On reducible and primitive subsets of \mathbb{F}_{p}, II

by

Katalin Gyarmati

Eötvös Loránd University
Department of Algebra and Number Theory
and MTA-ELTE Geometric and Algebraic Combinatorics Research Group
H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
E-mail: gykati@cs.elte.hu
and
András Sárközy
Eötvös Loránd University
Department of Algebra and Number Theory
H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
E-mail: sarkozy@cs.elte.hu

[^0]
Abstract

In Part I of this paper we introduced and studied the notion of reducibility and primitivity of subsets of \mathbb{F}_{p} : a set $\mathcal{A} \subset \mathbb{F}_{p}$ is said to reducible if it can be represented in the form $\mathcal{A}=\mathcal{B}+\mathcal{C}$ with $\mathcal{B}, \mathcal{C} \subset \mathbb{F}_{p},|\mathcal{B}|,|\mathcal{C}| \geq 2$; if there are no such sets \mathcal{B}, \mathcal{C} then \mathcal{A} is said to be primitive. Here we introduce and study strong form of primitivity and reducibility: a set $\mathcal{A} \subset \mathbb{F}_{p}$ is said to be k-primitive if changing at most k elements of it we always get a primitive set, and it is said to be k-reducible if it has a representation in the form $\mathcal{A}=\mathcal{B}_{1}+\mathcal{B}_{2}+\cdots+\mathcal{B}_{k}$ with $\mathcal{B}_{1}, \mathcal{B}_{2}, \ldots, \mathcal{B}_{k} \subset \mathbb{F}_{p},\left|\mathcal{B}_{1}\right|,\left|\mathcal{B}_{2}\right|, \ldots,\left|\mathcal{B}_{k}\right| \geq 2$.

1 Introduction

In this paper we will use the following notations and definitions: The set of positive integers is denoted by \mathbb{N}, the finite field of p elements is denoted by \mathbb{F}_{p}, and we write $\mathbb{F}_{p}^{*} \backslash\{0\}$. If $\mathcal{A}, \mathcal{B} \subset \mathbb{F}_{p}$, then their distance $D(\mathcal{A}, \mathcal{B})$ is defined as the cardinality of their symmetric difference (in other words, $D(\mathcal{A}, \mathcal{B})$ is the Hamming distance between \mathcal{A} and $\mathcal{B})$. If \mathcal{G} is an additive semigroup and $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ is a subset of \mathcal{G} such that the sums $a_{i}+a_{j}$ with $1 \leq i<j$ are distinct, then \mathcal{A} is called a Sidon set. In some proofs we will identify \mathbb{F}_{p} with the field modulo p residue classes, and a residue class and its representant element will be denoted in the same way.

We will also need
Definition 1 Let \mathcal{G} be a semigroup with the group operation called and denoted as addition and $\mathcal{A}, \mathcal{B}_{1}, \ldots, \mathcal{B}_{k}$ subsets of \mathcal{G} with

$$
\begin{equation*}
\left|\mathcal{B}_{i}\right| \geq 2 \quad \text { for } i=1,2, \ldots, k . \tag{1.1}
\end{equation*}
$$

If

$$
\mathcal{A}=\mathcal{B}_{1}+\mathcal{B}_{2}+\cdots+\mathcal{B}_{k},
$$

then this is called an (additive) k-decomposition of \mathcal{A}, while if the group operation in \mathcal{G} is called and denoted as multiplication and (1.1) and

$$
\begin{equation*}
\mathcal{A}=\mathcal{B}_{1} \cdot \mathcal{B}_{2} \cdots \cdot \mathcal{B}_{k} \tag{1.2}
\end{equation*}
$$

hold, then (1.2) is called a multiplicative k-decomposition of \mathcal{A}. (A decomposition will always mean a non-trivial one, i.e., a decomposition satisfying (1.1).)

In 1948 H . Ostmann [12], [13] introduced some definitions on additive properties of sequences of non-negative integers and studied some related problems. The most interesting definitons are:

Definition $2 A$ finite or infinite set \mathcal{C} is said to be reducible if it has an (additive) 2-decomposition

$$
\mathcal{C}=\mathcal{A}+\mathcal{B} \quad \text { with }|\mathcal{A}| \geq 2,|\mathcal{B}| \geq 2
$$

If there are no sets \mathcal{A}, \mathcal{B} with these properties then \mathcal{C} is said to be primitive (or irreducible).

Definition 3 Two sets \mathcal{A}, \mathcal{B} of non-negative integers are said to be asymptotically equal if there is a number K such that $\mathcal{A} \cap[K, \infty)=\mathcal{B} \cap[K, \infty)$ and then we write $\mathcal{A} \sim \mathcal{B}$.

Definition 4 An infinite set \mathcal{C} of non-negative integers is said to be totally primitive if every \mathcal{C}^{\prime} with $\mathcal{C}^{\prime} \sim \mathcal{C}$ is primitive.

Since 1948 many papers have been published on related problems; a short survey of some of these papers was presented in Part I of this paper [9]. In almost all of these papers written before 2000 infinite sequences of nonnegative integers are studied. The intensive study of finite problems of this type, in particular, of analogues problems in \mathbb{F}_{p} has started only in the last decade (again, see [9] for details). In [9] we wrote: "the notions of additive and
multiplicative decompositions, reducibility and primitivity can be extended from integers to any semigroup, in particular, to the additive group of \mathbb{F}_{p} and multiplicative group of \mathbb{F}_{p}^{*} for any prime p; in the rest of this paper we will use these definitions in this extended sense... In this paper our goal is continue the study of the reducible and primitive subsets of \mathbb{F}_{p} and the connection between them." We recall a couple of results in [9] which we will also need here:

Theorem A. If $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{t}\right\} \subset \mathbb{F}_{p}$ is a Sidon set, then it is primitive.

Theorem B. Let $\mathcal{A} \subset \mathbb{F}_{p}$, and for $d \in \mathbb{F}_{p}^{*}$ denote the number of solutions of

$$
a-a^{\prime}=d, a \in \mathcal{A}, a^{\prime} \in \mathcal{A}
$$

by $f(\mathcal{A}, d)$. If

References

[1] N. Alon, A. Granville and A. Ubis, The number of sumsets in a finite field, Bull. London Math. Soc. 42 (2010), 784-794.
[2] S. Chowla, Solution of a problem of Erdốs and Turán in additive number theory, Proc. Nat. Acad. Sci. India 14 (1944), 1-2.
[3] C. Dartyge and A. Sárközy, On additive decompositions of the set of primitive roots modulo p, Monathsh. Math. 169 (2013), 317-328.
[4] P. Erdôs, Addendum, On a problem of Sidon in additive number theory, and some related problems, J. London Math. Soc. 19 (1944), 208.
[5] P. Erdős, A. Sárközy and V. T. Sós, On a conjecture of Roth and some related problems, I, Irregularities of Partitions, in: eds. G. Halász et al., Springer, Berlin, 1989; pp. 47-59.
[6] P. Erdôs and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[7] H. Fürstenberg and B. Weiss, Topological dynamics and combinatorial number theory, J. Analyse Math. 34 (1978), 61-85.
[8] R. Graham, B. Rothochild and J. H. Spencer, Ramsey theory, Wiley, 1980.
[9] K. Gyarmati and A. Sárközy, On reducible and primitive subsets of \mathbb{F}_{p}, I, Integers (EJCNT), to appear.
[10] N. Hegyvári and A. Sárközy, On Hilbert cubes in certain sets, Ramanujan J. 3 (1999), 303-314.
[11] D. Hilbert, Über die Irrecduzibilität ganzer rationaler Functionen mit ganzzahligen Koefficienten, J. Reine Angew. Math. 110 (1892), 104-129.
[12] H.-H. Otmann, Untersuchungen über den Summenbegriff in der additiven Zahlentheorie, Math. Ann. 120 (1948), 165-169.
[13] H.-H. Otmann, Additive Zahlentheorie, Springer, Berlin, 1956.
[14] C. Pomerance, A. Sárközy and C. L. Stewart, On divisors of sums of integers, III, Pacific J. Math. 133 (1988), 363-379.
[15] A. Sárközy, Some metric problems in the additive number theory, II, Annales Univ. Sci. Budapest. Eötvös 20 (1977), 111-129.
[16] A. Sárközy, On additive decompositions of the set of quadratic residues modulo p, Acta Arith. 155 (2012), 41-51.
[17] J. D. Shkredov, Sumsets in quadratic residues, Acta Arith., to appear.
[18] I. E. Shparlinski, Additive decompositions of subgroups of finite fields, arXiv: 1301.2872 v 1 [math. NT].
[19] E. Szemerédi, On sets of integers containing no four elements in arithmetic progression, Acta Math. Acad. Sci. Hungar. 20 (1969), 89-104.

[^0]: 2010 Mathematics Subject Classification: Primary 11B13.
 Keywords and phrases: sum sets, finite fields, reducible sets, primitive sets.
 Hungarian National Foundation for Scientific Research, grants no. K100291 and NK104183, the János Bolyai Research Fellowship and the MTA-ELTE Geometric and Algebraic Combinatorics Research Group.

