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Summary  

 

In nature, H2 production in Chlamydomonas reinhardtii serves as a safety valve during the 

induction of photosynthesis in anoxia and it prevents the over-reduction of the photosynthetic 

electron transport chain. Sulphur deprivation of C. reinhardtii also triggers a complex 

metabolic response resulting in the induction of various stress-related genes, downregulation 

of photosynthesis, the establishment of anaerobiosis and expression of active hydrogenase. 

Photosystem II (PSII) plays dual role in H2 production because it supplies electrons but the 

evolved O2 inhibits the hydrogenase. Here we show that upon sulphur deprivation the 

ascorbate content in C. reinhardtii increases about 100-fold, reaching the mM range; at this 

concentration ascorbate inactivates the Mn-cluster of PSII and afterwards it can donate 

electrons to tyrozin Z
+
 at a slow rate. This stage is followed by donor-side induced 

photoinhibition, leading to the loss of charge separation activity in PSII and reaction center 

degradation. The time point at which maximum ascorbate concentration is reached in the cell 

is critical for the establishment of anaerobiosis and initiation of H2 production. We also show 

that ascorbate influenced H2 evolution via altering the photosynthetic electron transport rather 

than hydrogenase activity and starch degradation.  

 

Keywords: ascorbate, Chlamydomonas reinhardtii, hydrogenase, oxygen evolution, 

photosystem II, sulphur deprivation  

 

 

Summary statement 

Sulphur deprivation of sealed Chlamydomonas reinhardtii cultures results in the 

downregulation of photosynthesis, establishment of anaerobiosis and expression of 

hydrogenases. Photosystem II has a determining role in H2 production because it supplies 

electrons but the evolved O2 inhibits the hydrogenase. Here we show that upon sulphur 

deprivation the ascorbate content in C. reinhardtii increases dramatically and in the mM 

range it inactivates the oxygen-evolving complex. Therefore, we propose that photosystem II 

inactivation upon sulphur deprivation is initiated by a strong ascorbate accumulation and it 

occurs via donor-side induced photoinhibition. 
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Introduction 

 

Solar energy-driven H2 production by photosynthetic microorganisms may become an 

alternative method to complement the proposed chemical technologies to produce H2 gas. For 

research on the photoproduction of H2, the unicellular green alga Chlamydomonas reinhardtii 

is one of the most popular organisms. C. reinhardtii has two [Fe-Fe]-type hydrogenases, 

called HYDA1 and HYDA2. They are located in the chloroplasts stroma and receive 

electrons from photosystem I (PSI) via ferredoxin. H2 production is considered an 

evolutionary relic that may serve e.g. under the induction of photosynthesis in anoxia as a 

safety valve fine tuning the ATP to NADPH ratio and accelerating the light-induced increase 

in stromal pH that triggers activation of CO2 fixing reactions; by this means the risk of over-

reduction of the electron transport chain and photodamage is decreased (Ghysels et al., 2013, 

Godaux et al., in press).  

The hydrogenases of C. reinhardtii are highly efficient; their turnover rate is several 

thousands per second, about 100-fold higher than that of other types of hydrogenases 

(Rousset and Liebgott 2014). However, in the presence of O2, hydrogenase expression is 

inhibited (Eivazova and Markov 2012) and O2 also reacts with the 2Fe subcluster of HYDA1, 

leading to its degradation and leaving an inactive [4Fe-4S] subcluster state (Swanson et al., 

2015). There are attempts to engineer the hydrogenase enzyme to reduce its sensitivity to O2 

(e.g. King et al., 2009). However, a constitutively high expression of an O2-resistant enzyme 

may be potentially disadvantageous because it could compete with the Calvin-Benson cycle 

and as a result, it could lead to a decreased autotrophic growth. As a matter of fact, even 

when the native HYDA1 was expressed in the chloroplast of C. reinhardti, slower growth 

and increased stress sensitivity was observed (Reifschneider-Wegner et al., 2014). 

In normal, actively photosynthesizing cultures of C. reinhardtii H2 production occurs 

only transiently. H2 production upon anaerobic induction, which consists of a relatively long 

dark-adaptation and a continuous illumination period, may last for a few hours (Degrenne et 

al., 2011). For maintaining H2 production a balance between the O2 evolved and respiration 

consuming O2 needs to be established (Scoma et al., 2014). Alternatively, bacterial partners 

may be also used to eliminate the evolved O2 in the medium (Lakatos et al., 2014), in a 

similar way as microbial community consumes the available O2 in the soil. 

There is also a strategy to decrease photosystem II (PSII) activity below a certain 

threshold value, under which the O2 produced by PSII would not be inhibitory anymore for 

the hydrogenase. This can be achieved by photoinhibition (Markov et al., 2006) and inducible 
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gene expression to downregulate the expression of the reaction center protein PsbD (Surzicky 

et al. 2007). Sulphur deprivation, the most frequently used method to induce photobiological 

H2 production (Melis et al., 2000, Zhang et al., 2002) is also supposed to act by a similar 

mechanism.  

When C. reinhardtii cultures are deprived of sulphur, cells start to accumulate starch 

within a few hours, which is followed by the down-regulation of photosynthesis and the 

induction of the hydrogenases. The amount of Rubisco is strongly reduced during the first 24 

h and photosynthetic electron transport is also inhibited, which is mostly associated with 

decrease in PSII activity (reviewed by Burgess et al., 2011, Torzillo et al., 2013). During 

sulphur deprivation cellular respiration is maintained or even increased, contributing to the 

establishment of anaerobiosis.  

Metabolism of sugars derived from starch via glycolysis provides electrons to the PQ-

pool via the plastidial type II NAD(P)H dehydrogenase (NDA2) complex and thereby 

supplies a significant amount of electrons for the expressed hydrogenase (Mignolet et al., 

2012, Volgusheva et al., 2013). It was shown that by overexpressing NDA2, 

nonphotochemical reduction of the PQ-pool increased and the contribution of the indirect 

pathway to the H2 production could be improved (Baltz et al., 2014). Increased H2 production 

was achieved also in a pgrl1 mutant with impaired PSI cyclic electron flow, which is in 

competition for electrons with the hydrogenase (Tolleter et al., 2011). Using truncated 

antenna mutants immobilized on alginate films to improve light utilization promoted the H2 

evolution as well (Kosourov et al., 2011).  

The main sources of H2 production are PSII activity and linear electron flow. Using PsbA 

mutants differing in their PSII activity, it has been demonstrated that the loss of PSII activity 

leads to a faster induction of anaerobiosis during sulphur deprivation, but less starch is 

accumulated and less H2 is produced and below a certain PSII activity, there is no H2-

production observed (Makarova et al. 2007). The importance of the linear electron flow was 

more recently demonstrated by the state transition mutant 6 (Stm6) mutant of C. reinhardtii 

subjected to sulphur deprivation (Volgusheva et al., 2013). 

It has been proposed that the inactivation of PSII results from an imbalanced 

photoinhibition and repair of the PsbA protein due to the lack of sulphur (Zhang 2002). 

However, changes in gene expression occur within hours, and there is a very complex 

adaptation process to sulphur deprivation (González-Ballester et al., 2008, Toepel et al., 

2013); therefore the question may be raised if it is directly the lack of sulphur that hinders the 

turnover of the PsbA protein, especially if we take into account that cells division is ceased 
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upon the transfer of C. reinhardtii to sulphur-free conditions (Zhang et al., 2002). Therefore, 

in this study we aimed at better understanding the mechanism by which PSII gets inactivated, 

which may be essential for the improvement of the energy conversion efficiency of this 

promising renewable energy source.  

 

Materials and Methods  

 

Algal strains 

Six different C. reinhardtii strains were used in this work. S-01 is our laboratory strain, used 

earlier (Nagy et al., 2012; Corrigendum: Nagy et al., 2015). Besides, we used the strains 

CC124, CC125, CC400, CC409 and CC849, which were used in earlier studies as wild-type, 

obtained from the Chlamydomonas Resource Center (http://chlamycollection.org/).  

 

Algal growth conditions 

C. reinhardtii cultures were grown in Tris-acetate-phosphate (TAP) medium at a light 

intensity of 80-90 µmol photons m
-2

 s
-1

 and 24-25 ºC in an algal growth chamber. The 250 ml 

flasks containing 50 ml TAP medium were shaken at 120 rpm and the cultures were grown 

for three days in sulphur-containing medium. After three days of cultivation, the cells were 

washed five times with sulphur-free TAP medium (centrifugation at 1000 g, at 24 ºC for 5 

min). For the H2 production experiments the Chl content was set at 8 µg chl/ml (based on 

Porra et al., 1989) and 30 ml culture in sulphur-free TAP medium was placed into 125 ml 

serum vials and sealed off with rubber septa. All steps were carried out under sterile 

conditions. The gas phase of the bottle was flushed with N2 gas for 10 min and the cultures 

were kept in the algal growth chamber, under the same conditions as indicated above. The 

Asc treatment (10 mM Na-Asc) was carried out at the start of sulphur deprivation (day 0).  

 

Determination of H2 and O2 accumulation by gas chromatography (GC) 

The daily amount of H2 and O2 accumulated by the cultures was determined by taking 500 µl 

aliquot from the gas phase of the cultures with a gas tight syringe. These samples were 

injected manually into an Agilent 6890 gas chromatograph equipped with a HP-Molesieve 

5Å column (30 m x 0.53 mm x 25 µm) and a TCD detector. The oven temperature was 60 ºC. 

The carrier gas was argon, and a linear velocity of 115 cm/s was used. The bottle was flushed 

with N2 gas daily after the determination of the gas accumulation. 
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Ascorbate content determination 

At each time point, 6 ml of culture was collected, spun-down for removal of the supernatant 

(collected by centrifugation at 11,500 g, 24 ºC, for 1 min), washed twice with distilled water, 

and the Asc was extracted by re-suspending the cells in 200 µl of extraction buffer (2 mM 

EDTA, 5 mM DTT, 5 % orthophosphoric acid) and vigorously vortexing with glass beads 

(Sigma, 212-300 µm) for 30 s. This was followed by centrifugation at 11,500 g, 4 ºC, for 30 

min and the supernatant was collected. Quantification of Asc was performed by HPLC using 

an Agilent 1100 Series HPLC system with a diode array detection unit (Agilent, Waldbronn, 

Germany) set to 245 nm. The Asc content was quantified using standards. For all separations, 

an YMC ODS-A 250 x 4.6 mm column was used with a particle size of 5 µm. The running 

was performed using 100% solvent A (50 mM KH2PO4, pH 2.5), with a flow rate of 1 

ml/min; the column was kept at 30 ºC and the samples were stored at 4 ºC. The column was 

allowed to re-equilibrate in 60 % solvent A and 40 % solvent B (acetonitrile) for 15 min prior 

to the next run. 

 

Thermoluminescence (TL) measurements 

For TL measurements, cell suspension (300 µl, 8 µg Chl/ml) was placed on a copper sample 

holder, connected to a cold finger immersed in liquid N2. A heater coil, placed under the 

sample holder, ensured the desired temperature of the sample during the measurement. Dark 

adapted samples were illuminated at 5 ºC by two saturating single-turnover flashes, and glow 

curves were recorded while heating the sample to 70 ºC in darkness with a heating rate of 20 

ºC/min. The emitted TL was measured with a Hamamatsu end-window photomultiplier. 

 

Fast Chl a fluorescence (OJIP) measurements 

Chl a fluorescence measurements were carried out at room temperature with a Handy-PEA 

instrument (Hansatech Instruments Ltd, UK). C. reinhardtii cultures were dark-adapted for 

15 min and then 5 ml of cell suspension (8 µg Chl/ml) was filtered onto a Whatman glass 

microfibre filter (GF/C) that was placed in a Handy-PEA leaf clip. The alga sample was 

illuminated with continuous red light (3500 µmol photons m
-2

 s
-1

, 650 nm peak wavelength; 

the spectral half-width was 22 nm; the light emitted by the LEDs is cut off at 700 nm by a 

NIR short-pass filter). The light was provided by an array of three light-emitting diodes 

focused on a circle of 5 mm diameter of the sample surface. The first reliably measured point 

of the fluorescence transient is at 20 µs, which was taken as F0. The length of the 

measurements was 5 s.  
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Measurement of oxygen evolution  

Oxygen evolving capacity of C. reinhardtii cultures (8 μg Chl/ml) was measured with a 

Clark-type oxygen electrode (Hansatech Instruments Ltd, Norfolk, UK) in a temperature 

controlled cell at 25°C under saturating light intensities (1800 µmol photons m
-2

 s
-1

) for 2 

min. The measurements were carried out in the presence of 500 μM phenyl-p-benzoquinone 

(PPBQ) as an electron acceptor of PSII and the dark O2 consumption was subtracted. Because 

Asc reduces PPBQ, the Asc-treated samples could not be reliably measured; therefore those 

data are not presented. 

 

Western blot analysis 

At each time point, 6 ml of culture were collected, spun-down for removal of the supernatant 

and frozen in liquid N2. The samples were then solubilized with 500 μl of protein extraction 

buffer (50 mM Tris/HCl [pH 8.3], 0.25 % Triton X-100, 1 mM dithiothreitol and 1x 

cOmplete Protease Inhibitor Cocktail [Roche]), incubated in the dark at 4 ºC for 30 min with 

vigorous shaking, and then centrifuged at 20,800 g, 4 ºC, for 10 min. The supernatant was 

collected into a new Eppendorf tube and the protein content determined by the Bradford 

method. An amount equivalent to 1 or 2 μg protein was then mixed with 4x Laemmli buffer 

and incubated at 43 ºC for 30 min. Proteins separated by SDS-PAGE (Perfect Blue Twin Gel 

System, Peqlab) were transferred to a polyvinylidene difluoride membrane (Hybond P) using 

a tank blotting system (Cleaver Scientific Ltd). Specific polyclonal antibodies (produced in 

rabbits) against PsbA was purchased from Agrisera AB, and antibodies against the PSBO and 

ATPD proteins were obtained from AntiProt GmbH. As secondary antibody, an anti-rabbit 

IgG peroxidase conjugate was used (Sigma-Aldrich). Immunochemical detection was carried 

out with the ECL Prime System (GE Healthcare), according to the instructions of the 

manufacturer. 

 

Measurement of the oxidation-reduction kinetics of P700 

The light-induced absorbance changes at 830 nm reflecting changes in the redox state of P700 

and PC were recorded by a Dual-PAM-100 instrument (Heinz Walz GmbH, Germany) in a 

dual wavelength (860-810 nm) mode in continuous red light of about 2000 µmol photons m
-2

 

s
-1

 and in the dark, with a time resolution of 1 ms. C. reinhardtii cells were dark-adapted for 

15 min and then 5 ml of cell suspension (8 µg Chl/ml) was filtered onto a Whatman glass 
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microfibre filter (GF/C) that was placed in between two microscopy cover slips for the 

measurement of the 830 nm absorbance transient. 

3-(3’,4’-dichlorophenyl)-1,1-dimethylurea (DCMU) and dibromothymoquinone 

(DBMIB) were added about 15 min before the measurements. DCMU was dissolved in 

dimethyl sulfoxide (100 mM stock solution) and its final concentration was 20 µM; DMBIB 

was dissolved in ethanol (100 mM stock solution) and its final concentration was 5 µM. 

 

Determination of starch content 

1 ml C. reinhardtii culture was spun down (at 12,000 g, 4 min), and re-suspended twice in 1 

ml methanol to solubilize the pigments. The sample was spun down again (at 12,000 g, 4 

min) after washing it with 1 ml sodium acetate buffer (0.1 M, pH 4.5). The sample was then 

re-suspended in a mixture of sodium acetate buffer and glass beads (1:1), and submitted to a 

4-min cycle in a Mini Bead Beater. A volume of 0.3 ml of the supernatant was incubated in a 

boiling water bath for 15 min, and after cooling, 3 U amyloglucosidase were added and the 

starch was hydrolysed overnight at 55 °C. Glucose in the sample was measured enzymatically 

with Fluitest
®
 GLU kit (Analyticon

®
 Biotechnologies AG). 

 

In vitro hydrogenase activity assay 

The 13.5-ml serum vials in which the assay was carried out contained 20 μl of 1 M oxidized 

methylviologen, 380 μl water, 1.5 ml 100 mM KH2PO4 buffer (pH 6.5) and 100 μl 10% 

Triton X100. 1.6-ml cell suspension samples were taken anaerobically from the batch 

samples and injected into sealed and N2-purged vials. The reaction was started by the 

addition of 400 µl of anaerobic, 1 M Na-dithionite. The assay was performed at 37°C in 

darkness. H2 was determined 4 times during the 90 minutes long assay (Kosorouv et al., 

2003). 

 

Statistics 

The presented data are based on at least three independent experiments. When applicable, 

averages and standard errors (SE) were calculated. Statistical significance was analysed using 

Student’s t-test and the significance level are presented as: * p<0.05; ** p<0.01;*** p<0.001 

(in Fig. 1, analysis between the Asc-treated and untreated samples). 
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Results 

 

The effects of externally provided Asc on the H2 production in several C. reinhardtii strains 

Previously we showed that during sulphur deprivation externally supplied Asc stimulated H2 

production, and anaerobiosis was reached earlier in the C. reinhardtii strain S-01 (Nagy et al., 

2012, Nagy et al., 2015). To investigate whether it is a general phenomenon, six different C. 

reinhardtii strains, used in earlier studies on photobiological H2 production, were treated with 

Asc and their H2 production yields were compared.  

Upon sulphur deprivation, similarly high H2 production was achieved in the CC124 and 

CC125 strains, about 50 µl/ml in four days, which is in agreement with literature data (Fig. 

1A, Ghirardi et al., 2000, Torzillo et al., 2009). In the other strains, namely in CC400 (Sun et 

al., 2013), S-01 (Nagy et al., 2012), CC409 (Torzillo et al., 2009) and CC849 (Wu et al. 

2010), H2 production was moderate, on average about 5 times less than in CC124 and CC125 

after four days of sulphur deprivation (Fig. 1A).  

The addition of 10 mM Asc at the beginning of sulphur deprivation led to an increase in 

H2 production in the strain S-01 (Nagy et al., 2012). Similar enhancement was observed in 

CC849, and a moderate effect was detected in the CC400 and CC409 strains (Fig.1A). In the 

CC124 and CC125 strains externally supplied Asc had strong adverse effects on the 

photoproduction of H2 (Fig. 1A). In general, the addition of 10 mM Asc led to similar H2 

production in all the strains: approximately 10 to 15 µl H2 gas/ml culture was produced 

during the four days of sulphur deprivation. On the other hand, the amount of O2 accumulated 

in the headspace of the serum bottles was strongly and equally reduced in all the strains upon 

the Asc treatment (Fig. 1B).  

In terms of H2 production, the largest differences were observed between CC124 and S-

01; therefore we decided to focus on these two strains. In Fig. 2 the daily H2 and O2 

accumulation of the two strains are shown until day 6, which includes the final, so-called 

termination phase of sulphur deprivation as well. In S-01 H2 production peaked after four 

days (Fig. 2A), whereas the maximum was observed on days 2 and 3 in the case of CC124 

(Fig. 2C). Fig. 2B shows that in the S-01 strain Asc enhanced the H2 production during the 

first three days, whereas H2 production was lower in the presence of Asc during the 

termination phase. Upon Asc treatment of the CC124 strain H2 production was strongly 

decreased throughout the experiment, to the level of the Asc-treated S-01 strain (Figs. 2C and 

2D). In the strain S-01 anaerobiosis was reached by day 5, whereas in the strain CC124 it was 
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reached much earlier, within 48 hrs (Figs. 2A and C). Upon Asc-treatment there was no 

detectable O2 by the second day of sulphur deprivation in either strain (Figs. 2B and D).  

 

Cellular Asc concentration during sulphur deprivation 

Ascorbate has essential roles in cellular metabolism and stress defense (Tóth et al., 2013, 

Zhang 2013) and it acts mostly as a reductant. Under normal physiological conditions the Asc 

concentration of C. reinhardtii cells is approx. 100 times lower than in plant cells (Gest et al., 

2013, Wheeler et al., 2015), but upon oxidative stress there is a rapid, several-fold increase in 

the Asc level (Urzica et al., 2012). Transcriptomic data show that the expression of various 

stress-related genes increase upon sulphur deprivation, just as well as the expression of the 

VTC gene (Toepel et al., 2013), encoding GDP-l-galactose phosphorylase, a central enzyme 

in Asc biosynthesis (Urzica et al., 2012). 

Fig. 2 shows temporal Asc concentration profiles of the two strains. As a result of 

sulphur deprivation, there was a dramatic increase in Asc concentrations: in control, sulphur-

replete S-01 cultures it is about 1.8 pmol/µg Chl, and after four days of sulphur deprivation it 

increases to about 100 pmol/µg Chl (approx. 1 mM, calculated by assuming a cell volume of 

140 femtoliters, Urzica et al., 2012). In CC124 the increase is even stronger (from about 5.1 

to 160 pmol/µg Chl, i.e. to approx. 3 mM) and this occurs within 48 hrs of sulphur 

deprivation.  

Upon the addition of 10 mM Asc, the Asc content of cells increased steeply, and within 

24 h, similar values were reached as in both strains (approx. 90 and 110 pmol/µg Chl in S-01 

and CC124, respectively). These values were in the same range as those obtained for the Asc 

non-treated samples, but the maximal Asc concentration was reached earlier. 

The very strong Asc accumulation during sulphur deprivation and the observation that 

externally supplied Asc promoted the establishment of anaerobiosis indicate that Asc may 

modulate photobiological H2 production, either by i) affecting the activity of the oxygen-

evolving complex (OEC) and thereby the photosynthetic electron transport, ii) the activity of 

the hydrogenase or iii) starch degradation. In the following sections, these various 

possibilities are explored. 

 

The effects of Asc on PSII activity 

Early in vitro studies on isolated higher plant PSII membranes demonstrated that Asc may 

over-reduce the Mn-cluster if the extrinsic proteins of the OEC are removed (Tamura et al., 

1990). On the other hand, we showed that in sulphur-deprived C. reinhardtii cultures Asc can 
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act as an alternative electron donor of PSII (Nagy et al., 2012), similarly to heat stress 

conditions (Tóth et al., 2009). These earlier findings prompted us to thoroughly investigate 

the effect of Asc on PSII in C. reinhardtii under sulphur deprivation.  

Figs. 4A and C show that the B thermoluminescence (TL) band, resulting from charge 

recombination between S2/S3 states of the OEC and QB
-
 (Ducruet and Vass 2009), gradually 

decreased in both strains and it was eliminated after 96 and 72 hrs of sulphur deprivation in 

the S-01 and the CC124 strains, respectively. Beside the decrease in amplitude, a slight shift 

to lower temperatures could be also observed, which is most likely due to the interaction of 

Asc with the S2 and possibly S0 and S1 states of the Mn-complex (Tamura et al., 1990). The 

loss of the B band indicated OEC inactivation, which was confirmed by O2 evolution 

measurements using PPBQ as an electron acceptor (Suppl. Fig. 1). Upon the addition of 10 

mM Asc the decrease of the B band became much faster and already after 2 hrs of incubation 

in the light, there was an approx. 70% reduction in its amplitude; after 8 hrs of sulphur 

depletion, the B band disappeared (Figs. 4B and D). The B band was shifted and its 

amplitude decreased also in sulphur-deprived cultures that were unsealed (Fig. 4E). 

Moreover, Asc addition reduced the intensity of the B band in sulphur-replete cultures as 

well, but it recovered after a few hours (Fig. 4F).  

Fast Chl a fluorescence (OJIP) transients were used to gain further information on PSII 

activity. Upon strong illumination (in this case 3500 µmol photons m
-2

 s
-1

) Chl a fluorescence 

rises from a basic F0 level to a maximum, FM, in about 300 ms. The OJ phase (0-3 ms) is 

called the photochemical phase because of its strong light-dependence, the JI phase 

(approximately 3-30 ms) parallels the reduction of the PQ-pool, and the IP phase 

(approximately 30-300 ms) is correlated with the reduction of ferredoxin in the presence of 

inactive ferredoxin:NADP
+
 oxidoreductase (reviewed by Schansker et al., 2014). It is to be 

noted that in C. reinhardtii the I step is less pronounced as in higher plants (Fig. 5). During 

sulphur deprivation the F0 and J levels increased, particularly in the CC124 strain, indicating 

a reduced PQ-pool (Tóth et al., 2006). Upon Asc treatment similar effects were observed, but 

at a later stage the FM values also decreased and variable fluorescence (FV) was lost, 

indicating PSII reaction center inactivation.  

The comparison of the kinetics reveals that the decrease of the B band occurs later in the 

S-01 strain than in CC124 (Figs. 6A and C). On the other hand, the loss of the B band 

precedes significantly that of the FV/FM value, especially in the Asc-treated samples (Fig. 6). 

This suggests that the inactivation of the OEC occurs before the loss of charge separating 

activity of PSII. In the non-Asc-treated CC124 strain the time difference between the loss of 
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the B band and the FV/FM was less pronounced (Fig. 6C), but this may be due to the strongly 

reduced PQ-pool, as indicated by the particularly high F0 and J values (Fig. 5).  

The Chl contents were rather stable during the first three days of sulphur deprivation and 

after that it decreased by about 40% both in the S-01 and the CC124 strains. The decrease in 

Chl contents was slightly enhanced by the Asc treatment (Suppl. Fig. 2). 

Western blot analysis showed that in the S-01 strain both PsbA and PSBO protein 

contents decreased slowly; by the 72
nd

 h, both decreased to about 50% of the initial amount 

(Figs. 7A and B). In the CC124 strain the PsbA and PSBO showed some moderate reduction 

already by the 24
th

 h, and less than 50% was detected by the 48
th

 h (Figs. 7D and E). This 

faster losses of PsbA and PSBO are in agreement with the TL and Chl a fluorescence data 

(Figs. 4 to 6), showing that PSII activity was lost earlier in the CC124 strain. Interestingly, 

upon the Asc treatment, the losses of PsbA and PSBO proteins were slower in both strains 

(Figs. 7C and 7F).  

In order to monitor electron transport through PSI, 830 nm transmission measurements, 

reflecting the redox state of P700 and PC (e.g. Klughammer and Schreiber, 1994) were 

carried out, after 72 h of sulphur deprivation. At this stage, the activity of the OEC is very 

low in both strains (Fig. 4), but the FV/FM is relatively high (Fig. 6) and the PsbA protein is 

still well-detectable in the S-01 strain, whereas in the CC124 strain the PsbA protein is lost 

(Fig. 7).  

In the S-01 strain oxidation and partial re-reduction of PC and P700 can be observed in 

continuous red light (Fig. 8A). In the presence of DCMU, which displaces QB from its 

binding site in PSII, there is no re-reduction, showing that the electrons originated from PSII, 

either from the remaining OEC activity or from Asc as an alternative PSII donor (Tóth et al., 

2009, Nagy et al., 2012). In vitro studies showed that Asc may be an electron donor to PSI as 

well, but this seems to be insignificant in intact plants (Tóth et al., 2009). In the presence of 

DBMIB, an artificial quinone, which inhibits the re-oxidation of PQH2 molecules by the 

cytb6f complex, P700 oxidation occurred with very similar kinetics as with DCMU. 

In the case of CC124, a more complete oxidation of P700 and PC was observed, which 

was only moderately affected by DCMU or DBMIB (Fig. 8C). This is in agreement with the 

TL, Chl a fluorescence and western blot data, showing that PSII reaction centers are mostly 

inactive at 72 hrs of sulphur deprivation (Figs. 4 to 7) and therefore Asc could not donate 

significant amounts of electrons to PSII in the CC124 strain after 72 h of sulphur deprivation.  

After the red light illumination, the re-reduction of PC
+
 and P700

+
 was followed in the 

dark. Fig. 8B shows that it is DCMU- and DBMIB-sensitive in the S-01 strain confirming 
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that electrons at PSI arrived mostly from PSII and possibly from Asc as an alternative 

electron donor (Nagy et al., 2012). However, in the CC124 strain the rate of re-reduction was 

mostly independent of the presence of DCMU, while it was remarkably decelerated in the 

DBMIB-treated samples (Fig. 8D). These results confirm that in CC124 after 72 h of sulphur 

deprivation, PSII was mostly inactive and electrons arrived at PSI via alternative routes, e.g. 

from starch degradation and perhaps PSI cyclic electron flow. It is to be noted that depending 

on its concentration, DBMIB can donate electrons directly to PC
+
 and P700

+
 (Schansker et 

al., 2005), which may explain why there is a slow re-reduction upon the DBMIB-treatment in 

the dark. 

 

Starch accumulation and degradation during sulphur deprivation 

It is well established that at the beginning of sulphur deprivation starch rapidly accumulates 

and later starch degradation will contribute significantly to the H2 production and to the 

maintenance of anaerobiosis (Zhang et al., 2002). Fig. 9 shows that the amount of 

accumulated starch was about 25% lower in the S-01 strain than in CC124 after 24 hrs of 

sulphur deprivation. The amount of starch is about 15% lower in the Asc-treated samples 

both in the S-01 and the CC124 strains, which may be explained by the inhibition of OEC 

activity during the first 24 h (Fig. 5).  

The rate of starch degradation is much lower in the S-01 strain than in CC124: by the 

fourth day of sulphur deprivation only approximately 10% is degraded in S-01, whereas in 

CC124 all the accumulated starch is consumed (Fig. 9). In S-01 starch consumption was 

increased by Asc during the termination phase, i.e. from day 4 to 6, whereas in CC124, starch 

degradation rates were very similar in the presence or absence of externally added Asc during 

the entire experiment.  

 

The effects of Asc on in vitro hydrogenase activity 

In order to test if Asc directly affects the activity or the amount of the hydrogenase enzyme 

accumulated, in vitro H2 production measurements were carried out. H2 production peaks on 

day 2 in the strain CC124; in the strain S-01 H2 production is yet moderate and there is 

significant O2 accumulation. The data of Suppl. Fig. 3 show that the H2 producing capacity 

was about 6-fold higher in the CC124 than in the S-01 strain (approximately 1 and 0.17 µl 

H2/min, respectively) and that the supplied Asc did not have any effect on these values.  
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Discussion 

 

It is a widespread view that the loss of PSII activity during sulphur deprivation is due to the 

inhibition of PSII repair, since the repair of the photoinhibited reaction centers requires de 

novo protein synthesis, which is halted by the lack of sulphur and by the inability of the cells 

to synthesize the required amino acids (Zhang et al., 2002). However, cell division and Chl 

biosynthesis are stopped shortly after the initiation of sulphur deprivation (Zhang et al., 2002 

and Suppl. Fig. 2), thus the sulphur content within the cells is not expected to change 

drastically. Moreover, algal cells also have sulphur reserves in the form of cysteine and 

methionine, which are used up following transfer to sulphur-free medium (Matthew et al., 

2009). The loss of sulphur from the media itself also cannot explain the differences between 

the C. reinhardtii genotypes in terms of PsbA content decrease nor that externally provided 

Asc slows down the degradation of PsbA (Fig. 7). Therefore, it is unlikely that the lack of 

sulphur would hinder the repair of PsbA leading to a loss of PSII activity.  

Indeed, gene expression analyses suggest that the picture is very complex. Regulatory 

elements controlling sulphur deprivation responses have been identified, such as the sulphur 

acclimation gene SAC1 (Wykoff et al., 1998, Zhang et al., 2004), and the SNRK2.1 and 

SNRK2.2 kinases, which are responsible for repression of sulphur-inducible genes and 

repression of chloroplast transcription (Irihimovitch and Stern, 2006; González-Ballester et 

al., 2008; González-Ballester et al., 2010).  

Response in gene expression occurs already after a few hours of sulphur deprivation 

(González-Ballester et al., 2008), during which most photosynthetic genes, Rubisco and 

antenna proteins genes are down-regulated (see also Toepel et al., 2013). In parallel, there is a 

strong up-regulation of specific LHCBM and LHCSR genes, which play a role in 

photoprotection and scavenging reactive oxygen species (Nguyen et al., 2011, Grewe et al., 

2014). Genes involved the mobilization and relocalisation of sulphur are also upregulated, all 

suggesting that there is a rapid and complex, “whole-cell” adaptation process involved in the 

initiation of H2 production (Aksoy et al., 2013, Toepel et al., 2013). These processes occur 

much faster than the actual loss of the PsbA protein (Zhang et al., 2002, Fig. 7 of this paper), 

supporting our view that sulphur starvation affects PSII activity in a different way than 

hindering the repair of PsbA.  
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Ascorbate accumulation and its effects on PSII 

Ascorbate is a metabolite with various functions in eukaryotic cells and most commonly it 

acts as a reductant. Its role in scavenging reactive oxygen species in plants is widely studied 

(reviewed by e.g. Foyer and Shigeoka 2011), but Asc also plays roles in cell division and cell 

wall synthesis and it modulates the synthesis of several signaling molecules. Ascorbate also 

modulates the expression of specific sets of photosynthesis and defense genes (reviewed by 

Smirnoff 2011) and recently an epigenetic role exerted as a cofactor for DNA and histone 

demethylases in the nucleus was demonstrated (Young et al., 2015). 

Cyanobacteria, algae and bryophytes contain much lower concentrations of Asc than 

higher plants (reviewed by Gest et al., 2013). The signaling pathways leading to Asc 

accumulation in plants are poorly understood. However, it has been demonstrated that in 

higher plants Asc levels are dependent of photosynthetic electron transport (Yabuta et al., 

2007), Asc biosynthesis responds to changes in light intensity, it is under circadian control 

(Page et al., 2012, Kiyota et al. 2006) and it is subject to feedback inhibition by Asc (Pallanca 

and Smirnoff, 2000). In C. reinhardtii these processes have not been studied, although it has 

been demonstrated that Asc biosynthesis responds quickly to H2O2 treatment and the VTC 

gene is upregulated (Urzica et al., 2012), which plays a central role in regulating the Asc 

contents in higher plants as well (Dowdle et al., 2007). It was shown recently that in the green 

alga, Chlorella sorokiniana sulphur deficiency causes oxidative perturbation resulting in a 

sudden increase in H2O2 concentration and Asc accumulation (Salbitani et al., 2015). On the 

other hand, transcriptomics data by Toepel et al. (2013) show that the expression of the VTC 

gene strongly increases upon sulphur deprivation as well. In line with these results, we here 

found that Asc biosynthesis in C. reinhardtii is strongly induced by sulphur deprivation (Fig. 

3). The addition of 10 mM Asc to the cultures upon the start of sulphur deprivation led to a 

rapid Asc content increase in the cells and similarly high Asc concentration was reached as in 

the non-Asc-treated samples (Fig. 3). Unexpectedly, the Asc treatment equalized the H2 

production in all the strains (Fig. 1). As also seen in Figs. 1 and 2 there is much less O2 

accumulated upon Asc addition; our results show that it is not due to stimulated starch 

consumption (Fig. 9), instead Asc inactivated the OEC as shown by TL measurements (Figs. 

4 and 6). Similarly, in sulphur-replete cultures, the OEC became partially inactivated when 

supplied with 10 mM Asc, although the cells recovered within a few hours, possibly due to 

the oxidation or metabolization of Asc (Fig. 4F); this shows that the OEC of C. reinhardtii 

may be susceptible to the reducing effect of Asc under normal growth conditions as well.  
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Earlier in vitro data indicate that Asc inactivates the Mn-cluster in higher plant PSII 

membrane preparations of which the extrinsic OEC proteins were removed by chemical 

treatments (Tamura et al., 1990). The redox potential of Asc (approximately +54 mV) enables 

both the over-reduction of the Mn-cluster and also the support of a continuous electron flow 

to TyrZ
+
; there are various chemicals with such properties of which hydroxylamine is the best 

studied example (Kuntzleman and Yocum 2005). The observation that in higher plants Asc 

over-reduces the Mn-cluster only in the absence of the extrinsic OEC proteins suggests that 

they have a role in shielding the Mn-cluster from luminal reductants, such as Asc. In C. 

reinhardtii the situation seems to be different: under ‘normal’, non-stress conditions, the Asc 

content is two to three orders of magnitude lower than in higher plant chloroplasts (Gest et 

al., 2013, Zechmann et al., 2011); when 10 mM Asc is externally supplied (both in sulphur-

replete and depleted cultures), it inactivates the Mn-complex (Fig. 4). Due to the sulphur 

deprivation, the Asc concentration increases strongly within the cell, which coincides with 

the inactivation of the OEC in both strains (Figs. 2, 3 and 6); this strongly suggest that under 

sulphur deprivation the naturally accumulating cellular Asc inactivates the Mn-complex of 

PSII. 

When the Mn-cluster is destroyed, charge separation may still occur in PSII and Asc can 

donate electrons to TyrZ
+
 with a halftime of 20-50 ms, depending on the Asc concentration 

within the cell (Tóth et al., 2009, Nagy et al., 2012). However, this electron donation by Asc 

is relatively slow compared to that from water oxidation and does not prevent completely the 

formation of strongly oxidizing compounds, such as TyrZ
+
 and P680

+
 (Tóth et al., 2011). 

Their accumulation leads to the so-called donor-side induced photoinhibition, i.e. inactivation 

of the charge separation activity of PSII (Chen et al., 1995, Jegerschöld and Stryring 1996) 

and rapid losses of the PSBO, PsbA and CP43 proteins (Tóth et al., 2011). Upon sulphur 

deprivation, the inactivation of the Mn-cluster was followed by the inactivation of PSII 

reaction centers, as shown by the complete elimination of variable fluorescence (Fig. 5) and 

the amounts of PsbA and PSBO proteins were also strongly reduced (Fig. 7), indicating that 

donor-side induced photoinhibition occurred. The inactivation of PSII and degradation of 

PsbA and PSBO happened earlier in the CC124 strain, which is characterized by a faster 

accumulation of cellular Asc and earlier OEC inactivation compared to the S-01 strain. 

 

  



 

 
This article is protected by copyright. All rights reserved. 

The overall effect of ascorbate on the photoproduction of H2 

When Asc was supplied externally, it had a positive effect on the total H2 production of the 

weak-performing strains (e.g. S-01) and a strong negative effect on the good H2-producing 

strains (e.g. CC124, Fig. 1). The CC124 strain has a high respiration rate (Rühle et al., 2008) 

and efficient starch degradation (Fig. 9), which can compensate for a relatively large O2 

evolution and the electrons released by the OEC may be efficiently used for H2 production. 

When Asc is added, it suddenly decreases the OEC activity and -since the electron donation 

by Asc is relatively slow compared to that of the OEC (Tóth et al., 2009)-, much less 

electrons will become available for H2 production. On the other hand, in a strain with slow 

starch degradation (S-01), the inactivation of the OEC is beneficial, since the inhibitory effect 

of O2 on the hydrogenase may be eliminated and the electron supply to PSII by Asc (resulting 

in no O2 evolution) will increase H2 production, to the level of the Asc-treated CC124 strain 

(Fig. 1). It is also important to note that not only the rate of starch degradation, but also the 

hydrogenase activity of the CC124 and the S-01 strains differ significantly after three days of 

sulphur deprivation (Fig. 9) and it is independent of the addition of Asc. Equal H2 production 

was measured in the Asc-treated CC124 and S-01 strains (Fig. 1), which underlines the 

importance of linear electron flux in the process of photobiological H2 production. In other 

words, when linear electron transport is limited, neither efficient starch degradation nor high 

hydrogenase activity would result in strong H2 production.  

In summary, we propose a novel mechanism for PSII inactivation during sulphur 

deprivation. Ascorbate accumulates dramatically upon sulphur deprivation (which is probably 

induced by oxidative stress conditions) and when it reaches the mM range in the cell, it 

inactivates the Mn-cluster due to its reducing capacities. There is a slow electron donation by 

Asc to PSII, but donor-side induced photoinhibition may still take place, causing a loss of the 

charge separating activity of PSII. Meanwhile, anaerobiosis is also established, which is 

essential for the initiation of H2 production. Thus, Asc seems to have an important 

modulatory effect on photobiological H2 production in C. reinhardtii.  
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Figure 1. H2 (A) and O2 (B) accumulation by several C. reinhardtii strains without or with 10 

mM Na-Asc added to the cultures at the start of sulphur deprivation. The amounts of H2 and 

O2 were determined daily by GC and the accumulated gases were removed by N2 flushing 

after the measurements each day. Averages of the total H2 and O2 gases accumulated during 

four days, in three independent experiments are presented. Error bars represent standard 

errors and the significance level between the Asc-treated and untreated samples are presented 

as: * p<0.05; ** p<0.01;*** p<0.001.  
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Figure 2. H2 and O2 accumulation by S-01 (A, B) and CC124 (C,D) strains of C. reinhardtii 

without (A,C) or with 10 mM Na-Asc added to the cultures (B,D) at the start of sulphur 

deprivation. The amounts of H2 and O2 were determined daily by GC and the accumulated 

gases were removed by N2 flushing after the measurements each day. Averages of the H2 and 

O2 gases accumulated during six days, in eight independent experiment are presented. Error 

bars represent standard errors. 
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Figure 3. Asc accumulation in S-01 and CC124 C. reinhardtii cells without or with 10 mM 

Na-Asc added to the cultures at the start of sulphur deprivation. The presented values are 

derived from three independent experiments, shown with their standard errors. 
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Figure 4. Thermoluminescence emission of the S-01 (A, B) and CC124 (C, D) C. reinhardtii 

strains, in the absence (A, C) and presence (B, D) of 10 mM Na-Asc added at the beginning 

of sulphur deprivation. E: TL emission of sulphur-deprived but unsealed CC124 cultures, 

without Asc addition, F: TL emission from Asc-treated (10 mM Na-Asc) sulphur-replete and 

unsealed CC124 cultures. 
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Figure 5. Chl a fluorescence (OJIP) transients of H2-producing S-01 (A, B) and CC124 (C, 

D) C. reinhardtii strains, in the absence (B, D) or presence (A, C) of 10 mM Na-Asc added at 

the beginning of sulphur deprivation. The approximate positions of the different steps of the 

OJIP transients are indicated. 
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Figure 6. Time courses of the decrease of B the thermoluminescence band and the FV/FM 

value during sulphur deprivation of S-01 (A, B) and CC124 (C, D) cultures, without (A and 

C) and with (B and D) the addition of 10 mM Na-Asc. The data are derived from at least 

three independent experiments and are shown with their standard errors. 

 

  



 

 
This article is protected by copyright. All rights reserved. 

 

 
 

Figure 7. Western blot analysis for the PsbA (A, D), and PSBO (B, E) and ATPD (used as 

loading control; C, F) proteins of S-01 (A, B, C) and CC124 (C, D, E) cultures, deprived of 

sulphur without or with 10 mM Na-Asc added. The first four lanes (25%, 50%, 100% and 

200% of 0 h sulphur-deprived cultures) are included for approximate quantification of the 

proteins. 
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Figure 8. Effects of DCMU (20 µM) and DBMIB (5 µM) on the light-induced 830 nm 

absorbance transients in S-01 (A, C) and CC124 (B, D) C. reinhardtii cultures deprived of 

sulphur for 72 hrs. After the addition of DCMU or DBMIB, the cells were dark-adapted for 

15 min and then 5 ml of cells suspension (8 µg Chl/ml) was filtered onto a Whatman glass 

microfibre filter (GF/C). The kinetics were measured during continuous illumination with red 

light of about 2000 µmol m
-2

 s
-1

 photon flux density (A, B); after 20 s, the light was switched 

off and the re-reduction kinetics was measured in the dark (C, D). The traces are averages of 

4-6 measurements. n.a., no addition. 
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Figure 9. Starch accumulation and degradation measured as glucose equivalents during 

sulphur deprivation in the S-01 and CC124 strains without and with 10 mM Na-Asc added. 

The data are derived from three independent experiments and are shown with their standard 

errors. 

 


