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Abstract. Given various features of a software project, it may face different admin-
istrative challenges requiring right decisions by software project managers. A ma-
jor challenge is to estimate software development cost for which different methods
have been proposed by many researchers. According to the literature, the capa-
bility of a proposed model or method is demonstrated in a specific set of software
projects. Hence, the aim of this study is to present a model to take advantage of
the capabilities of various software development cost estimation models and meth-
ods simultaneously. For this purpose, a new model called “open hybrid model” was
proposed based on the firefly algorithm. The proposed model includes an extensible
bank of estimation methods. The model also includes an extensible bank of rules
to describe the relation between existing methods. Considering project conditions,
the proposed model tries to find the best rule for combining estimation methods in
the methods bank. Three datasets of real projects were used to evaluate the preci-
sion of the proposed model, and the results were compared with those of other 11
methods. The results were compared based on performance parmeters widely used
to show the accuracy and stability of estimation models. According to the results,
the open hybrid model was able to select the most appropriate methods present in
the methods bank.
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1 INTRODUCTION

According to the literature [30, 36, 5], various methods for software cost estimation
can be classified as algorithmic and non-algorithmic strategies. Both strategies can
be useful depending on the type of software projects. The efficiency will be increased
by proper identification of the requirements of each method. Each method has its
own advantages and disadvantages.

Moreover, different approaches have been recently used for software development
cost estimation. For instance, back propagation learning algorithms on a multilayer
perceptron and the genetic programming (GP) have been proposed for this pur-
pose [24]. Reddy et al. [33] used the multi-objective particle swarm optimization
(MOPSO) to develop a software cost estimation model which outperformed the
standard constructive cost model (COCOMO). Andreou and Papatheocharous [2]
employed fuzzy decision trees for software cost estimation.

A set of cost estimation methods are classified as algorithmic strategies. These
methods employ mathematical models for estimating project costs. These models
are defined as a function of cost factors.

Several algorithmic methods such as linear and nonlinear models, Putman’s
model, Seer-Sem model, function point model, Bailey and Basili model, Aron model,
Doty model, COCOMO (constructive cost model), and COCOMO II have been
proposed so far. COCOMO has been used by many researchers and thus is further
discussed in this section.

COCOMO was first proposed by Boehm in 1981 as an empirical model by col-
lecting data of different real-world software projects. The collected data are then
analyzed to obtain certain formulas matching observations. In addition, Boehm
et al. analyzed the developed version of COCOMO with more capabilities than the
earlier version and released it as COCOMO II [7, 8, 9].

As mentioned earlier, algorithmic methods based on one or more mathematical
formulas lack sufficient flexibility. Consequently, non-algorithmic models have been
proposed for cost estimation.

Unlike algorithmic methods, non-algorithmic methods are based on analytical
comparison and inference. The use of non-algorithmic methods requires accurate
information on prior projects. Non-algorithmic methods make estimations by ana-
lyzing prior datasets without employing any specific relation or equation. The most
common methods for estimating software criteria in non-algorithmic methods in-
clude exhaustive search, comparison, trial, error and inference. Some studies in this
field are reviewed below:

Cuadrado-Gallego et al. [10] analyzed and compared machine learning and ex-
pert judgment methods that have been extensively used for cost estimation of soft-
ware projects. To this end, they compared and pointed out advantages and disad-
vantages of seven machine learning methods including neural networks, fuzzy logic,
comparative analysis, decision trees, case-based reasoning (CBR) and rule-based
reasoning and hybrid systems. According to their results, CBR outperformed other
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methods. In fact, this method could be successful in the absence of statistical rela-
tionships.

Wen et al. [41] systematically analyzed machine learning models for software
cost estimation from four perspectives. They analyzed different studies completed
between 1991 and 2010 in terms of machine learning, estimation precision, compar-
ison models and estimation field. Different machine learning models have their own
advantages and disadvantages; thus, they can be employed in different fields. Huang
et al. [17] analyzed preprocessing as a major step of machine learning in software
project cost estimation. They aimed at empirical evaluation of the effect of data
preprocessing on machine learning methods for software cost estimation. Bardsiri
and Hashemi [6] employed the correlation analysis approach to evaluate the effi-
ciency and precision of five major machine learning methods for software project
cost estimation. They also analyzed the effect of feature selection on the estimation
precision.

Idri et al. [18] classified the papers published on CBR cost estimation by IEE,
ACM, ScienceDirect, and Google Scholar from 1990 to 2012 in terms of method-
ology, type and technique. According to their findings, ABE methods outper-
formed other techniques, especially when combined with the fuzzy logic or ge-
netic algorithm. Sigweni and Shepperd [37] systematically reviewed and evalu-
ated feature weighting techniques in the ABE method for software development
cost estimation. They analyzed different aspects of each technique in addition
to advantages, disadvantages and efficiency on different datasets. For this pur-
pose, they comprehensively reviewed all papers in this area published from 2000 to
2014.

González-Ladrón-de-Guevara et al. [15] analyzed software development cost es-
timation in the ISBSG dataset. They reviewed different studies on the ISBSG
dataset (2000–2013) to determine those ISBSG variables used in estimations and
to examine the effect of ISBSG variables on the development of cost estimation
models. They also determined dependent or independent variables. Out of 71
ISBSG variables, 20 variables were used as independent variables in most stud-
ies. Their findings can help other researchers in selecting appropriate variables in
cost estimation models. General algorithms can be used to develop a model from
databases. The EM clustering algorithm [14] was combined with the database seg-
mentation method leading to an exact model and estimate for size-effort criterion
and standard quality criterion. The estimation criterion improved the accuracy
of expected parameters in each segment using EM clustering algorithm and local
regression.

The use case points-activity based costing (UCPabc) method and function points
(FP) can be employed for software development cost estimation. Azzeh and Nassif
used UCPabc for software development cost estimation [4]; however, Dewi et al.
used FP for this purpose [12]. Dewi et al. compared FP and UCPabc and found
that the latter was much more accurate than the former [11].

Pospieszny et al. [31], Mensah et al. [26], Puspaningrum and Sarno [32], Moosavi
and Bardsiri [27], Wani and Quadri [40], Arora and Mishra [3], Abnane et al. [1],
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and Khuat and Le [20] respectively employed a linear method integrated with neural
networks, multivariate regression model, artificial neural networks integrated with
the harmony algorithm, neural networks integrated with the fuzzy method, neu-
ral networks, the fuzzy model and the artificial bee colony algorithm for software
development cost estimation.

Rastogi et al. [34] evaluated software cost estimation techniques and models
extensively. They compared and classiffied different methods and considered cost
estimation techniques resulting in a higher precision as a selection criterion. Ac-
cording to their results, all cost estimation techniques have their own advantages
and disadvantages. They also believe that there is no single method which can be
accepted by all researchers. Therefore, a combination of different methods should
be employed to achieve realistic cost estimation. Shekhar and Kumar [36] reviewed
and analyzed different software cost estimation techniques and models. For this
purpose, they analyzed advantages and disadvantages of different methods and con-
cluded that no single method could be used as the best cost estimation method
and a more accurate estimate could be achieved by combining different methods.
Pandey [30] classiffied software project cost estimation methods into parametric
and nonparametric models by analyzing different cost estimation techniques and
addressing their advantages and disadvantages. Khatibi and Jawawi [19] reviewed
and analyzed different software cost estimation methods from different points of
view. Each of the cost estimation methods can be employed efficiently in certain
projects and situations. The performance of any estimation method depends on
different parameters such as project complexity, project span, etc.

Ensemble models have been presented for estimating software development cost
by another group of scholars. In these models, independent methods attempt to
predict software development cost separately. The estimates from different methods
are then combined with a method to calculate the final estimate. Various estima-
tors and combinators have been used in the literature. Studies by Wu et al. [42],
Kocaguneli et al. [22], Elish [13], and Hsu et al. [16] can be noted in this re-
gard.

The reviewed studies suggest a single method or model can offer high estimation
accuracy only in a limited number of datasets. Ensemble models allow benefiting
from the advantages of different models and methods at the same time. A review
of ensemble models reveals they are based on a limited number of estimators and
combiners. Further, a survey of previous ensemble models shows using the same
combiner fails to produce the most accurate estimations in all datasets. This study
proposes an ensemble model that is not dependent on a set number of estimators
and combiners, and enabling it to combine its estimators intelligently and by the
best approach.

This article is organized as follows: Section 2 describes the background and
related work. Section 3 describes the firefly algorithm. Different criteria are intro-
duced to evaluate the precision of the model proposed in Section 4. The proposed
model and its evaluation method are introduced in Section 5 and Section 6, respec-
tively. The datasets of real projects introduced in Section 7 are used for testing. The
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results of testing the proposed model are compared to those of other 11 methods to
determine the superiority of the proposed model. These 11 methods are presented in
Section 8. Section 9 presents the results of testing the proposed model. The results
are analyzed statistically in Section 10. Conclusions and future work are reported
in Section 11.

2 BACKGROUND AND RELATED WORK

Ensemble models can be used in various data mining fields. Malgonde and Chari [25]
used an ensemble model for estimating agile software development cost. Silva
et al. [38] combined data mining techniques for predicting the export potential of
a company. In an article on network security, Ochieng et al. [28] described identi-
fication of worms by an ensemble model. Salehi et al. [35] proposed an ensemble
model by data mining techniques for cancer detection.

Various ensemble models have also been provided for software development cost
estimation. According to the literature on software development cost prediction
methods, ensemble models which include multiple predictors as a peer prediction
model give more accurate results than each of the individual methods [22]. Ensemble
models rely on multiple methods so that the inability of a method in providing an
accurate estimate can be compensated by the accurate estimates provided by other
methods and this is the main reason behind the success of these models [22].

Figure 1 shows the architecture of ensemble models. In general, ensemble models
consist of two important parts. The first part includes a set of individual estimation
models or methods (f1...m). The second part includes a set of various methods for
combining the estimations (C1...k) obtained from estimators in the first part. Each
combinator calculates an independent estimation. Accordingly, one can conclude
that if Part 1 or 2 or both include a diverse and accurate set of various models or
methods, the final model will be able to provide exact estimates in different datasets.

Figure 1. Architecture of ensemble models

Wu et al. [42] proposed an ensemble model for estimation of software develop-
ment cost. For this purpose, they combined estimates obtained from different CBR
methods by four linear combination techniques, namely median combination, mean
combination, weighted mean combination (WMC) and outperformance combination
(OC). The proposed model in their study was tested on two datasets. According to
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the results of these two datasets and based on the evaluation criterion MMRE, the
WMC combination techniques provided more accurate results in one of the datasets,
whereas the other combination technique (mean) led to more accurate results in the
other dataset. The results of tests based on the evaluation criterion MdMRE also
confirmed this point.

Elish [13] proposed an ensemble model for software development cost estimation.
He combined the estimates obtained from three different methods by eight combi-
nation methods. The model proposed by Elish was tested by different datasets.
According to the results, different combination methods led to best results based on
the same evaluation criterion used in various datasets.

Hsu et al. [16] developed an ensemble model consisting of COCOMO, linear
regression, CBR, grey relational analysis and artificial neural networks estimators.
Equally weighted combination, median weighted combination and weighted adjust-
ment based on a criterion were used for combining the estimations. The final model
was tested by different datasets. The results obtained from different combination
methods in various datasets indicated that no certain combination method was able
to obtain the best results in all datasets.

Song et al. [39] provided an ensemble model of five machine learning methods
for estimating software development cost. Kultur et al. [23] proposed an ensemble
model using neural networks. Pahariya et al. [29] provided an ensemble model in
which the results from computational intelligence techniques are combined by three
different methods to calculate the final estimate.

According to the literature, no certain combination method was able to calculate
the most accurate estimation in the different datasets, which raises the question
whether it is possible to provide an intelligent model to detect the ability of different
estimation methods in various datasets and select the best combination method.

The accuracy of ensemble estimation models is dependent on the accuracy and
diversity of models and methods in the 1 and 2 parts (Figure 1, the architecture of
ensemble models). According to the literature, the ensemble model is dependent on
a certain and limited set of estimator and combinator methods. On the other hand,
there are very diverse estimation and combination methods and new methods are
still added to this set. The important question raised here is whether a proposed
hybrid model can generate accurate results regardless of accuracy obtained from
combination or estimation methods used in its parts of 1 and 2 (Figure 1, the
architecture of ensemble models). Simply speaking, is it possible to eliminate factors
limiting the accuracy of the final model due to limitations of models or methods used
in the 1 or 2 part (Figure 1)? The model proposed in this article is able to eliminate
the above-mentioned limitations.

3 FIREFLY ALGORITHM

Firefly algorithm (FA) was first introduced by Xin-She Yang in 2009 [43]. FA is
a meta-heuristic optimization algorithm that imitates the social behavior of fireflies
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flying in the tropical and temperate summer sky. FA algorithm has been used based
on three principles:

1. Each firefly is capable of attracting other fireflies.

2. Attraction of each firefly depends on the level of its light so that the one with
more light attracts a firefly with less light. If no firefly has more light, one is
selected randomly.

3. The light of each firefly is under the influence of its distance from the goal.

As illustrated in Figure 2, each firefly generates a random solution. Then, some
parameters as light intensity, primary attractiveness, and absorption coefficient are
defined. Then, the most brilliant firefly is selected. Fireflies move toward a more
brilliant firefly. Moving toward each other, fireflies light decreases and their attrac-
tiveness varies. Next, the best firefly is picked up for repetitive cycle according to
an objective function. This process continues until the end condition is done.

The firefly attractiveness is due to its light determined by the objective function
from the problem. As the most optimized method, the I light of firefly in the specific
location of X can be selected as I(x) ∝ f(x). β is the relative attractiveness seen
by each firefly. Therefore, it would change with rij distance between i firefly and
j firefly. Additionally, light intensity decreases taking distance from the source.
Light is absorbed in media. Therefore, attractiveness varies as its ratio varies.

Figure 2. Pseudocode of firefly algorithm [43]

Each firefly owns its specific attractiveness

β(r) = β0e
−γrm ,m ≥ 1. (1)
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The distance between two fireflies of i and j is calculated through following formula

rij = |xi − xj| =

√√√√ d∑
k=1

(xi,k − xj,k)2. (2)

The movement of fireflies attracting more fireflies is calculated through the following
formula

xi = xi + β0e
γr2ij(xj − xi) + α

(
rand − 1

2

)
. (3)

Five parameters in the FA should be set for optimization purposes generally called
FA configuration for problem solving. The settings of these parameters vary with the
problem under study and expected objectives of the algorithm [43]. These settings
determine the behavior of the algorithm during problem solving. The FA parameters
are as follows:

1. N represents the number of fireflies used for problem solving.

2. MaxGeneration indicates the number of iterations.

3. Alpha (α) is a coefficient within the range [0, 1] and is multiplied by the random
number.

4. Betamin (β min) represents the minimum Beta (β) value, which is indicative of
attractiveness of the light source.

5. Gamma (γ) is determined considering attractiveness variations. This parameter
plays a key role in convergence rate and the behavior of FA.

A hyper-parameters tuning step was used for precise FA conguration. In this
step, the best α and γ were obtained in the [0, 1] and [0.1, 20] ranges, respectively,
by a comprehensive trial and error process.

4 ESTIMATION ERROR DETERMINATION EQUATIONS

Specific metrics were employed in this study to calculate the estimation error. These
metrics have been used in several studies to compare the research results with those
of other similar studies. The metrics include relative error (RE), magnitude of
relative error (MRE), mean magnitude of relative error (MMRE), median magnitude
of relative error (MdMRE) and prediction percentage (Pred), shown by metrics (4),
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(5), (6), (7) and (8):

RE =
Estimate− Actual

Actual
, (4)

MRE =
|Estimate− Actual|

Actual
, (5)

MMRE = Mean(MRE), (6)

MdMRE = Median(MRE), (7)

PRED(X) =
A

N
. (8)

5 PROPOSED MODEL

Different methods have been proposed for estimating important project parameters
such as cost. According to the literature, the methods can only operate properly in
limited datasets because of dependence on a certain estimation technique. Accord-
ing to this point, the challenge addressed in this study was to determine in which
datasets a method would operate more successfully, to what extent it would be suc-
cessful and how it would be possible to employ its high precision. For this purpose,
a new model called “open hybrid model” was proposed based on the FA. It is also
possible to add different estimation methods to the methods bank of the proposed
model.

5.1 The Open Hybrid Model

The proposed model in this study includes a bank of various estimation meth-
ods. The main idea of the model is that an estimator machine, based on a spe-
cific method such as the ABE, is capable of proper cost estimation only in few
datasets. Accordingly, the first objective of the proposed model is to test the
precision levels of different methods for estimating a set of projects. Then it in-
tends to allocate a specific value to each method with respect to its precision.
This value indicates the effectiveness of a method on the final estimation. The
model first divides the datasets of projects into basic, training and testing projects.
The proposed model operates in two stages: training and testing. In the train-
ing stage, the open hybrid model operates on basic and training projects. The
training stage aims at evaluating the precision of each method existing in the meth-
ods bank and also achieving the best configuration for the optimal use of each
method. In the testing stage, the open hybrid model operates on the basic and test-
ing projects to evaluate the precision of configuration obtained from the training
stage.
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5.2 Training

Figure 3 shows the training flowchart. As mentioned earlier, the training stage
operates on the basic and training projects. There are two banks of methods and
rules in this stage. The methods bank consists of different methods for software
development cost estimation. The rules bank includes different rules for integration
of estimation methods in the methods bank. The coordinator function (COF) in
the training stage employs the methods bank and rules bank. The COF needs a set
of projects for estimation. It makes use of other projects resembling the one which
should be estimated (P ′) to increase the estimation precision. To find projects
similar to P ′, it is clustered along with the basic projects based on specific features
(f list). The f list is a set of projects features recommended by FA. Based on the
accuracy of estimation from the training set, the FA attempts to recommend a better
f list in each iteration, selecting more similar projects to P ′ for its estimation. When
proposing f list , FA is only allowed to recommend from continuous features. The
P ′-containing cluster is then sent to the COF, which uses the received projects to
estimate P ′ based on the rule (proposed by FA) taken from the rules bank (this
specific rule determines how to use existing methods in the methods bank). Table 1
shows the rules in the rules bank where ESi represents the value of current project
estimated by ith method, and Wi (proposed by FA) indicates the coefficient of the
ith method existing in the methods bank. In some rules, er and m have been used
to reduce the estimation error. This study used the k-means clustering method in
which the number of clusters, denoted by k, should be adjusted. This parameter
is recommended by FA during the training stage and then improved in the later
iterations. The obtained k value is then used for testing.

# function

Rule 1 Cost = W1 × ES1 + W2 × ES2 + · · ·+ Wn × ESn
Cost = Cost + Cost ×m
Cost = Cost + er

Rule 2 Cost = Median(ES1...n)
Cost = Cost + Cost ×m
Cost = Cost + er

Rule 3 Cost = Mean(ES1...n)
Cost = Cost + Cost ×m
Cost = Cost + er

Rule 4 Cost = ESi (ESi is best method in training iteration)

Table 1. Rules bank

In each stage of the open hybrid model, the FA proposes k and f list for clus-
tering the projects and a rule with the required parameters and coefficients (W ,
er, m) of that rule to the COF in each iteration. The COF uses the proposed k,
f list and rule to estimate each and every project of the training set. Finally, the
estimation error of the training set is determined and returned as the feedback of
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the proposed k, f list and rule to the FA. In the next iteration, the FA tries to
propose k, f list and rule with more appropriate parameters and coefficients to the
COF. The output of the training stage includes the best k, f list and rule along
with the proposed parameters and coefficients required by that rule.

Figure 3. The training stage of the open hybrid model

5.3 Testing

As mentioned above, the testing stage operates on the basic and testing projects.
According to Figure 4, the resulting configuration of the previous stage is given as
the input to the model. The open hybrid model selects a project from the testing
set (P ′) and then clusters P ′ with basic projects based on the f list and k obtained
from the previous stage. The cluster including P ′ is then given to the COF for
estimating the development cost of P ′ based on the rule obtained from the previous
stage. Another project is then selected and estimated through the previous stages.
Iterations continue until no other projects remain in the testing set. Finally, the
estimation error of each project is used to determine MdMRE, MMRE, and Pred.
The results were used for comparing the models.
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Figure 4. The testing stage of the open hybrid model

As the notable advantage of the open hybrid model over previous methods, it
has been designed to add new methods and rules to the methods and rules banks.
The model is also able to measure the efficiency of the new method intelligently
and use it proportionately to its efficiency. Considering the methods used in the
methods bank, the existing methods should be so diverse that model can operate
dynamically in different modes and adapt to new conditions. The model proposed
in this paper was obtained by analyzing the results of numerous studies indicating
the success of any method in some datasets.

6 EVALUATION METHOD

The arrangement of samples in the training or testing stage may significantly affect
the results of estimation models [21]. Therefore, a method is required to show the
independency of results from the arrangement of samples to demonstrate the stabil-
ity of results produced by the proposed model. Different evaluation methods such as
3-fold, 10-fold, and leave one out (LOO) have been proposed for this purpose. The
LOO method was utilized in this study. In this method, when all projects except for
one are used in the training stage, only one project is used in the testing stage. The
nested LOO cross-validation was adopted in the compared methods. During train-
ing, different possible scenarios were considered for adjustable parameters by the
LOO method, and the best quantities were used for testing. The process continued
until tests completed for all projects.
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7 DATASETS

The Desharnaise dataset contains data of 81 software projects collected from Cana-
dian software houses. The software projects in this dataset have been described
by 11 features. The dependent cost feature is based on 1000 person-hours. Ten
independent features in this dataset include ‘TeamExp’, ‘ManagerExp’, ‘YearEnd’,
‘Duration’, ‘Transactions’, ‘Entities’, ‘AdjFP’, ‘AdjFactor’, ‘RawFP’, and ‘Dev.Env’.
Given that the data of 4 projects out of 81 projects in this dataset is missing and
not available, the tests were conducted using the remaining 77 projects.

The Albrecht dataset contains data on software projects designed by third
generation programming languages (3GLs). This dataset contains information on
24 projects. There is a dependent feature called ‘work hours’ in this dataset based
on 1 000 hr. There are also 7 independent features (‘input count’, ‘output count’,
‘query count’, ‘file count’, ‘line of code’, ‘RawFP’, and ‘function points’) in this
dataset.

The Kemerer dataset contains data on 15 software projects. The software
projects in this dataset have been explained by 6 independent features and 1 depen-
dent feature. The independent features include ‘Language’, ‘hardware’, ‘RawFp’,
‘Duration’, ‘KSLOC’ and ‘AdjFP’. ‘Cost’ is considered as a dependent feature in
this dataset and is measured by man-months. Table 2 shows the specifications of
these datasets.

# Dataset Number of Projects Number of Features Mean of Cost

1 kemerer 15 7 219
2 desharnise 77 11 4 833
3 albrecht 24 8 21

Table 2. Datasets

8 TECHNIQUES

The results obtained from testing the proposed model were compared with those
of different models to evaluate its precision. The following models were used for
comparison:

Voting Ensemble: Elish [13] proposed an ensemble model for software develop-
ment cost estimation. He combined the estimates obtained from three different
methods by eight combination methods

Linearly Weighted Combinations Model (LWCM): Hsu et al. [16] developed
an ensemble model consisting of COCOMO, linear regression, CBR, grey re-
lational analysis and artificial neural networks estimators. Equally weighted
combination, median weighted combination and weighted adjustment based on
a criterion were used for combining the estimations.
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Multilayer Perceptron (MLP): The neural network is a nonlinear modeling
technique and MLP is a widely used neural network based on a network of
neurons on an input layer with one or more hidden layers and an output layer.

Analog Based Estimation (ABE): ABE searches for the most similar sample to
that which should be estimated. This method employs its internal functions to
determine the resemblance of samples. The number of similar samples used for
estimation is determined by the parameter K.

PSO + ABE: An estimation model based on ABE and particle swarm optimiza-
tion (PSO) algorithm to increase the accuracy of software development cost
estimation.

Ordinary Least Squares (OLS): OLS, as a regression-based method, is employed
to determine the best regression line by minimizing the total squares.

Robust Regression (RoR): RoR is a regression-based method which can operate
more accurately by weighting against unconventional data.

Multivariate Adaptive Regression Splines (MARS): MARS is a nonlinear
nonparametric regression method with some interesting features such as ease of
interpretability, modeling nonlinear complicated relationships and quick model
development.

Classification and Regression Trees (CART): CART is an algorithm in which
decision trees are employed for classification.

M5: This method can be regarded as a new type of CART. The model tree created
by this method considers a linear regression for each leaf instead of determining
a single value.

Least Squares SVM (LSSVM): The support vector machine (SVM) is a non-
linear machine learning method capable of mapping the input state space onto
a space of higher dimensions leading to development of simpler linear regression
functions.

9 TESTING THE OPEN HYBRID MODEL

Albrecht, Desharnise and Kemerer datasetes were employed to test the open hybrid
model. The methods bank of the proposed model included CART, SWR, MLR,
ABE and LSSVM. No normalization processes were performed on the data, and
all of the methods were treated similarly and equally. The results of testing the
proposed model on each dataset are described below.

Table 3 compares the results obtained from testing the open hybrid model on
Albrecht with other methods. The proposed model was compared with other meth-
ods in terms of three different criteria (MMRE, MdMRE, and Pred). Accordingly,
the proposed model was 51 %, and 65 % more precise than the most precise method
in MMRE (Voting Ensemble), and the most precise method in MdMRE (LWCM),
respectively. These results also indicated the higher precision of the proposed model
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than other methods. Figure 5 shows the results on a diagram for a better compari-
son. As clearly seen, the proposed model is able to increase the estimation precision
simultaneously in terms of MdMRE, MMRE, and Pred.

Method MMRE MdMRE Pred

Open Hybrid 0.22 0.08 0.62
LWCM 0.63 0.23 0.62
Voting Ensemble 0.45 0.37 0.41
ABE 0.85 0.38 0.29
CART 1.04 0.51 0.33
LSSVM 0.88 0.63 0.33
M5’ 0.89 0.46 0.25
MARS 0.87 0.29 0.45
MLP 0.95 0.41 0.2
OLS 0.79 0.5 0.37
PSO + ABE 1.04 0.48 0.12
ROR 0.72 0.66 0.29

Table 3. The results of testing Albrecht in comparison with other methods

Figure 5. Comparing different methods in MMRE, MdMRE, and Pred on Albrecht

Table 4 compares the results of testing the open hybrid model on Kemerer with
other methods. The results were evaluated in terms of MMRE, MdMRE, and Pred.
Accordingly, the proposed model was nearly 54 %, 67 %, and 43 % more precise than
the most precise method in MMRE (LWCM), the most precise method in MdMRE
(LWCM), and the most precise method in Pred (Voting Ensemble), respectively.
For a better comparison, the test results were shown on a diagram in Figure 6 which
clearly depicts the precision of the proposed model on Kemerer in comparison with
other methods.
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Method MMRE MdMRE Pred

Open Hybrid 0.23 0.09 0.66
LWCM 0.5 0.28 0.33
Voting Ensemble 0.54 0.36 0.46
ABE 0.82 0.46 0.2
CART 0.96 0.61 0.06
LSSVM 0.64 0.55 0.26
M5’ 1.15 0.73 0.2
MARS 1.4 0.8 0.26
MLP 0.57 0.49 0.33
OLS 0.64 0.5 0.26
PSO + ABE 0.61 0.47 0.33
ROR 0.62 0.36 0.13

Table 4. The results of testing Kemerer in comparison with other methods

Figure 6. Comparing different methods in MMRE, MdMRE, and Pred on Kemerer

The proposed model was also tested on Desharnise and the results are presented
in Table 5. 11 other methods were also tested on this dataset. The results of
testing the proposed model were compared with those of other methods in terms of
MMRE, MdMRE, and Pred. According to the results, the proposed method was
nearly 35 %, 40 %, and 43 % more precise than the most precise method in MMRE
(Voting Ensemble), the most precise method in MdMRE (Voting Ensemble), and
the most precise method in Pred (Voting Ensemble), respectively. For a better
comparison, the results were also shown on a diagram in Figure 7, indicating the
proper capability of the proposed model.
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Method MMRE MdMRE Pred

Open Hybrid 0.26 0.17 0.59
LWCM 0.49 0.29 0.25
Voting Ensemble 0.4 0.28 0.41
ABE 0.74 0.4 0.28
CART 0.68 0.35 0.27
LSSVM 0.58 0.41 0.24
M5’ 0.72 0.39 0.29
MARS 1.19 0.57 0.23
MLP 0.91 0.54 0.24
OLS 0.71 0.53 0.27
PSO + ABE 0.87 0.4 0.4
ROR 0.6 0.49 0.36

Table 5. The results of testing Desharnise in comparison with other methods

Figure 7. Comparing different methods in MMRE, MdMRE, and Pred on Desharnise

10 TEST RESULT ANALYSIS

Wilcoxon statistical test with two input statistical samples was used to determine
the effectiveness of the proposed model. The output, P-value, shows the difference
between the two input samples. A small P-value indicates the difference of the two
samples, whereas a large value shows the similarity of both samples. A P-value
less than 0.05 means a large difference between the two samples. Table 6 lists the
Wilcoxon test results on MRE. It shows different P-values obtained from conducting
the Wilcoxon test on the MRE of each method in comparison with the proposed
model on different datasets. The results indicate the higher effectiveness of the
proposed model in increasing estimation precision.

The box plot was employed for detailed analysis of the results of the proposed
model. The box plot shows the MRE range obtained from testing the proposed
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Method Albrecht Kemerer Desharnise

ABE 0.0023 0.0021 0.0001
CART 0.0006 0.0014 7.95E−06
LWCM 0.019 8.00E−02 2.7E−02
Voting Ensemble 0.011 1.80E−02 4.20E−02
LSSVM 5.50E−04 4.70E−03 1.06E−05
M5’ 0.0003 0.0012 1.17E−05
MARS 0.044 0.0018 5.36E−10
MLP 0.0005 3.40E−02 2.41E−08
OLS 0.013 0.027 1.58E−08
PSO + ABE 9.32E−05 5.60E−02 0.0002
ROR 5.00E−04 2.40E−03 1.19E−05

Table 6. P-values of Wilcoxon test

model on a dataset. Using this box plot, the MRE range and precision of the
proposed model can easily be compared to those of other models. Figures 8, 9 and 10
show the box plots of MRE obtained from testing different methods on Albrecht,
Kemerer, and Desharnise, respectively. As can be seen, the proposed model shows
the lowest median and quartile range. All the results confirm the capability of the
proposed model.

Figure 8. The box plot of MRE obtained by testing the proposed model on Albrecht

11 CONCLUSION

Software development cost estimation is an important issue resulting in an effective
planning for software project management. Several methods and models have been
proposed for this purpose. Despite acceptable precision of the proposed methods in
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Figure 9. The box plot of MRE obtained by testing the proposed model on Kemerer

Figure 10. The box plot of MRE obtained by testing the proposed model on Desharnise

some cases, they fail operate accurately in other cases. The aim of this study was
to combine these methods to take their advantages simultaneously to obtain a more
accurate estimate. This idea led the authors to implement a model called the “open
hybrid model”.

The methods proposed in previous studies accurately estimate specific types of
software projects when they depend on a specific estimation method. However, the
challenge addressed here was to identify in what types of projects an estimation
method can operate successfully, to what extent it can be successful, and how it
is possible to take advantage of such a high level of precision. For this purpose,
a new model called open hybrid model was developed in Section 5 based on the
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FA. Different estimation methods can be added to the methods bank of this model.
The proposed model is able to find the best rule for employing the methods in the
methods bank using a variety of parameters and tools in the model.

The precision of the proposed model was evaluated by using three datasets
of software projects. The results were compared with those obtained by testing
11 methods. The results were evaluated in terms of MMRE, MdMRE, and Pred.
According to the results, the proposed model showed a high precision and ability to
use capabilities of the methods existing in its methods bank. The results of tests
were interpreted in detail in Section 9. Wilcoxon statistical test was conducted on
the results to determine the effectiveness of the proposed model. The Wilcoxon
results were analyzed in Section 10.

Regarding the other features of the proposed model, it was designed to include
the new methods in its methods bank to use their advantages. Therefore, a new
method with precise estimations in one or multiple datasets can be added to the
methods bank. According to the results of multiple tests, the open hybrid model
is able to intelligently identify a space in which a method can operate well. It can
also effectively use every method under appropriate conditions. In future studies,
more diverse and accurate methods and rules can be added to the methods and rules
banks of this model.
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[10] Cuadrado-Gallego, J. J.—Rodŕıguez-Soria, P.—Mart́ın-Herrera, B.:
Analogies and Differences Between Machine Learning and Expert Based Software
Project Effort Estimation. 2010 11th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Parallel/Distributed Computing,
IEEE, 2010, pp. 269–276, doi: 10.1109/snpd.2010.47.

[11] Sholiq—Dewi, R. S.—Subriadi, A. P.: A Comparative Study of Software Devel-
opment Size Estimation Method: UCPabc vs Function Points. Procedia Computer
Science, Vol. 124, 2017, pp. 470–477, doi: 10.1016/j.procs.2017.12.179.

[12] Dewi, R. S.—Subriadi, A. P.—Sholiq: A Modification Complexity Factor
in Function Points Method for Software Cost Estimation Towards Public Ser-
vice Application. Procedia Computer Science, Vol. 124, 2017, pp. 415–422, doi:
10.1016/j.procs.2017.12.172.

[13] Elish, M. O.: Assessment of Voting Ensemble for Estimating Software Develop-
ment Effort. 2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM), 2013, pp. 316–321, doi: 10.1109/cidm.2013.6597253.

[14] Cuadrado-Gallego, J. J.—Sicilia, M.-Á.: An Algorithm for the Generation of
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