one prey in each perception range. Furthermore, the abundances of prey and predator are 17 

so small that we can neglect the case when there are one prey and another predator in one 18 

perception range at the same time. 19 

Suppose that the prey and predator distribution is well mixed in the home range of the predator, 20 

in a homogeneous field of H area units where the prey and predator abundances are x and y, 21 
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respectively. Denote the area of a perception range of an individual predator by h, so in the 1 

considered field there are 
h

H
 perception ranges. Based on the above assumptions, x and y are the 2 

numbers of perception ranges where there is a solitary prey and a solitary predator, respectively. 3 

Furthermore, there are yx
h

H
  empty perception ranges. Since interactions occur only when 4 

an individual encounters another individual, first we have to calculate the probabilities of 5 

different encounter events.  6 

In order to obtain encounter probabilities between zero and one, we have to assume that 7 

yx
h

H
 . Now suppose that a focal predator individual encounters neither prey nor other 8 

predator with probability   y
H

h
x

H

h
d 10,0 , encounters a prey with probability 9 

  x
H

h
Xd 0, , and encounters another predator with probability   y

H

h
Yd ,0 . For the sake of 10 

simplicity, here we assume that y≈y-1. Similar assumption is widely used in random processes. 11 

Now, we have to define what will happen in different encounters. Let us assume that when two 12 

predators meet then they always fight. (Here we could suppose that the probability of fight is less 13 

then one, but in this case we would have an extra activity: two predators encounter without 14 

fight). Furthermore, assume that the predator is locally omniscient, i.e. in its perception range the 15 

predator can surely observe its prey and the other predator as well, but it has no information on 16 

the other perception ranges. Predator can kill its prey with probability k . 17 

Based on the above assumption we have the following activity distribution: No interaction 18 

happens with probability        yxpyxpyxpyxp ,,,1, 4321  , two predators fight with 19 
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probability   y
H

h
yxp ,2 , predator misses a prey with probability     x

H

h
kyxp  1,3 , and 1 

kills it with probability   x
H

h
kyxp ,4 . Under the present assumptions we get the activity 2 

distribution given in Table 2.  3 

Table 2 4 

Now, using this actual activity distribution, we get a concrete version of population dynamics 5 

(1): 6 

 
  


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
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

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xkTTyTT
h

H

ky
axrxx

HMFS

1
 , 7 

 

  
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
















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


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






xkTTyTT
h

H

xkcycyx
h

H
ckxc

ryy

HMFS

13214

2
 . 8 
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Beddington-DeAngelis- functional response. Let us now ignore the cost of searching and attack, 11 

furthermore suppose that predators fight. Moreover, assume that the predator is always 12 

successful, i.e. 1k , and attack does not need time, 0MT . In this particular case we obtain the 13 

activity distribution given in Table 3.  14 

Table 3 15 

 16 
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Hence we get back the Beddington-DeAngelis functional response, since the average number of 1 

prey killed per time unit is 

xTyTT
h

H

x

HFS 

. We note that our functional response derivation 2 

method also gives back the classical Holling functional responses (see Garay and Móri 2011) as 3 

particular cases. Dynamics (1) now reads  4 

 5 
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Here we strictly follow the steps of investigation of the general dynamics (1), but now we have a 8 

concrete activity distribution.  9 

Firstly, each solution is bounded if for all [,0] 1

a

r
x , there exists  

xy , such that for all 10 

xyy   we have 0y , which obviously holds with 
h

H

Trc

Tr
x

Trc

Trc
y

F

S

F

H
x

22

2

22

24







 . Therefore 11 

the above dynamics is bounded.  12 

Secondly, the predator can establish a population, if near equilibrium )0,( 1

a

r
 of the above 13 

dynamics, 0y  holds, which is the case if 14 

1

14
2

rTT
h

H
a

rc
r

HS 

 ,   









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


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
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Thirdly, there exists an interior equilibrium:  1 

A

ACBB
x

2
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 , 2 
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
  , 3 

 4 

where  acTcTA HF 24  ,   
















 HFHS TrcTrcTraT

h

H
B 24121 1 ,  221 rcrT

h

H
C S  . 5 

Local stability by linearization. The Jacobian matrix at the equilibrium is  6 
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Observe that the latter has the following sign structure:  9 













J . 10 

 11 

A well-known sufficient condition for the stability of the Jacobian  matrix (i.e. for the negativity 12 

of the real part of each eigenvalue of J) is trJ<0 and detJ>0. The first inequality reads 13 
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A simple calculation shows that the latter condition also implies detJ > 0, and therefore it is a 4 

sufficient condition for the local asymptotic stability of equilibrium (x*,y*) for the original 5 

nonlinear system.  6 

 7 

Numerical example 1. We consider the parameters: TS=1; TF=10; TM=2; TH=11; r1=0.7; r2=0.05; 8 

a=0.01; c1=0.1; c2=0.2; c3=0.15; c4=1.4; h=1; H=200; k=0.7. It is easy to check that both the 9 

linearization and the Lyapunov function method (dissipativity) imply stable coexistence at 10 

interior equilibrium )31.13,07.69(),(  yx , see Figure 1.  11 

Figure 1 12 

 13 

4. Three-individual encounter model  14 

When the predator abundance is large enough, our previous assumption (that the focal predator 15 

does not encounter with prey and predator at the same time) is not reasonable (see Fussman et al. 16 

2005). For the sake of simplicity, we assume that the prey and predator distributions are 17 

independent. Thus the focal predator individual encounters a prey only, with probability 18 
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two predators meet, they always fight, thus the probability of fight is 8 
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distribution shown in Table 4. 10 
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Using computer simulation, we could not find parameters for which this system had more than 3 

one interior equilibriums. Thus we found no bistable coexistence in this system (cf. Garay et al. 4 

2012). 5 

 6 

Numerical example 2. If we take the parameters of Numerical example 1, for the above 7 

dynamics we obtain that both the linearization method and the Lyapunov function method 8 

(dissipativity) again imply stable coexistence at the interior equilibrium )25.10,92.69(),(  yx . 9 

The system turns out to be dissipative at this equilibrium, see Figure 2.  10 

Figure 2 11 

 12 

 13 

5. Comparison of the above two models 14 

The fight always decreases the equilibrium abundance of predator, since the energy cost of 15 

fighting decreases the total predator biomass, and the time duration of fighting decreases the 16 

average number of hunting predators (in particular, during recovery predator does not hunt). 17 

Consider both two-individual and three-individual encounter models at the same abundances. In 18 

the latter we assume that two predators always fight when they encounter, no matter whether 19 

there is a prey or not.  20 



 19 

Based on this assumption, the probability of fight is the same in both models. Furthermore, the 1 

successful hunting has lower probability in the three-individual encounter model than in the two-2 

individual one. In summary: in the three-individual encounter model there is a relatively higher 3 

fighting rate and a lower killing rate. Consequently the functional response is smaller. This 4 

means that in the three-individual encounter model the same number of predator has a smaller 5 

effect on the prey abundance than in the two-individual one. 6 

Thus, at first glance, one may expect the equilibrium predator abundance to be lower in the 7 

three-individual encounter model, since the prey surely survives in a three-individual encounter 8 

(since whenever two predators meet, they always fight). Simulations, however, show this is the 9 

case only when the conversion rate c4 is high enough (see Figure 3), and what is more, for fixed 10 

r1 with growing c4, coexistence appears first in the three-individual encounter model, and then 11 

predator abundance is higher in this model than in the two-individual encounter model, when c4 12 

is still not too large, see Figure 3.  13 

Figure 3 14 

 15 

A possible explanation to this is the following: Let us consider a pair of parameters r1 and c4 16 

where there is still no coexistence in either of the two models. This means that the stably existing 17 

prey is not able to maintain the predator population. Now, for greater c4 coexistence appears first 18 

in the three-individual encounter model, where the predator is less efficient, since its functional 19 

response is lower. The latter also results in more surviving prey per unit time, therefore the 20 

higher biomass production of the prey (per unit time) may maintain the predator population. 21 

Furthermore, in this parameter range, the equilibrium predator abundance is low, having only a 22 

slight effect on killing probability. 23 



 20 

For higher conversion rate (energetic value of prey) c4, due to the higher predator abundance, 1 

fighting is more frequent in both models. Furthermore, in the three-individual encounter model, 2 

the probability of killing a prey decreases with increasing predator abundance, while in the two-3 

individual encounter model it does not depend on the predator abundance. This may imply that, 4 

for high conversion rate c4, the equilibrium predator abundance is higher in the two-individual 5 

encounter model.  6 

 7 

 8 

6. Discussion 9 

Derivation of functional responses 10 

Over the last decades, numerous functional responses have been already introduced (see Jeschke 11 

et al. 2002), since there is no single functional response that would well fit to any data set (e.g. 12 

Skalski & Gilliam 2001). The main obstacle is that the functional response is very sensitive to 13 

the details of the considered biological situation. Under the assumption that during time T the 14 

abundances of interacting species do not change radically, our mechanism based method makes 15 

it possible to take into account the fine details of the considered biological case. Our method is 16 

very near the classical derivation of functional response by renewal theory (see e.g. McNamara 17 

& Houston 1999), when under the assumption that the prey population immediately renews, the 18 

functional response is also the ratio of the encounter rate and the time average. We note that the 19 

encounter distribution and the activity distribution are not the same in general, since when a 20 

predator faces an encounter situation, it may use different strategies, e.g. when predator 21 

encounters another predator then one of them may flee. In this strategic situation we obtain an 22 



 21 

ecological game (see e.g. Cressman et al. 2014). In present paper we did not consider ecological 1 

games.  2 

 3 

Concerning the resulting functional responses 4 

We considered the case when the predators not only hunt but also fight with each other. This is a 5 

particular case of predator interference. Based on activity distribution we also derived the 6 

Beddington-DeAngelis functional response. We note that e.g. Geritz. & Gyllenberg (2012), using 7 

differential equation at quasi-steady state, also derived a Beddington-DeAngelis type functional 8 

response, based on biological assumptions quite different from ours. While Geritz & Gyllenberg, 9 

(2012) considered non-interacting predator and prey using refuge, we considered fight between 10 

predators and prey that does not use refuge. Thus, our resulting functional responses give a slight 11 

generalization of the original functional responses of Beddington (1975) and DeAngelis et al. 12 

(1975), shedding a new light on them.  13 

 14 

About stable coexistence 15 

To our knowledge, we are the first to give sufficient conditions for stable coexistence in our 16 

general model (1), based on the ecological details such as growth rate of prey resulting from the 17 

carrying capacity, diminishing rate of prey abundance by the predation pressure, rate of increase 18 

of the net biomass intake, rate of increase of the average time duration of an activity, rate of 19 

decrease of the functional response with respect to the predator abundance, rate of increase of the 20 

net biomass intake and rate of increase of the average time duration of an activity.   21 

Our observation that coexistence appears first in the three-individual encounter model may have 22 

an important implication for modelling methodology. In modelling, three-individual encounters 23 



 22 

(interactions) are usually neglected based on the following reasons: First, two-individual 1 

interactions are more probable. Second, higher-order encounters usually increase the non-2 

linearity of the model, thus its analysis becomes harder. However, we have found that when the 3 

equilibrium abundance of the predator is small (thus the three-individual encounters are very 4 

improbable), coexistence appears first in the three-individual encounter model.  5 

Now the question arises whether the number of encounters between predators is high 6 

enough to modify the functional response. We mention two possibilities: First, the territorial 7 

behaviour (and the dispersal of young predators) decreases the interaction between predators, but 8 

does not rule it out. The scanning of the territory and fighting with intruder conspecific take time 9 

(including recovery time), thus the time for predation attacks should be decreased by the predator 10 

interference, and hence the latter can increase the survival of prey. For instance, it was observed 11 

that wolves hunted little in the borders of their territory in order to avoid fatal encounters with 12 

neighbours, thus in the buffer zone of wolf packs’ territories the survival rate of deer is higher 13 

(Mech 1977). Furthermore, territorial behaviour decreases the local predator abundance. Based 14 

on our observation that the predator interference ensures the coexistence with not so fecund and 15 

not so valuable prey, we think a territorial predator establishes a population easier than a non-16 

territorial one, when their prey is not so fecund and not so valuable. Second, cleptoparasitism is 17 

also not an energy free and not a time free predator interference (Broom & Rychtar 2013), for 18 

which a three-individual encounter is a prerequisite. The cleptoparasitism increases the survival 19 

rate of prey, when decreases the functional response, if the time duration of cleptoparasitization 20 

is greater than searching time (thus the denominator of the functional response, i.e. the time 21 

average of one activity increases) and the encounter probability of two predators is positive (thus 22 

the numerator of the functional response, i.e. the probability to encounter only prey, decreases). 23 



 23 

Although, a predator must have killed a prey before cleptoparasitization occurs, in this case the 1 

prey does surely not survive under predator interference. Furthermore, during 2 

cleptoparasitization, the predator is either injured or falls victim of a cannibal attack (Nilsson & 3 

Brönmark 1999), which also increases the predation pressure on the prey.  4 

Our functional response derivation, in the future, can be applied for territorial behaviour 5 

and cleptoparasitism, but these cases need ecological game theory, since the activity of the 6 

predator becomes dependent on the strategy of the predator.  7 

 8 
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Table 1. General predator activity distribution. 1 

 2 
 Parameter 

Activity Duration time Probability Energy 

Empty range found T1=TS  p1(x, y)  -c1 

Fight T2=TF +TS  p2(x, y) -c2 

Prey missed T3=TM +TS  p3(x, y)   -c3 

Prey killed T4=TM +TH+TS  p4(x, y) c4 

 3 

4 
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Table 2. Predator activity distribution in the two-individual encounter model. 1 

 Parameter 

Activity Duration time Probability Energy 

Empty range found T1=TS  1- [(h/H)·(x + y)] -c1 

Fight T2=TF +TS  (h/H)·y -c2 

Prey missed T3=TM +TS  (1-k)·(h/H)·x -c3 

Prey killed T4=TM +TH+TS  k·(h/H)·x c4 

2 
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Table 3. Predator activity distribution providing Beddington-DeAngelis functional response. 1 

 Parameter 

Activity Duration time Probability Energy 

Empty range found T1=TS  1- [(h/H)·(x + y)] 0 

Fight T2=TF +TS  (h/H)·y 0 

Prey killed T4=TM +TH+TS (h/H)·x c4 

 

 

 

 

2 
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Table 4. Predator activity distribution in the three-individual encounter model. 1 

 Parameter 

Activity Duration time Probability Energy 

Empty range found T1=TS  1-(h/H)·{ x·[1-(h/H)·y]+y} -c1 

Fight T2=TF +TS (h/H)·y -c2 

Prey missed T3=TM +TS (1-k)·(h/H)·x·{1-[(h/H)·y]} -c3 

Prey killed T4=TM +TH+TS k·(h/H)·x·{1-[(h/H)·y]} c4 

2 
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Figure 1. Isoclines and solutions for the two-individual encounter model, with parameters of 1 

Numerical example 1. Stable coexistence at equilibrium (x*, y*)=(69.07, 13.31). Programed in 2 

MatLab environment. 3 

 4 

Figure 2. Isoclines and solutions for the three-individual encounter model with parameters of 5 

Numerical example 2. Stable coexistence at equilibrium )25.10,92.69(),(  yx . Programed in 6 

MatLab environment. 7 

 8 

Figure 3. Stable coexistence as function of intrinsic growth rate of prey r1 and the energetic value 9 

of a prey 4c . Programed in MatLab environment. 10 

11 
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Figure 1 COLOUR FOR WEB AND TO BE PRINTED IN BLACK-AND-WHITE 1 

2 



 33 

Figure 2  1 
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Figure 3  1 
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Figure 3 1 
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 1 

Appendix 1. Coexistence 2 

Below we deal with the consistence of the model and the coexistence of  both species.  3 

A) When is dynamics (1) bounded? 4 

The prey population is obviously bounded for 
a

r
xx 1: , since 0x , for all 0y , and  for 5 

xx 0 , the growth of the prey is also limited. Thus the question arises: When is the predator 6 

also bounded for x >0?  For all x >0 we need a 0xy , such that for all xyy   we have 7 
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An easy calculation shows that with notation  321 ,,  min: ccccm  , the latter inequality is equivalent 10 

to  11 

  mm cyxpcc  ,)( 44 . 12 

If for all fixed x >0, we have   0,lim 4 


yxp
y

, then the latter inequality clearly holds, implying 13 

the  boundedness of dynamics (1). In biological terms, if for fixed prey density, the functional 14 

response tends to zero, then dynamics (1) is bounded. 15 

B) When do both species coexist in dynamics (1)? 16 
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Assume that dynamics (1) is bounded. Now the question arises: Is the set of points )0,(x  1 

)0( xx   a repellor to the interior of the positive half-plane?  This question splits into two sub-2 

questions: 3 

B.1. When does prey not die out? Clearly, if r2 is greater than the intake by the functional 4 

response for prey density near zero, then equilibrium (0, 0) is a saddle.  5 

 6 

B.2. When can predator survive? 7 

If y=0, then x(t) tends to x , thus the question is whether 0y  holds at ),( yx , for all 8 

sufficiently small y >0. It is not hard to see that  9 
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where  321 ,,  max: ccccM  . Since the activity probabilities continuously depend on the densities, it 13 

is enough to suppose that  14 
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This inequality has the following implication: Consider a stable prey population without 16 

predator, so the prey density is x . If the predator arrives in this prey population, then there are 17 

two possibilities: either the predator can establish a population when the above inequality holds, 18 
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or the predator cannot establish a population since the prey density is too small (in particular, 1 

when the above inequality does not hold).  2 

 3 

C) Possible types of coexistence and existence of equilibrium 4 

In order to guarantee the coexistence in dynamics (1), we can apply the Poincaré-Bendixson 5 

theorem (see e.g. Hofbauer & Sigmund 1988). Under the condition implying boundedness of 6 

dynamics (1), the omega-limit set   corresponding to any initial value in the positive quadrant, 7 

is not empty. Therefore, either a) there is an equilibrium in , or b)  is a periodic orbit. Since 8 

under the conditions of subsections B1 and B2, both (0,0) and ),0( x are saddles, an equilibrium 9 

in  cannot be either of them. Therefore, in both cases a) and b) coexistence is obtained. 10 

(Furthermore, a periodic orbit also surrounds an equilibrium.)  11 

 12 

Appendix 2. Local asymptotic stability by linearization 13 

For the brevity, let us rewrite system (1) with different notation: 14 
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where constants 44 :),3,2,1(: ccicc ii   are introduced just for a more compact way of 17 

writing. Assume that there exists an interior (i.e. positive) equilibrium ),(  yx . Using the 18 
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linearization method, it is easy to see that for the local asymptotic stability of the equilibrium it is 1 

sufficient that either the following Conditions (A.1) - (A.2) (3) and (A.3) - (A4) (5); or 2 

Conditions (A.1) - (A.2)  and (A.5) - (A.6) hold. 3 
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 10 

 11 

Conditions (A.1) - (A.2) 12 

Condition (A.1) implies that at the equilibrium the per capita growth rate of each population is a 13 

partially decreasing function of its own abundance. With more details, for the prey 14 

0),( 
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Observe that  axr 21  means the per capita prey growth rate without predation pressure, and 1 


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
y

yxpT

yxp

x
j

jj ),(

),(4  is the marginal change in the consumption of the predator with respect to 2 

the prey abundance. Thus (A.6)  means that at the equilibrium, the growth rate of prey resulting 3 

from the carrying capacity is less than the decay rate of prey abundance by the predation pressure 4 

(i.e. less than the marginal rate of increase of the functional response with respect to the prey 5 

abundance). 6 

Condition (3) for the predator, 0
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, can be written as 7 
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Since ),(  yx  is an equilibrium, the latter inequality is equivalent to  9 
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(A.8) implies that at the equilibrium the net energy intake from all activities is a strictly 11 

decreasing function of the predator abundance.  12 

Since at the equilibrium the net biomass intake of the predator is necessarily positive (i.e. 13 
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which means that at the equilibrium, the relative rate of increase of the net biomass intake with 1 

respect to the prey abundance is smaller than the relative rate of increase of the average time 2 

duration of an activity with respect to the predator abundance.  3 

 4 

Conditions (A.3) - (A4) 5 

Now let us consider Condition (A.3). For the prey population we get that 0),( 
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 reads 6 

as  7 
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which implies that at the equilibrium the total killing (functional response multiplied by the 11 

predator abundance) is a strictly increasing function of the abundance of the predator. Condition 12 

(A.10) is equivalent to  13 
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.              (A.11) 3 

Condition (A.11) means that, at the equilibrium, the relative rate of decrease of the functional 4 

response with respect to the predator abundance, should be large enough. The smaller the 5 

equilibrium predator abundance is, the higher this threshold is.  6 

Now let us consider Condition (A4): 0
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 is obviously equivalent to 7 
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(A.12) implies that at the equilibrium the net energy intake from all activities is a strictly 11 

increasing function of the prey abundance. Furthermore, for (13) we get 12 
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.                                    (A.13) 3 

Condition (A.13) means that at the equilibrium the relative rate of increase of the net biomass 4 

intake with respect to the prey abundance is greater than the relative rate of increase of the 5 

average time duration of an activity with respect to the predator abundance.   6 
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Remark (An alternative form of Condition (A.4). Since at the equilibrium 
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and the time average is always positive, 0
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 holds if and only if 9 
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The i-th activity of the predator provides ic  biomass intake during iT . On the other hand, iTr2  is 11 

the net biomass loss for the predator by doing nothing during iT . Thus   ),(2

  yxpTrc
i

iii  is 12 

the difference between the net biomass intake and the basic biomass loss for predator during the 13 

average time of an arbitrary activity. (A.14) means that the marginal rate of this difference with 14 

respect to the prey abundance is positive.  15 

Condition (A5) - (A6) has a similar biological interpretation to that of Condition (A.3) - (A4).  16 
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 1 

Appendix 3. Global asymptotic stability by Lyapunov function 2 

Now we give a general sufficient condition for global asymptotic stability of an interior 3 

equilibrium ),(  yx  of dynamics (1), with respect to the positive quadrant of the plane. We will 4 

say that ),(  yx  is dissipative, if for each positive abundance pair  ),(),(  yxyx  we have  5 
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where  yx,  and  yx,  denote 
x

x
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y

y
, respectively. We use the term “dissipative” here 7 

based on the fact that the interaction decreases the biomass of the system, which is a 8 

generalization of the well-known notion of dissipativity in Lotka-Volterra systems. Now we 9 

show that inequality (A.15) implies global asymptotic stability of equilibrium ),(  yx  with 10 

respect to the positive quadrant. 11 
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Hence the global asymptotic stability of the equilibrium follows.  17 

Finally we note that inequality (A.15) can be also written in the form  18 
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