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Richardson extrapolation is a simple but powerful computational tool to enhance the accuracy of time integration methods. In
the past years a few theoretical and partly practical works have been presented on this method. Detailed numerical applications of
this method, however, are rarely found in the literature. Therefore, it is worth investigating whether this promising technique lives
up to the expectations also in practice. In this paper we investigate the efficiency of the Richardson method in one-dimensional
numerical (reaction-diffusion) problems.

1. Introduction

Phenomena occurring in nature and in laboratories can be
understood and described by mathematical models. Most of
those models are time-dependent ordinary or partial differ-
ential equations that cannot be solved analytically due to
the highly nonlinear nature of the functions appearing in
the equations. To overcome this problem, several numerical
solving strategies have been developed in the past few
decades, which can provide an accurate numerical solution
to the original problem [1, 2].

Partial differential equations (PDEs), containing time (𝑡)
and space (𝑥, 𝑦, 𝑧) as independent variables, can describe
the spatiotemporal evolution of a set of physical quantities
(physical system). This mathematical framework is used to
understand and describe physical systems in various fields of
science and technology. There are many processes (e.g., mass
transport and pattern formation) which can be described
and understood by reaction-diffusion systems. Generally,
reaction-diffusion systems are mathematical models that
describe the spatial and temporal variations of concentrations
of chemical substances. From themathematical point of view,
the reaction-diffusion system is a set of parabolic PDEs [3].

The solution of PDEs should be accurate and the com-
putational time should be small. There are several situations
where the set of PDEs is used to make predictions such as
in the case of weather prediction models, and thus the com-
putational time should be dramatically reduced to use the
solution in real-time applications. There are predominantly
two strategies that can be used to increase the accuracy of the
solution and reduce the computational time. First is develop-
ing sophisticated numerical schemes and methods that can
increase the accuracy [4, 5]. This involves more computa-
tional effort. Second, computational time of mathematical
models consisting of PDEs can be efficiently reduced, apply-
ing parallelization strategies on supercomputers, clusters,
grids, and graphical processing units (video cards) [3, 6–10].

In this study, we show an efficient numerical method
called Richardson extrapolation to increase the accuracy of
the solution of various reaction-diffusion and advection
systems. Four different problems are investigated and exam-
ined, including (i) simple diffusion of a chemically inert com-
pound, (ii) diffusion with first- and second-order reaction
of a chemical compound, (iii) advection process, and (iv)
phase separation (pattern formation) in the wake of amoving
diffusion front.
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2. Richardson Extrapolation Methods

Richardson extrapolation is a powerful tool to increase the
accuracy of any numerical method. It consists in applying
the given numerical scheme with different discretization
parameters (usually ℎ and ℎ/2) and combining the obtained
numerical solutions by properly chosen weights. Namely,
if 𝑝 denotes the order of the selected numerical method,
𝑤
𝑛
denotes the numerical solution obtained by ℎ/2, and 𝑧

𝑛

denotes that obtained by ℎ, then the combined solution

𝑦
𝑛
=
2𝑝𝑤
𝑛
− 𝑧
𝑛

2𝑝 − 1
(1)

has order 𝑝 + 1. This method was first extensively used by
Richardson, who called it “the deferred approach to the limit”
[11]. The Richardson extrapolation is especially widely used
for time integration schemes, when, as a rule, the results
obtained by two different time step sizes are combined.

The Richardson extrapolation can be implemented in two
different ways. During the passive Richardson extrapolation
the combined solution is not used in the further computa-
tions, while in the active version it serves as an initial value
for the next time step. Results concerning the stability and
convergence of different numerical methods combined with
the Richardson extrapolation can be found in [12–14]. In
this paper, we investigate both the passive and the active
Richardson methods in the selected reaction-diffusion and
advection problems.

3. Model Applications

In the following sections we investigate the efficiency of
the passive and active Richardson extrapolations on several
one-dimensional model problems. First the problems were
discretized in space using second-order finite differences and
a small spatial step size. Then the obtained systems of time-
dependent ordinary differential equations were solved by the
forward Euler method, both with and without Richardson
extrapolation. In this manner the errors resulting from the
spatial discretization can be assumed to bemuch smaller than
those arising from the time discretization. Since the forward
Euler method is of first order, the Richardson extrapolation
should result in a second-order time discretization method.

In all the simulations, each model problem was solved on
the same time interval using different time step sizes. In each
case wemeasured the running time, which can be considered
as the computational time needed by the given method, since
the optimal exploitation of the computer memory was not
an issue in these simple models. The codes were written in C
programming language.The running timesweremeasured by
the clock( ) function contained by the time.h header. All the
computations were performed on the same Toshiba Satellite
L750-1n3 laptop byUbuntu 12.04 LTS operational system, and
the C compiler g++ was used, which is easy to apply on a
Linux terminal.

The model results were compared with a reference solu-
tion obtained by the forward Euler method with a very small
time step size (Δ𝑡 = 10

−7). The grid step size in all simulation
was fixed (Δ𝑥 = 1).
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Figure 1: Discretization scheme of the diffusion problem.

4. Diffusion

Our basic model problem was the one-dimensional diffusion
equation

𝜕𝑐

𝜕𝑡
− 𝐷

𝜕
2𝑐

𝜕𝑥2
= 0, 𝑥 ∈ [0, 1000] , 𝑡 ∈ [0, 1000] (2)

equipped with Neumann boundary condition and an initial
condition describing a peak (constant zero function with the
exception of themiddle point of the spatial domain where the
valuewas 1).The value of the diffusion coefficient𝐷was equal
to 1 for simplicity. We generated a mesh with step sizes Δ𝑥
and Δ𝑡 on the space-time domain of the problem.Then, after
a standard spatial discretization of the second-order spatial
derivative, we applied the forward Euler method for time
integration, which resulted in the formula

𝑐 (𝑥
𝑚
, 𝑡
𝑛+1

) = 𝑐 (𝑥
𝑚
, 𝑡
𝑛
) + 𝐷

⋅
𝑐 (𝑥
𝑚−1

, 𝑡
𝑛
) − 2 ⋅ 𝑐 (𝑥

𝑚
, 𝑡
𝑛
) + 𝑐 (𝑥

𝑚+1
, 𝑡
𝑛
)

Δ𝑥2

⋅ Δ𝑡.

(3)

Here 𝑐(𝑥
𝑚
, 𝑡
𝑛
) stands for the approximation of the exact

solution 𝑐 at the mesh point 𝑥
𝑚
and time layer 𝑡

𝑛
. This finite

difference scheme is illustrated in Figure 1.
The numerical solutions obtained by Figure 1 with and

without Richardson extrapolation were compared to the
reference solution, and the absolute and relative errors were
evaluated. Table 1 shows the absolute errors for decreasing
time step sizes. Here and in the further tables the values given
in parentheses in the 𝑖th row of the table show the estimated
error order computed from the error obtained for the given
time step (Δ𝑡

𝑖
) and the error obtained for the previous time

step (Δ𝑡
𝑖−1

) according to the formula

𝑝 ≈
ln (error

𝑖−1
/error

𝑖
)

ln (Δ𝑡
𝑖−1

/Δ𝑡
𝑖
)

. (4)

For a first-order method we should obtain values of 𝑝 around
1, while for a second-order formula we should obtain values
of 𝑝 around 2. One can see that the forward Euler method
behaves like a first-order method, while both Richardson
extrapolations increased the order by one, according to the
expectations. The higher order can be observed only for
larger time steps, and then the decrease of the errors slows
down. This can be explained by the fact that the accuracy of
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Table 1: Absolute error of the diffusion problem without and with passive/active Richardson extrapolation (with the estimated convergence
order in parentheses).

Time step Absolute error
Euler Passive Richardson Active Richardson

2.00 × 10−1 7.00 × 10−5 — 1.14 × 10−8 — 6.98 × 10−9 —
1.67 × 10

−1

5.84 × 10
−5 (1.000) 7.91 × 10

−9 (2.019) 4.86 × 10
−9 (1.991)

1.43 × 10−1 5.00 × 10−5 (1.000) 5.79 × 10−9 (2.027) 3.58 × 10−9 (1.987)
1.25 × 10−1 4.38 × 10−5 (1.000) 4.41 × 10−9 (2.035) 2.75 × 10−9 (1.978)
1.11 × 10−1 3.89 × 10−5 (1.000) 3.47 × 10−9 (2.043) 2.18 × 10−9 (1.971)
1.00 × 10

−1

3.50 × 10
−5 (1.000) 2.79 × 10

−9 (2.054) 1.77 × 10
−9 (1.961)

5.00 × 10−2 1.75 × 10−5 (1.000) 6.44 × 10−10 (2.117) 4.91 × 10−10 (1.852)
3.33 × 10−2 1.17 × 10−5 (1.000) 2.74 × 10−10 (2.109) 2.77 × 10−10 (1.413)
2.50 × 10

−2

8.75 × 10
−5 (1.000) 1.95 × 10

−10 (1.183) 2.12 × 10
−10 (0.934)

2.00 × 10−2 7.00 × 10−6 (1.000) 1.73 × 10−10 (0.520) 1.83 × 10−10 (0.650)
1.00 × 10−2 3.50 × 10−6 (1.000) 1.46 × 10−10 (0.252) 1.48 × 10−10 (0.308)
2.00 × 10

−3

7.00 × 10
−6 (1.000) 1.42 × 10

−10 (0.016) 1.42 × 10
−10 (0.024)

1.00 × 10−3 3.50 × 10−7 (1.000) 1.42 × 10−10 (−0.004) 1.42 × 10−10 (−0.001)
2.00 × 10−4 7.01 × 10−8 (0.999) 1.42 × 10−10 (0.000) 1.42 × 10−10 (0.000)
1.00 × 10−4 3.51 × 10−8 (0.997) 1.42 × 10−10 (−0.001) 1.42 × 10−10 (0.001)
2.00 × 10

−5

7.12 × 10
−9 (0.991) 1.42 × 10

−10 (0.000) 1.42 × 10
−10 (0.000)

1.00 × 10−5 3.62 × 10−9 (0.975) 1.42 × 10−10 (0.002) 1.42 × 10−10 (0.000)
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Figure 2: Absolute error as a function of time step for the Euler
method without and with passive and active Richardson extrapo-
lation, by grid step Δ𝑥 = 1 and coefficient 𝐷 = 1.0. The reference
solution was calculated using Δ𝑡 = 10

−7.

the computation is limited by the accuracy of the reference
solution, which is a numerical solution obtained by a very
small time step and the same spatial grid size. This maximal
accuracy is achieved by the Richardson extrapolation rather
early, which shows the robustness of this method. Note that
the accuracy that can be achieved by the pure forward Euler
method by a time step size of 1.00 × 10

−5 can be achieved
by the passive Richardson method already by using a time
step size of 1.25 × 10−1 and by the active Richardson method
by a time step size of 1.43 × 10−1. Figures 2 and 3 also show
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Figure 3: Relative error as a function of time step for the Euler
method without and with passive and active Richardson extrapo-
lation, by grid step Δ𝑥 = 1 and coefficient 𝐷 = 1.0. The reference
solution was calculated using Δ𝑡 = 10

−7.

that bothRichardsonmethods are significantlymore accurate
than the forward Euler method in itself when the same time
step is used. However, it is not worth reducing the time step
size beyond all bounds.

Accuracy is not the only point of view that we should con-
sider. It is also important that the results should be achieved
within reasonable computational time. Table 2 shows the
running times for the studied methods and the step lengths.
One can see that the extrapolation methods roughly take
twice as much time as the pure Euler method for the same
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Table 2: Computational times of the diffusion problemwithout and
with passive/active Richardson extrapolation.

Time step
Computational time (s)

Euler Passive
Richardson

Active
Richardson

0.20 0.05 0.12 0.14
0.17 0.07 0.13 0.17
0.14 0.08 0.15 0.20
0.13 0.08 0.18 0.23
0.11 0.09 0.20 0.25
0.10 0.10 0.22 0.29
0.05 0.19 0.43 0.56
0.03 0.29 0.66 0.83
0.03 0.38 0.87 1.11
0.02 0.48 1.08 1.39
0.01 0.96 2.16 2.76
0.002 4.76 10.79 14.36
0.001 9.57 21.64 27.62
0.0002 47.95 106.92 138.50
0.0001 94.58 213.67 275.30
0.00002 474.86 1077.50 1381.50
0.00001 953.78 2153.56 2885.96
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Figure 4: Relative error as a function of computational time for
the Euler method without and with passive and active Richardson
extrapolation, by grid step Δ𝑥 = 1 and coefficient 𝐷 = 1.0. The
reference solution was calculated using Δ𝑡 = 10

−7.

time step; however, as Figure 4 tells us, they are much more
accurate.

For example, if a relative error of 0.7 is required, then
the forward Euler method without Richardson extrapolation
needs 4.76 s, with passive Richardson extrapolation 0.12 s,
and with the active one 0.29 s, to achieve this goal. The
latter method results in an almost fortyfold acceleration,
while the previous one results in a 16-fold acceleration in
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Figure 5: Absolute error as a function of time step in case of a
quadratic reaction term for the Euler method without and with
passive and active Richardson extrapolation, by grid step Δ𝑥 = 1

and coefficient𝐷 = 1.0. The reference solution was calculated using
Δ𝑡 = 10−7.

the computation. The passive extrapolation is the most
efficient method from the three. Interestingly, it has a local
minimum in the relative error (here the solutionwas obtained
in 10.79 s). The result of this run is more accurate by
more than two magnitudes than the most accurate Eulerian
solution that we could obtain.

5. Diffusion with Linear or Quadratic
Reaction Terms

For a more extensive analysis of the diffusion problem we
supplemented the diffusion term with (i) a linear and (ii) a
quadratic reaction term; that is, the following equations were
considered:

𝜕𝑐

𝜕𝑡
− 𝐷

𝜕
2

𝑐

𝜕𝑥2
+ 𝑘 ⋅ 𝑐 = 0, 𝑥 ∈ [0, 1000] , 𝑡 ∈ [0, 1000] ,

𝜕𝑐

𝜕𝑡
− 𝐷

𝜕
2

𝑐

𝜕𝑥2
+ 𝑘 ⋅ 𝑐

2

= 0, 𝑥 ∈ [0, 1000] , 𝑡 ∈ [0, 1000] ,

(5)

where the reaction rate constant 𝑘 was equal to 1. The diffu-
sion coefficient, the meshes, and the supplementary condi-
tions were the same as in the pure diffusion problem studied
in the previous section.

The obtained absolute errors are given in Tables 3 and
4. In the case of the extra linear term, similar results have
been obtained as in the pure diffusion problem; that is, the
extrapolation methods significantly enhanced the efficiency.
However, the addition of the quadratic term did cause some
slight differences in the appearance of the error curves.
Figure 5 shows no stationary section in the domain of the
small time step sizes that were observed in the pure diffusion
case. However, a thorough analysis reveals that it is not worth
using extremely small time steps in this case, either.
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Table 3: Absolute error of the diffusion problem with linear reaction term without and with passive/active Richardson extrapolation (with
the estimated convergence order in parentheses).

Time step Absolute error
Euler Passive Richardson Active Richardson

2.00 × 10−1 6.90 × 10−5 — 1.14 × 10−8 — 6.90 × 10−9 —
1.67 × 10−1 5.75 × 10−5 (1.000) 7.89 × 10−9 (2.012) 4.80 × 10−9 (1.990)
1.43 × 10

−1

4.93 × 10
−5 (1.000) 5.78 × 10

−9 (2.016) 3.53 × 10
−9 (1.986)

1.25 × 10−1 4.32 × 10−5 (1.000) 4.42 × 10−9 (2.021) 2.71 × 10−9 (1.982)
1.11 × 10−1 3.84 × 10−5 (1.000) 3.48 × 10−9 (2.027) 2.15 × 10−9 (1.976)
1.00 × 10−1 3.45 × 10−5 (1.000) 2.81 × 10−9 (2.034) 1.75 × 10−9 (1.970)
5.00 × 10

−2

1.73 × 10
−5 (1.000) 6.63 × 10

−10 (2.083) 4.60 × 10
−10 (1.926)

3.33 × 10−2 1.15 × 10−5 (1.000) 2.66 × 10−10 (2.247) 2.23 × 10−10 (1.786)
2.50 × 10−2 8.63 × 10−6 (1.000) 1.34 × 10−10 (2.402) 1.42 × 10−10 (1.561)
2.00 × 10−2 6.90 × 10−6 (1.000) 7.88 × 10−11 (2.364) 1.07 × 10−10 (1.263)
1.00 × 10

−2

3.45 × 10
−6 (1.000) 4.68 × 10

−11 (0.751) 6.75 × 10
−11 (0.668)

2.00 × 10−3 6.90 × 10−7 (1.000) 6.24 × 10−11 (−0.179) 6.33 × 10−11 (0.040)
1.00 × 10−3 3.45 × 10−7 (1.000) 6.30 × 10−11 (−0.015) 6.33 × 10−11 (0.001)
2.00 × 10−4 6.91 × 10−8 (1.000) 6.33 × 10−11 (−0.002) 6.32 × 10−11 (0.000)
1.00 × 10

−4

3.46 × 10
−8 (0.999) 6.32 × 10

−11 (0.000) 6.33 × 10
−11 (0.000)

2.00 × 10−5 6.95 × 10−9 (0.997) 6.32 × 10−11 (0.000) 6.32 × 10−11 (0.000)
1.00 × 10−5 3.50 × 10−9 (0.990) 6.32 × 10−11 (0.001) 6.32 × 10−11 (0.001)

Table 4: Absolute error of the diffusion problem with quadratic reaction term without and with passive/active Richardson extrapolation
(with the estimated convergence order in parentheses).

Time step Absolute error
Euler Passive Richardson Active Richardson

2.00 × 10−1 7.51 × 10−5 — 4.97 × 10−6 — 3.43 × 10−6 —
1.67 × 10−1 6.23 × 10−5 (1.027) 3.37 × 10−6 (2.134) 2.13 × 10−6 (2.596)
1.43 × 10−1 5.32 × 10−5 (1.019) 2.42 × 10−6 (2.138) 1.46 × 10−6 (2.469)
1.25 × 10

−1

4.65 × 10
−5 (1.015) 1.82 × 10

−6 (2.135) 1.06 × 10
−6 (2.388)

1.11 × 10−1 4.13 × 10−5 (1.012) 1.42 × 10−6 (2.128) 8.06 × 10−7 (2.330)
1.00 × 10−1 3.71 × 10−5 (1.011) 1.13 × 10−6 (2.121) 6.33 × 10−7 (2.288)
5.00 × 10

−2

1.85 × 10
−5 (1.007) 2.66 × 10

−7 (2.091) 1.39 × 10
−7 (2.185)

3.33 × 10
−2

1.23 × 10
−5 (1.003) 1.16 × 10

−7 (2.056) 5.95 × 10
−8 (2.098)

2.50 × 10−2 9.21 × 10−6 (1.002) 6.43 × 10−8 (2.040) 3.28 × 10−8 (2.065)
2.00 × 10−2 7.37 × 10−6 (1.002) 4.09 × 10−8 (2.030) 2.08 × 10−8 (2.047)
1.00 × 10

−2

3.68 × 10
−6 (1.001) 1.01 × 10

−8 (2.014) 5.13 × 10
−9 (2.019)

2.00 × 10
−3

7.36 × 10
−7 (1.000) 4.97 × 10

−10 (1.873) 3.23 × 10
−10 (1.719)

1.00 × 10−3 3.68 × 10−7 (1.000) 2.42 × 10−10 (1.035) 2.10 × 10−10 (0.618)
2.00 × 10−4 7.36 × 10−8 (1.000) 1.84 × 10−10 (0.171) 1.83 × 10−10 (0.086)
1.00 × 10

−4

3.68 × 10
−8 (1.001) 1.83 × 10

−10 (0.011) 1.83 × 10
−10 (0.006)

2.00 × 10
−5

7.32 × 10
−9 (1.002) 1.82 × 10

−10 (0.002) 1.83 × 10
−10 (0.000)

1.00 × 10−5 3.64 × 10−9 (1.007) 1.83 × 10−10 (−0.007) 1.83 × 10−10 (−0.005)
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Table 5: Absolute error of the advection problem without and with passive/active Richardson extrapolation (with the estimated convergence
order in parentheses).

Time step Absolute error
Euler Passive Richardson Active Richardson

2.00 × 10−1 9.79 × 10−3 — 1.01 × 10−5 — 7.13 × 10−5 —
1.67 × 10−1 8.14 × 10−3 (1.009) 7.01 × 10−6 (2.000) 4.93 × 10−5 (2.019)
1.43 × 10−1 6.97 × 10−3 (1.008) 5.15 × 10−6 (2.000) 3.62 × 10−5 (2.016)
1.25 × 10

−1

6.10 × 10
−3 (1.007) 3.94 × 10

−6 (2.000) 2.76 × 10
−5 (2.013)

1.11 × 10−1 5.41 × 10−3 (1.006) 3.11 × 10−6 (2.000) 2.18 × 10−5 (2.012)
1.00 × 10−1 4.87 × 10−3 (1.005) 2.52 × 10−6 (2.000) 1.76 × 10−5 (2.010)
5.00 × 10

−2

2.43 × 10
−3 (1.004) 6.31 × 10

−7 (2.000) 4.39 × 10
−6 (2.007)

3.33 × 10−2 1.62 × 10−3 (1.002) 2.80 × 10−7 (1.999) 1.95 × 10−6 (2.002)
2.50 × 10−2 1.21 × 10−3 (1.001) 1.58 × 10−7 (1.998) 1.10 × 10−6 (1.998)
2.00 × 10

−2

9.70 × 10
−4 (1.001) 1.01 × 10

−7 (1.996) 7.03 × 10
−7 (1.995)

1.00 × 10−2 4.85 × 10−4 (1.001) 2.59 × 10−8 (1.965) 1.78 × 10−7 (1.981)
2.00 × 10−3 9.69 × 10−5 (1.000) 4.99 × 10−9 (1.023) 1.08 × 10−8 (1.744)
1.00 × 10−3 4.85 × 10−5 (1.000) 4.86 × 10−9 (0.037) 6.12 × 10−9 (0.814)
2.00 × 10

−4

9.69 × 10
−6 (1.000) 4.85 × 10

−9 (0.002) 4.89 × 10
−9 (0.139)

1.00 × 10−4 4.84 × 10−6 (1.001) 4.85 × 10−9 (0.000) 4.86 × 10−9 (0.011)
2.00 × 10−5 9.64 × 10−7 (1.002) 4.85 × 10−9 (0.000) 4.85 × 10−9 (0.001)
1.00 × 10

−5

4.80 × 10
−7 (1.007) 4.85 × 10

−9 (0.000) 4.85 × 10
−9 (0.000)

6. Advection

One-dimensional advection is described by the equation

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
= 0, 𝑥 ∈ [0, 1000] , 𝑡 ∈ [0, 1000] , (6)

with advection velocity 𝑢, which was chosen to be 1. The
initial condition was the same peak as in the diffusion
model, and Neumann-type boundary condition was used at
the inflow boundary. The first-order spatial derivative was
discretized by a forward difference scheme, and then the
forward Euler method was applied for time integration. This
procedure leads to the relation

𝑐 (𝑥
𝑚
, 𝑡
𝑛+1

) = 𝑐 (𝑥
𝑚
, 𝑡
𝑛
) − 𝑢

⋅
𝑐 (𝑥
𝑚
, 𝑡
𝑛
) − 𝑐 (𝑥

𝑚+1
, 𝑡
𝑛
)

Δ𝑥
⋅ Δ𝑡.

(7)

Figure 6 illustrates the applied discretization scheme.
Table 5 and Figures 7 and 8 show the absolute and relative

errors of the applied methods. Note that both extrapolation
methods produced smaller absolute and relative errors than
the Euler method. For large time steps the active Richardson
extrapolation is only slightly better than the Eulerian scheme,
and then the Richardson extrapolation becomes more and
more accurate until the errors cannot decrease any further.

Figure 9 shows the relative errors as a function of the
running time. Although the active Richardson extrapolation
performs better than the pure Euler method, it is far less effi-
cient than the passive Richardson method, which only needs
19.16 s to produce the most accurate numerical solution. This
solution is 500 times more accurate than the best Eulerian
solution.

xm

tn

xm−2 xm−1 xm+1
tn−1

tn+1

Figure 6: Discretization scheme for the advection problem.
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was calculated using Δ𝑡 = 10

−7.
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Figure 9: Relative error as a function of computational time for
the Euler method without and with passive and active Richardson
extrapolation. In the simulation the grid step was Δ𝑥 = 1 and the
advection velocity 𝑢 = 0.1. The reference solution was calculated
using Δ𝑡 = 10−7.

To summarize, both extrapolation methods are suitable
for solving the advection problem, but the passive method is
significantly more efficient.

7. The Cahn-Hilliard Model

Finally, we consider a more complex reaction-diffusion
model problem, the so-called Cahn-Hilliard model [15–
17]. It is suitable for describing the phenomenon of phase
separation, which is used for the simulation of chemical

processes as well as for the formation of certain biological
patterns and nucleation in meteorology [18, 19].

We chose the above model because it contains a fourth-
order derivative of the unknown function. Our aim was to
investigate whether the Richardson extrapolation methods
show any noticeable difference due to the presence of the
higher-order derivative in a complex reaction-diffusion sys-
tem. We consider a pattern formation (phase separation) in
the wake of a reaction front. This front emerges due to a
strongly inhomogeneous initial distribution of the chemical
species 𝐴 and 𝐵. The reaction takes place in a domain
occupying the half-space 𝑥 > 0 and, initially, the inner
electrolyte 𝐵 is homogeneously distributed in it [𝑏(𝑥 > 0, 𝑡 =

0) = 𝑏
0
]. Chemical species 𝐴 with a much higher initial

concentration [𝑎(𝑥 > 0, 𝑡 = 0) = 10𝑏
0
] is brought into contact

with the domain at 𝑡 = 0. Assuming a chemical reaction
between reactants𝐴+𝐵 → 𝐶, the phase separation (pattern
formation) behind the advancing front can be described by
the set of equations

𝜕𝑎

𝜕𝑡
= 𝐷
𝐴

𝜕2𝑎

𝜕𝑥2
− 𝑘𝑎𝑏,

𝜕𝑏

𝜕𝑡
= 𝐷
𝐵

𝜕2𝑏

𝜕𝑥2
− 𝑘𝑎𝑏,

𝜕𝑐

𝜕𝑡
= −𝜆∇

2

(𝜖𝑐 − 𝛾𝑐
3

+ 𝜎∇
2

𝑐) + 𝑘𝑎𝑏,

𝑥 ∈ [0, 1000] , 𝑡 ∈ [0, 40000] ,

(8)

where 𝑘 is the reaction rate constant and, for simplicity, the
diffusion constants of the reagents are taken to be equal (𝐷

𝐴
=

𝐷
𝐵
= 𝐷), and 𝜆, 𝜖, 𝛾, and 𝜎 characterize the phase separation

process.
Solving the equations above, we can simulate the pattern

formation of chemical species 𝐶 in the wake of the reaction
front. The reference solution was computed again using the
forward Euler method with a very small time step (Δ𝑡 =

10
−7).
According to the results, the methods are not sensitive

to the appearance of the higher-order derivatives. Both
extrapolation methods can handle the problem very well
and produce much better results than the application of the
forward Eulerian method without extrapolation (Figure 10).

8. Conclusion

In this study, we showed a powerful integration method
calledRichardson extrapolation, which can be efficiently used
to solve various reaction-diffusion and advection problems.
This method increases the accuracy of the numerical results
at the cost of slightly increased computational time. However,
the Richardson extrapolation can provide an increase of
around two orders of magnitude in the computational time
to achieve the same error tolerance compared to a numerical
scheme without using the extrapolation method. Combining
this cost-efficientmethodwith parallel computing techniques
can provide a powerful method to solve partial differential
equations.
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Figure 10: Results of the numerical simulations for the Cahn-Hilliard type reaction-diffusion model obtained by the Euler method without
and with passive and active Richardson extrapolations. We used the following parameters in the simulations: Δ𝑥 = 1, 𝐷
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= 𝐷
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= 1.0,

𝑎
0
= 10.0, 𝑏

0
= 1.0, and 𝜆 = 𝜖 = 𝛾 = 𝜎 = 1.0. The reference solution was calculated using Δ𝑡 = 10−7.
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