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Abstract. The Optimization Selection Problem is widely known in computer scien-
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these approaches provide several advantages, they have disadvantages that can hin-
der the performance. This paper proposes a hybrid approach that combines the best
of machine learning and iterative compilation. Several experiments were performed
using different strategies, metrics and hardware platforms. A thorough analysis of
the results reveals that the hybrid approach is a considerable improvement over
machine learning and iterative compilation. In addition, the hybrid approach out-
performs the best compiler optimization level of LLVM.
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1 INTRODUCTION

Compilers are computer programs capable of transforming code written in a source
language into a target language [1, 19, 20]. The final product is an equivalent
program generated into an executable file.

This process is divided into several phases, and one of the most important is the
optimization phase. This stage is fundamental because it improves the quality of the
final executable program, reducing run-time, code size or even power consumption [1,
4, 10].

An important aspect of compilers is their ability to provide optimizations [13].
However, two optimizations (one after the other) can provide greater benefits. For
example, copy propagation can generate dead code, which is useless code that will
not be used in the future and does not affect program results. This type of code is
removed by a compiler optimization called Dead-code elimination, and thus improves
the performance.

The previous example provides an insight into how optimizations interact with
each other. Based on these interactions, modern compilers (GCC [22], ICC [23],
LLVM [24]) offer standard optimization levels (O1, O2, O3), which can be used to
optimize the source code. However, the performance achieved by the aforementioned
levels is different for each program. This is because optimization selection depends
on program features. In addition, the most effective optimizations depend on the
system architecture and input, however the latter is usually different and thus its
effects are ignored.

The Optimization Selection Problem (OSP) consists in choosing the most ef-
fective optimizations for a given program. It is worth mentioning that this type
of problem is classified as undecidable. This is because of the search-space size,
which is related to the quantity of optimizations provided by the compiler and its
possible combinations. Thus, mitigating this problem is highly desirable. There are
several mitigating techniques for the OSP, and the most common are the follow-
ing:

Selecting an optimization set: Optimizations are selected for a given program
without considering their order of application. This approach is used frequently
because compiler systems such as GCC and HotSpot VM cannot reorder opti-
mizations based on the complexity of the intermediate code, which create de-
pendencies between optimizations [6].

Selecting an optimization sequence: Optimization sequences are selected and
their order of application is considered. Sequence selection considers whether or
not to repeat optimizations within a sequence.

Parameterization of optimizations: Attempts to find the most effective combi-
nation of parameters for optimizations.

In general, researchers investigate only one approach to mitigate the OSP. This
paper proposes to select an optimization sequence adopting automatic schemes. Our



Finding Effective Compiler Optimization Sequences: A Hybrid Approach 1119

system either creates sequences for programs using Iterative Compilation (IC) [26];
or selects sequences from a knowledge base using Machine Learning (ML) [10, 15].

IC consists in evaluating the quality of the target code generated by different
sequences, and therefore returns the most effective target code. However, ML based
approaches attempt to predict sequences, from previously-successful compilations,
that will have good performance in new programs.

ML has higher usage than IC based approaches because of its lower response
time, which is spent mostly on the training phase. In this stage, it is necessary
to evaluate the performance of several different sequences with example programs.
Thus, the exact program is compiled and executed several times.

In this context, it is vital to characterize programs. Thus, one of the most
difficult tasks is choosing a set of features that can effectively represent a program.
Certain studies in the literature have shown that extracting features through control
or data flow graphs are strategies that achieve good results; consequently, surpassing
features extracted directly from the source code [11, 15]. Research studies also indi-
cate that applying IC for each program function in Just-in-Time (JIT) environments
yields better results than characterizing the function and predicting which sequence
to use [6].

This paper describes a hybrid approach, already implemented on [8], that com-
bines the best of IC and ML in order to mitigate the OSP. The objective is to describe
an approach that initially uses ML to select potential optimization sequences. This
is done considering the features of an unknown program. Afterwards, it applies
IC to adapt potential optimization sequences to the said program. Thus, it is ex-
pected that performance will improve by adapting the solution rather than only
using potential sequences.

Furthermore, the hybrid approach applies a learning scheme for recently-com-
piled programs. This is done using a Genetic Algorithm (GA) that creates new
sequences, and thus the explored portion of the search space will always have these
types of sequences. Therefore, these new sequences can be used for recent programs
either after: feeding the knowledge base; compiler processing, or finding sequences
for batch programs. In addition, this paper also includes the analysis, and propose
a new approach to select the initial solution for the GA. It is called Centralized
Sequence Selection, that choses all sequence from the most similar program.

The main contributions of this paper are as follows:

• a comparison between two different strategies to select the initial solution;

• different approaches for feeding a knowledge database; and

• an analysis of the performance impact of the approach with different hardware
platforms and input sets.

The results indicate that the proposed hybrid approach outperforms both IC and
ML. Furthermore, the average speedup achieved by the hybrid approach is superior
to the best compiler optimization level of LLVM.
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The rest of the paper is organized as follows. Section 2 introduces the hybrid
approach for mitigating the OSP. Section 3 presents the instantiation of the hybrid
approach. Section 4 describes the experimental environment and setup. Section 5
presents a discussion of the results, comparing them with other approaches proposed
in the literature. Section 6 presents related works. Finally, Section 7 provides the
conclusions of this paper.

2 A HYBRID SOLUTION FOR MITIGATING THE OSP

IC is an appealing option because it achieves better results than ML. However, ML is
also interesting because it applies strategies capable of accelerating the convergence
to a good solution. Thus, this paper describes a hybrid approach for solving the
OSP. The objective is to combine the best of both IC and ML. The proposed hybrid
approach can be described as follows.

2.1 Overview of the Hybrid Approach

Suppose there exists a training set, containing S good optimization sequences for
P programs with their features. First, the approach creates a model based on the
knowledge database (KD), which is used to predict good optimization sequences
for a particular test program. Second, the approach selects N potential optimiza-
tion sequences, using the created model, for the test program. Afterwards, the N
sequences will feed a solution adapter, which utilizes a strategy based on IC to
adapt (improve) the solution found in the ML phase. Finally, the best target code,
found by the adapter, is returned to the user and the KD is updated with recent
knowledge.

Although the system has the capacity of providing itself with feedback, an initial
KD is necessary. In addition, a database generator is used just once, and thus the
initial knowledge is built with both sequences and performances for some programs.
Therefore, the system has the capacity to generate new sequences and provide itself
with a feedback.

The system increments its KD as new programs are compiled. However, not all
sequences will be possible candidates for the compilation of new programs. This
occurs because the database is filtered, and thus poor performing sequences are
discarded. It is important to highlight that the architecture is flexible enough to
allow for a change of focus in terms of performance improvement. Therefore, it is
necessary to store/record values in the KD.

The proposed hybrid approach is shown in Figure 1, which will be described
more specifically in the following subsections.

As shown in Figure 1, the components of the hybrid architecture can be divided
into 3 main groups:

1. Group of training components;

2. Group of prediction components; and
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3. Group of adaptive components.

These components will be described in Sections 2.2, 2.3 and 2.4. In addition,
the approaches used to feed the knowledge database will be discussed in Section 2.5.

2.2 Group of Training Components

This group is comprised of components that handle the background process of the
system. The aforementioned group has a component called the database generator,
which is executed just once to create the KD. It is also comprised of a database filter
and generative models in the context of ML, which the latter is used for prediction
purposes.

Database Generator is an algorithm used for creating a knowledge database,
which is usually created randomly [10, 2, 15]. However, there are several strate-
gies for generating the knowledge database [7, 18]. The proposed hybrid ap-
proach uses a GA, which will be discussed in Section 3.1.1. The database gener-
ator will be used just once because of two reasons. First, it is a large IC process.
Second, its objective is to generate a large database for initial programs, which
will be compiled on the system.

Database Filter. The hybrid architecture considers similar programs, and thus
chooses sequences that will compose the initial population of the GA. The low-
performing sequences, in relation to the evaluation criteria, will be excluded
from the model creation phase. However, these sequences will remain in the
KD. The database filter is the component that executes these tasks. It discards
bad sequences in terms of the performance goal, and associates the remaining
sequences with the program features. It is consistently executed in the KD
before the ML model is generated.

Generative Models in the Context of ML. This component collects program
information given by the database filter. Afterwards, it creates the ML model
using this information. This model will be utilized by the prediction compo-
nents. Therefore, the parameters of the ML algorithm are defined in this phase.
Subsequently, the model is created using sequences and information provided by
the database filter. It is important to highlight that several ML algorithms can
be used to create the model. The only restriction is that the algorithm must
have a training and testing phase. In addition, the algorithm must be able to
provide a classification based on a ranking scheme.

2.3 Group of Prediction Components

This group is comprised of components that predict sequences of the initial popula-
tion. These components consist of a single feature extractor and sequence prediction
scheme.
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Feature Extractor. This component receives the source code, and afterwards ex-
tracts the features used in the prediction scheme. The extracted features are
the same as those stored in the KD, and they will feed the KD using sequences
generated in the solution adaptation stage. These features are also used for
feeding purposes in the sequence prediction scheme.

Sequence Prediction Scheme. This module selects sequences that will compose
the initial solution for the solution adapter. It receives a prediction model,
created by the generative model, and features extracted from the test program.
The selected sequences are chosen based on the similarity between program
features in the KD and testing phase. The sequences can be chosen either from
a single program or several programs.

2.4 Group of Adaptive Components

This group is comprised of just one component, which adapts the solution to the
new program. This component is called the solution adapter.

Solution Adapter generates the final solution. Furthermore, this component cre-
ates solutions and feeds the knowledge database; in other words, it deeply ex-
plores the search space of the OSP. The initial solution of the algorithm is com-
prised of K sequences, which are selected by the sequence prediction scheme. Af-
terwards, the algorithm chosen to adapt the solution runs over these sequences.
This algorithm must be capable of receiving and improving at least one sequence.
The database generator stores all generated sequences in the KD. However, only
the most effective sequence is considered the final solution, and thus it is given
to the test program.

2.5 Approaches for Feeding the Knowledge Database

Although the hybrid approach is flexible enough to operate without feeding the
database, a scheme for such a process generates knowledge for medium and long-
term goals. Thus, the architecture of the hybrid approach allows the user to choose
when the feedback will occur. Thus, two approaches are proposed for feeding the
KD:

Constant Feeding: The hybrid approach stores new information in the KD (fea-
tures and sequences) and recreates the model. This process is done for all
compiled programs.

Batch Feeding: The hybrid approach stores new information in the KD, and recre-
ates the model after K compiled programs. This is done for every compiled
program.

These two approaches have different execution frequencies for creating the ML
model.
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The ML model based on the constant-feeding approach is created after a solution
is found. Although, it has a higher cost than batch feeding, it has an intense
feedback. This feeding mechanism produces a more non-deterministic approach than
batch feeding. This result is produced because there are N ! forms of organizing N
programs. Thus, altering the order of the programs can modify the initial population
of the subsequent program; consequently, producing a different result.

However, batch feeding stores information and generated sequences in the data-
base, and the model is recreated after K programs are compiled. The non-determi-
nism of this feeding approach is less than constant feeding because altering the order
of the programs that are in the same batch will not modify the initial population
of the subsequent program. It is worth noting that constant feeding is basically
a version of batch feeding with K = 1.

3 INSTANTIATION OF THE HYBRID APPROACH

The hybrid approach, described in the previous section, can be instantiated using
different strategies. Thus, this section describes how it was implemented. The
proposed strategy was implemented as a tool of LLVM [9], which was chosen because
it allows full control over optimizations.

This means that it is possible to enable a list of optimizations through the
command line. The position of each optimization indicates its order of application.

The infrastructure implemented can be viewed in Figure 2.

Figure 2. Infrastructure of the instantiations

Two plugins were implemented for LLVM:

1. libWuLars: used for extracting the hottest function of the program, as proposed
by Wu and Larus (1994) [25]; and

2. libFeaturesExtractor: used for extracting features proposed by Namolaru
et al. [14].
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The remaining libraries (also known as libs) are standard for LLVM. In addition,
they assist with developing plugins for LLVM.

The tools are provided by LLVM for compiling and optimizing code among
other functions. Furthermore, a tool called HybridSelector is also used, which helps
implement the proposed hybrid approach in Figure 1.

HybridSelector uses Support Vector Machine (SVM) as an ML algorithm. In
addition, all IC phases are done using GAs. Finally, all features are extracted
without the need to execute the program.

The following sections will present in detail the implementation of the Hybrid-
Selector tool. In addition, these sections will describe each component and the
different parameterizations used for the experiments.

3.1 Iterative Compilation

IC is used in two phases of the hybrid approach. Its purpose is to create the KD and
adapt the solution. Although the parameters are modified, the database generator
and solution adapter use the same GA for each instantiation.

3.1.1 Database Generator

The algorithm 1 presents a pseudocode to the KD generation.
The GA presented in Algorithm 1 was used to create the database. This algo-

rithm is executed with two distinct parametrization. Although these parameters are
similar, they have two differences:

1. total number of individuals in a population;

2. and a stop criterion.

Both executions use tournament selection, and possess crossover and mutation
operators. Although there are four mutation operators in the algorithm, only one
can be applied to each individual. Thus, for every individual that mutation are
applied, only one of four is chosen.

The mutation operators consist of:

1. substituting a randomly-positioned optimization for any other valid optimiza-
tion;

2. permutation-based procedures for two optimizations that compose the sequence;

3. including a randomly-selected optimization into the sequence; and

4. excluding a randomly-positioned optimization.

Crossover takes a portion (specifically half) of each solution and concatenates
them. The probability of applying mutation and crossover operators are 40 % and
60 %, respectively, as specified in [12]. In addition, this paper proposes an elitism-
based algorithm, and thus the best/most effective solution is carried out to the
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Data: TrainPrograms,MaxSeqSize,NumIndividuals,BaselineList
Result: KD
KD← ∅;
foreach Program ∈ TrainPrograms do

Generation← ∅;
NumGeneration← 0;
Sequences← ∅;
Size← Random(1,MaxSeqSize);
ProgramFeatures← getFeaturesByFunction(Program);
// Create a dictionary with functions names as keys and

functions features as values

Baselines← GetBaseilnes(Program,BaselineList) // Compile with

Compiler Baselines in BaselineList and get its execution

time

for i← 1 to NumIndividuals do
Individual← CreateIndividual(Size); // Create an optimization

sequence

IndividualFitness← Fitness(Individual,Program); // Compile and

execute program with an individual

Generation← Generation ∪ (Individual, IndividualFitness) ;

end
Sequences[NumGeneration]← Generation;
while not reach at least one stop criteria do

Generation← evolve(Generation); // do Crossover, Mutation

and get fitness of each individual

NumGeneration← NumGeneration + 1;
Sequences[NumGeneration]← Generation;

end
KD← KD + (Program,Baselines,ProgramFeatures, Sequences)

end
Algorithm 1: Genetic algorithm to create KD

next generation. The fitness function used in this paper refers to the run-time
of the program given in seconds. This function calculates the arithmetic mean of
5 executions for each sequence.

Both initial populations are randomly generated and comprised of either 10 or
50 individuals. Each chromosome of the individuals is a string that specifies one
optimization to the compiler (those string are presented in Table 2). The number of
individuals is given by a specific parameter. The size of each individual is randomly
generated as well, varying between 1 and 61. This range was chosen because it relates
to the number of different optimizations available (O1, O2, O3). The algorithm has
3 stop criteria:
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1. The standard deviation of the fitness function is less than 0.01.

2. The total number of generations is either:

• 100 with an initial population of 50 individuals; or

• 20 with an initial population of 10 individuals.

3. The best fitness value does not improve after three consecutive generations.

After the GA is executed with the aforementioned parametrizations, all se-
quences are gathered to create the KD. Thus for every experiment, the first model
is built with the KD created in the previous phase.

3.1.2 Solution Adapter

The GA was also used for adaptation purposes. Its parameterization is very similar
to the GA presented in Section 3.1.1.

The mutation and crossover operators are identical, and thus have equal prob-
ability. Furthermore, the fitness function is identical as well. Thus, the main dif-
ference between the algorithms is their initial population, which is not comprised of
randomly-selected individuals. Instead, the initial population is selected from the
KD, and is comprised of 10 individuals and 20 generations, and every individual is
a optimization sequence that is applied on the whole program.

3.2 Feature Extraction

The features used for all instantiations are shown in Table 1, and were proposed by
Namolaru et al.

These features are provided by two different scopes, which are based on:

1. The entire program structure: this indicates that the extracted features describe
the entities of the entire program;

2. Hot functions: this indicates that the program will only be represented by its
hottest function, which is highly beneficial for the compiler to optimize. The
algorithm used to search for the hottest function was proposed by Wu and Lars
(1994) [25]. This strategy is justified by Amdahl’s Law [16].

In both cases, the features were not submitted to a prior preprocessing.

3.3 Machine Learning

SVM is a popular and widely-acclaimed ML algorithm, and thus was chosen for
this experiment. A machine learning library called Scikit-learn was selected for
implementing SVM [17]. The configuration, parametrization and implementation of
the algorithm are described in the following sections.
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Number of Instructions
Number of assignment instructions
Number of integer binop instructions
Number of float binop instructions
Number of terminator instructions
Number of bitwise binop instructions
Number of vector instructions
Number of memory access and addressing instructions
Number of aggregate instructions
Number of integer conversion instructions
Number of float conversion instructions
Number of call instructions
Number of call instructions that has pointers as arguments
Number of call instructions that have more than 4 arguments
Number of call instructions that return an integer
Number of call instructions that return a float
Number of call instructions that return a pointer
Number of switch instructions
Number of indirect branches instructions
Number of conditional branches instructions
Number of unconditional branches instructions
Number of load instructions
Number of store instructions
Number of GetElemPtr instructions
Number of other instructions
Number of PHI nodes
Number of BBs with no PHI nodes
Number of BBs with up to 3 PHI nodes
Number of BBs with more than 3 PHI nodes
Number of Basic Blocks (BB)
Average number of instructions per BB
Number of edges in a Control Flow Graph (CFG)
Number of critical edges in a CFG
Average number of PHI nodes per BB
Number of BBs with 1-successor
Number of BBs with 2-successor
Number of BBs with more than 2-successor
Number of BBs with 1-predecessor
Number of BBs with 2-predecessor
Number of BBs with more than 2-predecessor
Number of BBs with 1-successor and 1-predecessor
Number of BBs with 2-successor and 1-predecessor
Number of BBs with 1-successor and 2-predecessor
Number of BBs with 2-successor and 2-predecessor
Number of BBs with more than 2-successor and 2-predecessor
Number of BBs with less than 15 instructions
Number of BBs with more than 15 instructions
and less than 500 instructions
Number of BBs with more than 500 instructions

Table 1. Features

3.3.1 Parametrization of SVM

SVMs are effective tools for binary classification. One-Versus-All (commonly re-
ferred to as OVA) is a strategy used for these types of problems, and was imple-
mented for this experiment. Thus, the decision function of our SVM algorithm is
capable of ranking test programs. In addition, we also analyzed the possibility of
using a statistical SVM, however the results did not match our predictions because
it had a low sample rate for each class.
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The SVM kernel function used were linear function, and all the parameters of
the kernel were the default of Scikit-learn library.

The adopted approach considers every program of the KD as a class for the SVM.
Thus, each class is comprised of only one example because its program characteri-
zation was static. If a dynamic characterization occurs, every program execution is
collectively seen as an example.

The features used to classify the program are extracted by the Feature extractor,
which was previously discussed in Section 3.2.

3.3.2 Model Creator

The algorithm 2 presents the pseudocode to the model creator.

Data: KD,Representation, SVMParameters
Result: Model
SVMFeatures← ∅;
KD← FilterBase(KD)// Removes sequences worst than the best

baseline also remove programs that have one baseline with

execution time equals 0 from base

if Representation = HotFunction then
foreach (Program,Baselines,Features, Sequences) ∈ KD do

hot← findHotFunction(Program);
Vector← toVector(Features[hot]);
SVMFeatures← SVMFeatures ∪ (Vector,Program.Name);
// Vector is a vector of features and Program.Name is the

program name string, that will be used as label in SVM

end

else
foreach (Program,Features, Sequences) ∈ KD do

end
ProgramFeatures← sumDictFields(Features);
Vector← toVector(ProgramFeatures);
SVMFeatures← SVMFeatures ∪ (Vector,Program.Name);

end
SVMModel← SVMTrain(SVMFeatures, SVMParameters);
Model.SVM← SVMModel;
Model.Representation← Representation;
Model.KD← KD;

Algorithm 2: Algorithm to create a SVM model

It is worth highlighting that training the SVM is done with data filtered from
the KD. In addition, features that do not appear in at least one program from the
KD are excluded from the training phase. The number of features can increase as
new programs are added to the KD.
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The database filter uses speedup as a threshold compared to the LLVM opti-
mization levels.

The model creator has two types of instantiations, and the scope of features
given by the feature extractor is different for each type. These two scopes were
previously discussed in Section 3.2.

3.3.3 Sequence Predictor

The main objective of the SVM prediction phase is to predict the initial population,
and consequently the GA will improve the sequences. This GA is described in
Section 3.1.2.

Thus, a new program P is given to the feature extractor as an input. Afterwards,
the collected features with an ML model are given to the sequence predictor. There-
fore, the predictor will select sequences that will compose the initial population of
the GA.

However, some sequences can cause errors to the LLVM optimizer, and thus it is
vital to validate the selected sequences. Therefore, each sequence is validated, and
their error prone counterparts are discarded.

The sequence prediction was instantiated in two different ways:

• Centralized: All sequences of the population are provided by the program with
the highest similarity. Thus, only the aforementioned program is predicted, and
consequently its sequences are extracted. However if the most similar program is
not able to provide all the sequences, the second most similar program is chosen,
and so forth. This process repeats until the initial population is completely
built.

• Distributed: Programs provide a number of sequences (Np), and it is propor-
tional to the value of the decision function (Decision valp). This value is given
by the prediction function of the SVM model. In this case, the programs pro-
vide their best sequences, and each program provides Np, which is calculated
by the equation 1. This prediction strategy is implemented to generate diver-
sity between the initial sequences of the GA, considering that the sequences will
originate from different programs. The sequences are extracted until the size of
the initial population is reached, and are ordered from the most similar to least
similar program.

Np =

⌈
Population size× Decision valP∑

x∈Base Decision valx

⌉
(1)

In the experiments presented in this paper, the GA for adapting solutions has
an initial population of 10 individuals. In the Distributed sequence prediction, each
program contributes with only a single sequence. This occurs because the deci-
sion function of the SVM has small differences between two programs that occupy
consecutive positions. The Algorithm 3 presents the pseudocode of this phase.
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Data: Model,PredictionType,K,NewProgram
Result: Population
SVMModel← Model.SVMModel;
Representation← Model.Representation;
KD← Model.KD;
NewProgramFeatures← getFeaturesByFunction(NewProgram);
if Representation = HotFunction then

hot← findHotFunction(Program);
NewFeatures← NewProgramFeatures[hot];

else
NewFeatures← sumDictFields(NewProgramFeatures);

end
SimilartyRank← Classify(NewFeatures, SVMModel);
// Creates an array where each element is a tuple composed by

the programs in KD and its decision function value according

to SVMModel. This array is sorted byt decision function

value.

Population← ∅;
rank← 0;
S ← size(Population);
if PredictionType = Centralized then

while S < K do
MostSimilar← SimilarityRank[rank].Name;
Population←

Population ∪ SelectSequences(MostSimilar,K-S,KD)// Select

the K-S best Sequences form the MostSimilar

S ← size(Population);
rank← rank + 1;

end

else
SumDV← SumDecisionValues(SimilarityRank);
while S < K do

Program← SimilarityRank[rank].Name;
DV← SimilarityRank[rank].DecisionValue;
numProgSeq← dK × (DV/SumDV)e
Population← Population ∪ SelecteSequences(Program,K-S,KD);
S ← size(Population);
rank← rank + 1;

end

end
Algorithm 3: Algorithm to generate the starter population
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3.4 Approaches for Feeding the Knowledge Database

Three experiments were conducted to evaluate the approaches for feeding the data-
base. These experiments were handled for each instantiation of the hybrid approach.
Two of these experiments were conducted to evaluate batch feeding, while the other
evaluates constant feeding.

For batch feeding, the conducted experiments were the following:

• The first experiment consisted in predicting and adapting the solution for every
program from one benchmark. This is done using a model generated by the
KD of micro-benchmarks. Although the KD was fed during this procedure, the
model was not recreated. Afterwards, an entirely new model was created, and
the same procedure was made for every program from a different benchmark.
However, the latter does not build new models.

• The second experiment is very similar to the first, however the benchmark order
was inverted.

For constant feeding, the test programs were ordered alphabetically, and the
model was recreated after every prediction and adaptation procedure.

4 EXPERIMENTAL ENVIRONMENT

The following subsections describe the hardware platform, strategies, benchmarks
and metrics used for the experiments.

4.1 Experimental Architecture

The experiments were conducted in the following environment:

Hardware: Intel Core i7-3770 processor with a frequency of 3.40 GHz, 8 MB cache
and 8 GB of RAM;

Operating System: Ubuntu 15.10 with kernel 4.2.0-35-generic.

4.2 Compilation System

The compilation system used was LLVM, which has difficulties with certain se-
quences, and thus the LLVM optimizer (opt) hangs or crashes; consequently having
unresponsive behavior. Therefore, this problem was mitigated by reducing the num-
ber of optimizations. Thus, sequences were comprised of optimizations from O1, O2,
and O3. These optimizations are shown in Table 2.

These optimizations do not guarantee that problem-less sequences will generate,
however it does reduce unresponsive behaviors and crashes/hangs.
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adce alignment-from-
assumptions

always-inline argpromotion

assumption-cache-tracker barrier basicaa basiccg

bdce block-freq branch-prob constmerge

correlated-propagation deadargelim domtree dse

early-cse elim-avail-extern float2int functionattrs

globaldce globalopt gvn indvars

inline inline-cost instcombine ipsccp

jump-threading lazy-value-info lcssa licm

loop-accesses loop-deletion loop-idiom loop-rotate

loop-simplify loop-unroll loop-unswitch loop-vectorize

loops lower-expect memcpyopt memdep

mldst-motion no-aa prune-eh reassociate

scalar-evolution sccp scoped-noalias simplifycfg

slp-vectorizer sroa strip-dead-prototypes tailcallelim

targetlibinfo tbaa tti verify

Table 2. Optimizations

4.3 Benchmarks Used

We used three benchmarks: two to evaluate strategies and one to evaluate the KD
generation.

KD Generation. This phase uses micro-kernel applications, which in this paper
are referred to as micro-benchmarks. These applications are available on the
LLVM test-suite, and were used for experiments conducted by Purini and Jain
(2013) [18]. The complete list of these applications is shown in Table 3.

Test Programs. We used the Collective Benchmark (cBench, with the dataset
configured to 1; and the Polyhedral Benchmark (PolyBench), with the dataset
configured to extralarge. These benchmarks are shown in Table 4.

4.4 Evaluation Metrics

Four metrics were used for analyzing the results:

1. Speedup over O0;

2. NPS: number of programs that achieve higher speedup than the best compiler
optimization level. This process is also called coverage;

3. NoS: number of evaluated sequences; and

4. ReT: response time.

The speedup is calculated as follows:

Speedup = Runtime Level O0/Runtime.
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ackermann flops-8 perm

ary3 fp-convert pi

binary-trees hash pidigits

bubblesort heapsort puzzle

chomp himenobmtxpa puzzle-stanford

dry huffbench queens

dt intmm queens-mcgill

fannkuch lists quicksort

fasta lpbench random

fasta-redux mandel realmm

fbench mandel-2 recursive

ffbench mandelbrot reedsolomon

fib2 matrix regex-dna

fldry methcall richards benchmark

flops misr salsa20

flops-1 n-body sieve

flops-2 nsieve-bits spectral-norm

flops-3 oourafft strcat

flops-4 oscar towers

flops-5 partialsums treesort

flops-6 perlin whetstone

flops-7

Table 3. Micro-benchmarks

cBench
automotive bitcount bzip2d consumer mad network dijkstra security blowfish e security sha
automotive qsort1 bzip2e consumer tiff2bw network patricia security pgp d telecom adpcm c
automotive susan c consumer jpeg c consumer tiff2rgba office ghostscript security pgp e telecom adpcm d
automotive susan e consumer jpeg d consumer tiffdither office synth security rijndael d telecom CRC32
automotive susan s consumer lame consumer tiffmedian security blowfish d security rijndael e telecom gsm

Polybench

2mm cholesky durbin gesummv lu syr2k
3mm correlation fdtd-2d gramschmidt mvt syrk
adi covariance floyd-warshall heat-3d nussinov trisolv
atax deriche gemm jacobi-2d seidel-2d trmm
bicg doitgen gemver ludcmp symm

Table 4. Test programs

4.5 Strategies

Several strategies were evaluated. Table 5 presents the strategies for mitigating the
OSP.

IC.GA.50 and IC.GA.10 are used by the GA to create the database. IC.GA.50
and IC.GA.10 have 50 and 10 individuals, respectively. IC.Best10 consists in apply-
ing 10 sequences found by Purini and Jain [18], and consequently returns the best
target code.
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Approach
Sequence
Selection

Program
Representation

Feeding
Strategy

Compilation
Order

Maximum
NoS

The Proposed Hybrid Approaches

H.DHB.PC Distributed Hot Batch Poly-cBench 200

H.DHB.CP Distributed Hot Batch cBench-Poly 200

H.DHC.A Distributed Hot Constant Alphabetical 200

H.DFB.PC Distributed Full Batch Poly-cBench 200

H.DFB.CP Distributed Full Batch cBench-Poly 200

H.DFC.A Distributed Full Constant Alphabetical 200

H.CHB.PC Centralized Hot Batch Poly-cBench 200

H.CHB.CP Centralized Hot Batch cBench-Poly 200

H.CHC.A Centralized Hot Constant Alphabetical 200

H.CFB.PC Centralized Full Batch Poly-cBench 200

H.CFB.CP Centralized Full Batch cBench-Poly 200

H.CFC.A Centralized Full Constant Alphabetical 200

Machine Learning Approaches

ML.DH Distributed Hot – – 10

ML.DF Distributed Full – – 10

ML.CH Centralized Hot – – 10

ML.CF Centralized Full – – 10

Iterative Compilation Approaches

IC.GA.50 – – – – 5 000

IC.GA.10 – – – – 200

IC.Best10 – – – – 10

Table 5. Strategies

We also evaluated four machine learning methods: ML.DH that selects sequences
using the distributed strategy for the hottest function features; ML.DF that selects
sequences using the distributed strategy for the full program features; ML.CH that
selects sequences using the centralized strategy for the hottest function features; and
ML.CF that selects sequences using the centralized strategy for the full program
features.

5 EXPERIMENTS

The following subsections describe in detail the experimental results.

5.1 Quality of the Knowledge Database

The KD was generated from two executions of our GA, and it is presented in Fig-
ure 3.

The aforementioned figure presents a violin plot, which shows sequences cre-
ated for each microbenchmark. In addition, the violin plot represents each LLVM
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Figure 3. Knowledge Database

standard optimization level with lines. As shown in this figure, the best/most effec-
tive LLVM optimization level was superior to the GA in the following cases: misr,
bubblesort, dry, intmm, fldry, lists and whetstone.

The genetic algorithm had a speedup rate slightly higher (not more than 3×)
than the LLVM standard optimization levels. This indicates that although the base
is not comprised of the best possible sequences, it can have sequences superior to
the best/most effective LLVM optimization level (89.06 % of the programs) in terms
of both quantity and quality.

In total, 23 410 sequences were generated. 25.18 % (5894) of these sequences
were better, in terms of speedup over O0, than the most effective LLVM optimization
level. The initial population can be comprised of these aforementioned sequences.

5.2 Performance

A summary of the results is presented in Table 6.
As shown above, “pure” or unaltered ML techniques had similar speedups in

most cases, however their NPS is lower compared to distributed-selection-based
hybrid approaches and IC. This does not apply for IC.Best10 approaches. ML.DH
had the best/most effective speedups, however its NPS was worse compared to
ML.DF.

A total of 59 programs were evaluated. ML.DH is superior to ML.DF in 35 pro-
grams, the latter overcame the former in just 24 programs. In addition, the best-case
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Strategy
Speedup

NPS
NoS

Best GMS Worst SDS Max AVG Min

H.DHB.PC 4.47× 1.99× 1.06× 0.83× 46 110 51.09 10

H.DHB.CP 4.50× 1.99× 1.07× 0.79× 45 117 54.85 10

H.DHC.A 4.48× 1.97× 1,06× 0.83× 46 180 55.46 10

H.DFB.PC 6.00× 1.99× 1.06× 0.91× 45 140 50.14 10

H.DFB.CP 4.44× 1.96× 1.07× 0.75× 44 99 51.98 10

H.DFC.A 4.46× 1.95× 1.05× 0.78× 43 119 52.79 10

H.CHB.PC 4.42× 1.88× 1.00× 0.79× 38 150 50.53 10

H.CHB.CP 4.51× 1.85× 1.03× 0.70× 35 120 53.61 10

H.CHC.A 4.45× 1.87× 0.91× 0.77× 36 120 46.44 10

H.CFB.PC 4.20× 1.87× 1.02× 0.66× 36 149 52.98 10

H.CFB.CP 4.11× 1.85× 1.02× 0.66× 35 168 50.88 10

H.CFC.A 4.22× 1.88× 1.06× 0.66× 32 110 51.15 10

ML.DH 4.49× 1.91× 1.05× 0.77× 33 10 10 10

ML.DF 4.06× 1.90× 1.06× 0.68× 35 10 10 10

ML.CH 4.42× 1.84× 1.01× 0.72× 30 10 10 10

ML.CF 4.10× 1.82× 1.02× 0.63× 23 10 10 10

IC.GA.50 4.35× 2.083× 1.08× 0.83× 56 650 286.17 100

IC.GA.10 6.71× 1.930× 1.04× 0.92× 46 120 53.68 10

IC.Best10 3.75× 1.801× 1.05× 0.59× 24 10 10 10

O1 4.70× 1.69× 0.99× 0.63× – 1 1 1

O2 4.37× 1.84× 1.03× 0.75× – 1 1 1

O3 4.36× 1.84× 1.05× 0.76× – 1 1 1

Best: the best result; GMS: geometric mean speedup; Worst: the worst result; SDS:
standard deviation speedup; Max: maximun NoS; AVG: average NoS; Min: minimun

NoS.

Table 6. Summary of experiments

scenario for ML.DH and ML.DF was 4.49× (gemm) and 4.06× (gemm), respec-
tively. These results indicate that program characterization based on the hottest
function provides a better initial solution to the solution adapter. In addition, an-
other key element worth analyzing is ML. Distributed-selection-based approaches
achieved a slightly higher NPS than Centralized-selection-based techniques. How-
ever, a thorough analysis revealed that ML strategies had a higher speedup than
centralized-selection-based techniques in 9 programs (2mm, lame, covariance, doit-
gen, durbin, jacobi-2d, mvt, adpcm d and CRC32). Finally, ML.DH had the best
results in 2 cases.

Overall, IC.GA.50 had the best results. It had higher speedups than IC.GA.10
in 48 programs. Compared to other strategies, IC.GA.50 had higher speedups in
27 out of 59 programs. This result was highly anticipated because this strategy
is the most aggressive; consequently, evaluating a high number of sequences. In
addition, IC.GA.10 had higher speedups than IC.GA.50 in 11 programs (susan e,
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bzip2e, jpeg c, lame, correlation, doitgen, durbin, gesummv, mvt, trmm, and seidel-
2d). Thus, this confirms that less aggressive IC techniques have satisfying results
in some cases, and consequently surpass more aggressive IC strategies. Addition-
ally, IC.GA.10 and IC.GA.50 had maximal speedups of 6.71× (durbin) and 4.35×
(gemm), respectively. Furthermore, IC.GA.10 had the best results, in 4 programs,
among all the strategies.

IC.Best10 surpassed all the other strategies in just 2 programs (bicg and ri-
jndael d). This result was also anticipated because the aforementioned strategy
evaluates the same number of sequences. However, this strategy excels over ML
in only 14 programs (adi, atax, bicg, correlation, gemver, gesummv, lu, dikstra,
ghostscript, pgp d, rijndael d, rijndael e, seidel-2d and trisolv).

An individual analysis reveals that the success rate of IC.Best10 does not in-
crease significantly compared to ML.DH and ML.DF, and achieves 15 and 19 than
the aforementioned strategies, respectively. The highest speedup reached by
IC.Best10 was 3.75× (doitgen). However, this is the lowest speedup compared to
other strategies including the LLVM optimization levels. Thus, we conclude and
confirm that this strategy is the worst compared to others.

The hybrid approach reached its highest speedup by using H.DFB.PC. The
speedup rate is 6.00× (durbin). The other strategies do not possess significant dif-
ferences in terms of speedups. H.CHB.CP reached approximately half of the perfor-
mance of the other hybrid strategies in 1 case (nussinov). Furthermore, H.DHB.PC
and H.DHC.A had the highest value in the same case (bitcount). The centralized-
selection based hybrid approach had worse performance than its distributed-selection
based counterpart. This indicates that looking for sequences from different sources
to obtain a more diversified population is an appealing option. Overall, the best-
performing hybrid strategy was H.DHC.A because it had the highest speedup in
6 programs.

All strategies, except for IC.Best10 and both MLS’s, had higher speedups than
the optimization levels of LLVM. Specifically, IC.GA.50 had the best performance.
These results were as expected, since IC.GA.50 is the most aggressive strategy in
these experiments.

The behavior of the hybrid approach was altered for every strategy. However, the
most important factor in improving performance is the initial solution. It is widely
known that the initial selection of sequences is highly influential to the end results,
and thus centralizing the selection of an initial solution is not beneficial. This can
be confirmed because its performance was lower than IC.GA.10 in the majority of
the programs. However, decentralizing the selection of an initial solution was better
than IC.GA.10.

IC.GA.10 is appealing because it had a high geometric mean. However, it
is approximately 3.35 % lower than the geometric mean of the hybrid approach.
Nevertheless, it surpassed every strategy of the hybrid approach with centralized-
selection-based techniques.
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It is very important to highlight that the both MLF’s approaches had speedups
of approximately 1.03 % and 1.04 % lower than IC.GA.10. This result indicates that
these methods have low-cost benefits.

The strategies can be categorized as follows:

1. Strategies that evaluate an unfixed number of sequences; and

2. Strategies that evaluate a fixed number of sequences.

IC.GA.50 was the best strategy among those in the first category. In addition,
it had the largest number of explored sequences. Statistically, it evaluated 5.5 times
more than the hybrid approach.

However, the hybrid approach and IC.GA.10 evaluated almost the same number
of sequences. This indicates that the hybrid approach can reach higher speedups
than a “pure” or unaltered IC strategy. In addition, GAs with a well selected
population is an improvement over GAs with initial random populations.

IC.Best10 and ML.CF were the worst-performing strategies among those in the
second category. They had the worst coverage, and does not even reach speedups
obtained by optimization levels of LLVM (O2 and O3). Considering the number of
evaluated sequences, ML.DH and ML.DF had acceptable improvements, however its
coverage was low. Both of these strategies are an improvement over optimization
levels of LLVM (O1, O2 and O3).

IC.GA.50 is superior in terms of NPS, and covers 95 % of the programs. Fur-
thermore, IC.GA.10 covered 78 % of the programs. The distributed-selection based
hybrid approach covered 73 % (at its worst) and 78 % (at its best) of the programs.
The centralized-selection based hybrid approach covered 54 % (at its worst) and 64 %
(at its best). ML.DH and ML.DF covered 56 % and 59 % of the programs, respec-
tively, and ML.CH covered 51 % of the programs. Finally, IC.Best10 and ML.CF
were the two worst cases in covering, achieving 41 % and 38 %, respectively. This
indicates that aggressive exploration strategies increase the coverage; consequently,
covering the majority of all tested programs.

The response time is the total time spent in sequence-selection and improvement
phases, however the time spent on creating the database is ignored because this
process is executed only once and it will not be necessary for future compilations.
ML and IC.Best10 had the lowest response times. In addition, they are also the
worst-performing strategies, as discussed previously.

However, IC.GA.10 and IC.GA.50 spent an average time of 2 hours and 18
minutes, and 14 hours and 30 minutes, respectively. Finally, the hybrid approach
spent 3 hours and 35 minutes finding a solution for each program.

The hybrid approach outperforms IC.GA.10 by 3.47 % (in terms of speedup);
consequently, consuming 56 % more of the time spent by IC.GA.10. In addition,
IC.GA.50 outperforms IC.GA.10 by up to 7.93 %, and thus consuming 530 % more
time than IC.GA.10.

Another important fact to be observed is that there is a soft relation between
Standard Deviation and GMS. The approaches that reach low GMS tend to provide
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low Standard Deviations, and the approaches that reach high GMS tend to provide
higher Standard deviation. This indicates that for some programs, the effort of
iterative compilation, even with a selected start sequence set, may not achieve high
improvements.

These results indicate that the most-time-consuming strategies reach the best
speedups, however there are strategies (such as the hybrid approach) that increase
speedups by slightly increasing the time consumption.

5.3 Different Hardware Platforms

Constant feeding experiments were executed on different hardware platforms as well.
However, these experiments consisted of both cBench and Polybench benchmarks.
Figure 4 presents the GMS of both the Core-i7 architecture (described in Section 4.1)
and the following hardware platform: Intel Xeon E5504 processor with a frequency
of 2.00 GHz, 4 MB of cache and 24 GB of RAM. The experiment performed on the
Intel Xeon architecture considered an already-established KD. Thus, the results are
based on the same database created on the Core-i7 architecture.
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Figure 4. Results on different hardware platforms

Intel’s Xeon processor had better results than the Core-i7. Compared to the
best compiler optimization level (03), the hybrid approach gained performance by
up to 6.49 % and 6.47 % on the Core-i7 and Xeon architecture, respectively. The
performance gain at 02 and 01 optimization levels were very similar, varying no
more than 1 %. The results indicate that, for both architectures, the performance
gain of the hybrid approach was approximately the same proportion.
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A thorough analysis of the results reveals the following conclusions.

• It is possible to obtain effective speedups using a database created on a different
hardware platform.

• Representing programs based on their hot functions is an efficient strategy to
reduce the performance loss when the data-set is altered, as well as the hardware
platform.

• Using a hybrid approach is a smart and effective strategy to mitigate the OSP,
regardless of the data-set or hardware platform.

5.4 Different Input Sets

An additional experiment was conducted with different input sets. These experi-
ments were performed only with constant feeding and cBench because of the limited
availability of several datasets. In addition, they are based only on distributed-
selection based strategies. Figure 5 shows the results for these experiments. In
addition, Table 7 presents speedups for each different input.
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Figure 5. Different input sizes

Based on the aforementioned results, the performance was influenced by altering
the data-sets, as reported in the literature [3]. The performance loss was only up to
4.86 %, regardless of the program characterization.

It is important to specify that only static features are considered when extract-
ing good/effective sequences from the database. This process does not consider the
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Input
Hot Function Full Program

Best GMS Worst Best GMS Worst

1 4.12× 1.99× 1.06× 3.35× 1.97× 1.06×
10 3.18× 1.96× 1.07× 3.20× 1.95× 1.08×
20 3.18× 1.90× 1.08× 3.09× 1.89× 1.06×

Best: the best result; GMS: geometric mean speedup; Worst: the worst result

Table 7. Speedups for each different input

program behavior when data-sets are exchanged. However, this process does not
require the program execution to extract features, which will affect the system re-
sponse time. Therefore, a performance loss of up to 4.86 % is appealing compared
to the cost of executing a program.

6 RELATED WORKS

Zhou and Lin [26] used a genetic algorithm called NSGA-II to investigate multi-
objective compilations, and thus compared randomly-selected sequences. The com-
piler used for this research study was GCC. The optimization levels -O1, -O2, -O3,
-Os were selected for the experiments, thus totaling 54 optimizations and a search
space size of 254. A set of 10 cBench programs were used, and the goal was to opti-
mize the code size and run-time. The hyper-volumes created by NSGA-II had the
best results, and random sequences had better performance than GCC optimization
levels. A thorough analysis revealed that NSGA-II had the best results in terms of
run-time and code size.

Jantz and Kulkarni [5] proposed an approach reducing the search-space of the op-
timization sequences. This is done by exploring dependencies between the optimiza-
tions. Applying cleanup phases such as dead-code elimination and dead-assignment
elimination, which does not have much interaction with other optimizations, some
optimizations can be removed from the search space and applied after each opti-
mization.

The works presented by [5] and [26] focus on a pure IC strategy. They does not
use a combination between ML and IC strategies as our work.

Malik [11] uses the concept of an histogram based on a data flow graph to
establish the similarity between programs. This histogram was built considering
the distance to a sink node (node without successor nodes) and a root node (node
without predecessor nodes). Thus, Malik showed how data flow graphs can be
beneficial to characterize programs using static information and SVM. However,
these sets are not adapted to recently-established programs, which could provide
greater benefits.

Park et al. [15] introduced a model to characterize programs based on graph-
model representation, collecting instruction information for each node. In addition to
the proposed model, the authors also implemented other techniques to characterize
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programs, which can be categorized into dynamic or static representations. The
former requires program execution for classifications and the latter only needs to
analyze the source code. The results showed that control flow graphs had better
performance among other strategies.

Jantz and Kulkarni [6] addressed the Optimization Selection Problem in just-
in-time compilers using Java Virtual Machine (JVM). This paper does not consider
the order of optimizations because HotSpot (in JVM) does not require it. First, the
analysis was done by recompiling the methods, removing only one optimization at
a time from the standard sequence of JVM (used as baseline). Thus, it was possible
to make the following observations: most optimizations do not have negative im-
pacts for several methods of the program. However, some methods can hinder the
performance more frequently; and most optimizations have a small individual influ-
ence on the performance. In addition, they also used a logistic regression thechnique
to predict sequences and then compare it to an GA implementation.

Lima et al. [10] used machine learning to improve power and performance effi-
ciency during compilation. They showed that sacrificing performance was unneces-
sary to reduce power consumption.

Junior and da Silva [7] evaluated the performance of different case-based rea-
soning configurations, which use dynamic and static features to find good/effective
optimization sequences. The authors presented a measure of similarity among other
strategies to build past experiences. The proposed algorithm is divided into two
phases: an offline phase; and an online phase. The former creates sequences
for prior experiences of the knowledge database. This phase can be done ran-
domly or using a meta-heuristic. The online phase is based on case-reasoning,
and thus all prior program experiences are analyzed, and its sequences are fil-
tered. Afterwards, the input sequence is compiled with the given number of analo-
gies. These sequences are extracted from the most similar program. The results
show that the approach used to create the knowledge database influences the re-
sults.

The works presented by [7, 10, 11, 15, 6] uses IC to generate a knowledge
database and also use ML to select a number of sequences and then pick up the
best between them. Instead of the instruction: select the best one, our work adapts
the sequence after ML phase.

Martins et al. [12] implemented a clustering approach, transforming code from
program functions to symbolic representations, to mitigate the OSP. These repre-
sentations refer to the DNA of the program, where tokens of the source code are
transformed into characters. The clustering approach starts by extracting DNA
from the program function. Thus, the distance matrix for programs is calculated
using the normalized compression distance algorithm. This matrix will serve as
a basis to build a tree topology in which the clustering algorithm will be capable
of finding possible clusters. Finally, all optimizations are included in the reduced
search space. The results showed that reducing the search space is significant and
highly beneficial to the performance. This work differs from our because the ini-
tial population of GA is generated by the optimization of the reduced search space,
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while our work select the initial population to the program based on SVM predic-
tion.

Purini and Jain [18] proposed a search strategy slightly different than machine
learning and iterative compilation. The objective of this strategy was to build a set of
good optimization sequences, where for each class of programs there exists a sequence
of optimizations that reach a satisfying performance. While in this work the goal
is to search a generic optimization sequence that fits well in different programs, our
work focus on search specific optimization sequences.

Tartara and Crespi Reghizzi [21] proposed a continuous learning approach that
does not require prior knowledge to create optimization sequences. These sequences
are represented as mathematical formulas. Every formula can be represented us-
ing a grammar based on certain rules of binary operations, Boolean and numeric
values, if-expressions, comparison operators, arithmetic and Boolean operators, and
program features. This approach uses a knowledge database for storing and ex-
tracting sequences, however this information is randomly-generated if the number
of sequences is insufficient. The results showed that converging for good performance
does not require several executions, and in some cases it has better values than the
highest optimization level in both compilers. This work is different from our work,
because it does not have an offline phase. In our work we used the training group
component that does the offline phase.

7 CONCLUSION

The selection of optimization sequences can greatly impact the run-time of a pro-
gram. In addition, the OSP depends heavily on the hardware architecture.

This paper proposes a hybrid approach for mitigating the OSP. Since this
problem is complex, this approach uses an ML approach (SVM) to feed the ini-
tial solution of a GA and then search for good/effective solutions. The results
showed that the hybrid approach achieved significant improvements over “pure”
or unaltered ML and IC strategies, achieving speed-ups over 2.00×, 1.93× and
2.08× with H.DHB.PC, IC.GA.10 and IC.GA.50, respectively. Machine learning
strategies achieved the lowest speed-ups among the aforementioned approaches,
1.91.

It is extremely important to highlight that the strategy used for the initial se-
quences had the highest overall influence, and we conclude that distributed-selection
is the best approach for selecting the initial solution. In addition, the experiments
showed that the approach is portable, because it can be transferred from one archi-
tecture to another without a performance loss. Furthermore, the hybrid approach
is beneficial because its solutions improve over time, whereas ML and IC do not
provide this advantage. IC strategies need to restart the process on every occasion
and ML cannot create new sequences.

Future works include investigating the influence of different schemes to generate
the KD, and additional ML approaches to predict the initial population. In addition,
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instantiating the hybrid approach with more aggressive solution adapters can be
proposed in the future.
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of Maringá, Brazil in 2016. His research interests include high
performance computing, parallel programming, and compiler.


