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Abstract. In this paper, we first prove new properties of the (a, q)-stably solvable maps
for a class of decomposable operators in the form of LF, where L is a bounded linear
operator and F is nonlinear. This class of maps is important in applications as many dif-
ferential equations can be written as LF(u) = u. Secondly, three different approaches,
the (a, q)-stably solvable maps, fixed point index and iterative methods are applied to
study a nonlinear fractional boundary value problem involving a parameter λ. We
obtain intervals of λ that correspond to at least two, one and no positive solutions, re-
spectively. Thirdly, convergence of the eigenvalues and the corresponding eigenvectors
for the associated Hammerstein-type integral operator are proved. This paper seems to
be the first to apply the theory of (a, q)-stably solvable operators in studying boundary
value problems.
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1 Introduction

In studying existence of positive solutions for boundary value problems, fixed point theory
has been widely applied. The common idea is to properly construct a cone and apply tech-
niques such as fixed point theorem of cone expansion and compression in the Banach space
[15]. An advantage of this approach is that monotonicity properties of the nonlinear operator
are not required. The results ensure existence of a solution but usually do not give much
information about the computational aspects of the solution. An alternative approach is to
combine fixed point theorem and iterative method. The idea is constructive and related to
recursive algorithms in computing. A benefit of iteration is that the solution can be calculated
numerically and further properties can also be found. However, as a trade-off, in most cases
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iteration requires the operator to be monotone increasing or decreasing. Both fixed point the-
ory and iterative methods use properties of nonlinear operators to ensure solvability of the
equation.

It is interesting to study properties of equations satisfying solvability conditions. In [9], the
so-called stably-solvable maps were introduced and used to define the Furi–Martelli–Vignoli
nonlinear spectrum. It was shown that this class of operators has some good properties
including being invariant under certain operations and satisfying a continuation principle.
Later, this concept was generalized in two directions: 1) the L-stably solvable maps in the form
of L + N, where L is a bounded linear operator and N is nonlinear [12,13], 2) the (a, q)-stably
solvable maps with stronger conditions and richer properties [2]. The L-stably solvable map is
a key concept in the definition of the semilinear spectrum [12]. The (a, q)-stably solvable map
was said to be useful in studying differential equations [2] but we have not seen any examples
in the literature. This paper seems to be the first to apply the theory of (a, q)-stably solvable
operators to a particular boundary value problem.

We will apply the theory of (a, q)-stably solvable operators, the fixed point index and the
iteration technique to the nonlinear fractional boundary value problem (BVP):

Dα
0+u(t) + λh(t) f (u(t)) = 0, 0 < t < 1, 2 < α < 3, (1.1)

u(0) = u′(0) = u′(1) = 0, (1.2)

where Dα
0+ denotes the Riemann–Liouvillle fractional derivative, λ > 0 is a parameter,

h : (0, 1)→ R+ and f : R→ R+ are nonnegative and continuous and
∫ 1

0 h(s)ds > 0 . Although
the theory of fractional calculus has a long history, new applications have been recently found
in many areas including physics, mechanical engineering, electrical engineering, control the-
ory, quantitative finance, econometrics and signal processing. Classical review of fractional
differential equations and application examples can be found in [17, 18,20] and the references
therein.

Existence of a solution for (1.1)–(1.2) is equivalent to existence of a fixed point for a
Hammerstein-type integral operator. Fixed point problems for Hammerstein operators have
been extensively studied in the past. As an example, a general approach using fixed point
index theory can be seen in [26]. However, most of the results are qualitative. For instance, it
is often shown that for λ small enough, the Hammerstein operator equation λT(x) = x has
two positive solutions. In a number of papers, for instance [19], it is proved that there exists a
λ? such that the equation λT(x) = x has at least two positive solutions, one positive solution
and no positive solutions for 0 < λ < λ?, λ = λ? and λ > λ? respectively. In this paper, using
three different approaches, we obtain quantitative results that give estimates for the critical
value λ?. It is also interesting to compare results obtained by different methods for the same
problem.

Existence of solutions for fractional BVPs has been widely studied previously, for instance
in [4,5,8,16,21]. On the other hand, bifurcation properties were also discussed, see [7,23] and
the references therein. We study the eigenvalues and prove theorems on convergence of the
corresponding eigenvectors. The results not only ensure existence of solutions for (1.1)–(1.2),
but also provide information on the structure of the solutions in the form of ‖un‖ → 0 or
‖un‖ → ∞ as n → ∞, where un is a solution corresponds to λn. Some properties of the
nonlinear spectrum are also discussed.

In Section 2, we give definitions and preliminary results that will be used in the sequel.
New results on (a, q)-stably solvable maps for a class of decomposable nonlinear operators
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and their application to BVP (1.1)–(1.2) are proved in Section 3. Section 4 obtains the λ-
interval for existence of a positive solution when f is not necessarily monotone. Existence of
two positive solutions by iteration are proved in Section 5. Finally, results on eigenvalues and
eigenvectors are given in Section 6.

2 Preliminaries

Let X, Y be Banach spaces, if M ⊂ X is bounded, the Kuratowski measure of noncompactness
α(M) is defined as the following, see for example [6]:

α(M) = inf{ε > 0 : M can be covered by finitely many sets with diameter ≤ ε}.

Let C(X, Y) denote all continuous maps from X to Y. For F ∈ C(X, Y), the upper and
lower measure of noncompactness are defined by, see for example [3]:

[F]A = inf{k > 0 : α(F(M)) ≤ kα(M), for every bounded set M ⊂ X},
[F]a = sup{k > 0 : α(F(M)) ≥ kα(M), for every bounded set M ⊂ X}.

The upper and lower quasi-norms are defined by

[F]Q = lim sup
‖x‖→∞

‖F(x)‖
‖x‖ , [F]q = lim inf

‖x‖→∞

‖F(x)‖
‖x‖ .

Definition 2.1. An operator F : X → Y is called stably-solvable if and only if for any given
compact map h : X → Y with zero upper quasi-norm ([h]Q = 0), the equation F(x) = h(x) has
a solution.

The class of stably-solvable operators corresponds to the property of surjectivity when
specialized to linear operators. In [12], it was generalized to the L-stably solvable operators
for semilinear maps in the form of L + N, where L is a linear operator and N is nonlinear.
Later it was generalized to the following (a, q)-stably solvable maps by Appell, Giorgieri and
Väth [2].

Definition 2.2. Given a ≥ 0 and q ≥ 0, a map F ∈ C(X, Y) is called (a, q)-stably-solvable if for
any h ∈ C(X, Y) with [h]A ≤ a and [h]Q ≤ q, the equation

F(x) = h(x)

has a solution x ∈ X.

The stably-solvable maps are special case of the (a, q)-stably-solvable maps when a =

q = 0. As a and q become larger, the class gets smaller since the condition is stronger.

We will use the following definitions of fractional calculus.

Definition 2.3. The standard Riemann–Liouville fractional integral of order α > 0 of a function
u : (0, ∞)→ R is defined as

Iα
0+u(t) =

1
Γ(α)

∫ t

0
(t− s)α−1u(s)ds

provided that the right side is point-wise defined on (0, ∞). Here Γ denotes the Gamma
function.
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Definition 2.4. The Riemann–Liouvillle fractional derivative of order α > 0 of a continuous
function u : [0, ∞)→ R is defined to be

Dα
0+u(t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

0

u(s)
(t− s)α−n+1 ds, n = dαe,

where dαe denotes the ceiling function, returning the smallest integer greater than or equal to
α.

It is known [8] that u ∈ C(0, 1) is a solution of (1.1)–(1.2) if and only if

u(t) = λ
∫ 1

0
G(t, s)h(s) f (u(s))ds, 0 ≤ t ≤ 1, (2.1)

where

G(t, s) =


(1− s)α−2tα−1

Γ(α)
if 0 ≤ t ≤ s ≤ 1,

(1− s)α−2tα−1

Γ(α)
− (t− s)α−1

Γ(α)
if 0 ≤ s ≤ t ≤ 1.

Lemma 2.5. For 0 ≤ t, s ≤ 1,

q(t)G(1, s) ≤ G(t, s) ≤ G(1, s) ≤ H(α) :=
(α− 2)α−2

Γ(α)(α− 1)α−1 < 1,

where q(t) = tα−1.

Proof. It is easy to see that

G(1, s) =
s(1− s)α−2

Γ(α)
.

Let g(s) = s(1− s)α−2. Then g′(s) = 0 has the solution s0 = 1
α−1 , which is the maximum point

of g(s) for 0 ≤ s ≤ 1. So

G(1, s) ≤ g(s0)

Γ(α)
=

(α− 2)α−2

Γ(α)(α− 1)α−1 = H(α).

For α > 2, Γ(α) > 1 and so H(α) < 1.
The inequality q(t)G(1, s) ≤ G(t, s) is shown in Lemma 2.8 [8].

3 Decomposable (a, q)-stably solvable maps and BVP (1.1)–(1.2)

In applications, many differential equations can be written as the operator equation

LF(u) = u, u ∈ X,

where X is a Banach space, L is a bounded linear operator and F is nonlinear. The Hammer-
stein integral equation given in (3.1) is a typical example. Lemma 3.1 and Theorem 3.2 extend
the continuation principle for (a, q)-stably solvable maps [2] to nonlinear maps in the form
of LF.

Lemma 3.1. Let F be (a, q)-stably solvable, L be a bounded linear operator. Assume that L is invertible.
Then LF is (a/[L−1]A, q/‖L−1‖)-stably solvable.
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Proof. Assume that G : X → X satisfies the conditions [G]A ≤ a/[L−1]A, and [G]Q ≤ q/‖L−1‖.
Then

[L−1G]A ≤ [L−1]A[G]A ≤ a, [L−1G]Q ≤ ‖L−1‖[G]Q ≤ q.

Since F is (a, q)-stably solvable, the equation

F(x) = L−1G(x)

has a solution. Therefore, LF(x) = G(x) has a solution, so that LF is (a/[L−1]A, q/‖L−1‖)-
stably solvable.

Theorem 3.2. Let F be (a, q)-stably solvable, L be linear and invertible. Assume that H : X× [0, 1]→
X satisfies [H(·, 0)]q < 1, and

α(H(M× [0, 1])) ≤ a1α(M), for any bounded M ⊂ X,

where a1 = a
[L−1]A

. Let

S = {x : x ∈ X, LF(x) = H(x, t), for t ∈ [0, 1]}.

If F(S) is bounded, then the equation
LF(x) = H(x, 1)

has a solution.

Proof. Since F : X → X is (a, q)-stably solvable, by Lemma 3.1, LF : X → X is (a1, q1)-stably
solvable, where

a1 = a/[L−1]A, q1 = q/‖L−1‖.

Since F(S) is bounded LF(S) is also bounded. Applying the continuation principle for (a, q)-
stably solvable maps [2], there exists x ∈ X such that

LF(x) = H(x, 1).

We now apply Theorem 3.2 to prove existence of a solution for the BVP (1.1)–(1.2). We use
the Banach space X = C[0, 1] with the standard norm

‖u‖ = max
0≤t≤1

|u(t)|, u ∈ X.

Define the Hammerstein-type operator N : R× X → X:

N(λ, u)(t) = λ
∫ 1

0
G(t, s)h(s) f (u(s))ds, t ∈ [0, 1], u ∈ X. (3.1)

For u ∈ X, u is a solution of (1.1)–(1.2) if and only if N(λ, u) = u.

Theorem 3.3. Assume that h ∈ C[0, 1], h(t) ≥ 0 for t ∈ [0, 1], ‖h‖ > 0, f : [0, ∞) → (0, ∞) is
non-decreasing. Denote

f ∞ := lim sup
x→∞

f (x)
x

.

If f ∞ < +∞, the BVP (1.1)–(1.2) has at least one positive solution for

λ ∈
(

0,
1

‖h‖(2 + H(α)) f ∞

)
.
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Proof. Let f (x) = f (0) for x ∈ (−∞, 0). Considering equation (2.1), define

F(u)(t) = λh(t) f (u), u ∈ C[0, 1], (3.2)

L(u)(t) =
∫ 1

0
G(t, s)u(s)ds, u ∈ C[0, 1]. (3.3)

By Lemma 2.5, for u ∈ C[0, 1], we have

‖L(u)‖ = max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)u(s)ds

∣∣∣∣ ≤ max
t∈[0,1]

∫ 1

0
G(t, s)ds‖u‖ ≤ H(α)‖u‖.

Therefore, L is bounded and ‖L‖ ≤ H(α) < 1, which implies that (I − L) is invertible and

‖(I − L)−1‖ ≤ 1
1− H(α)

.

Clearly the operator equation LF(u) = u is equivalent to the following:

(I − L)−1(I − F)u = −F(u). (3.4)

It is known that identity map I is (a, q)-stably solvable for a, q ∈ [0, 1) but not (1, 1)-stably
solvable. (I − L)−1 is (a, q)-stably solvable for a, q < 1− H(α) [2]. Consider the nonlinear
map F : C[0, 1]→ C[0, 1] defined by (3.2),

[F]Q = lim sup
‖u‖→∞

‖F(u)‖
‖u‖

≤ lim sup
‖u‖→∞

λ||h|| f (‖u‖)
‖u‖

= λ‖h‖ f ∞

≤ λ‖h‖(2 + H(α)) f ∞ < 1.

Next, suppose D ∈ C[0, 1] is a arbitrary bounded set. There exists M > 0 such that ‖u‖ ≤ M
for any u ∈ D.

‖F(u)‖ ≤ λ‖h‖ f (‖u‖) ≤ λ‖h‖ f (M).

This implies that F(u), u ∈ D is uniformly bounded. Moreover, for t1, t2 ∈ [0, 1] and u ∈ D,

|F(u)(t1)− F(u)(t2)| = λ|h(t1) f (u(t1))− h(t2) f (u(t2))|
≤ λ|h(t1)− h(t2)| f (M) + h(t2)| f (u(t1))− f (u(t2))|
→ 0 as |t2 − t1| → 0.

Hence F(D) is equicontinuous. By the Ascoli–Arzelà theorem, we get that F(D) is relatively
compact. Therefore, F is compact, which implies that [F]A = 0. By the Rouché type perturba-
tion result for (a, q)-stably solvable maps ([2], Proposition 5), (I − F) is (a, q)-stably solvable
for a < 1, q = 1− [F]Q > 0.

Let H(u, t) = −tF(u) and

S = {u : u ∈ C[0, 1], (I − L)−1(I − F)u = −tF(u), t ∈ [0, 1]}.

By Theorem 3.2, if (I− F)(S) is bounded, then equation (3.4) has a solution which implies the
BVP (1.1)–(1.2) has a solution.
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Assume that there exists un ∈ S, ‖un‖ → ∞, then we have

(I − F)un = −tn(I − L)F(un), tn ∈ [0, 1]

and
‖un‖ − ‖F(un)‖ ≤ ‖(I − F)un‖ = tn‖(I − L)F(un)‖ ≤ ‖I − L‖‖F(un)‖.

Further calculation leads to the following:

1 ≤ ‖I − L‖‖F(un)‖
‖un‖

+
‖F(un)‖
‖un‖

≤ λ‖h‖(2 + ‖L‖) f (‖un‖)
‖un‖

≤ λ‖h‖(2 + H(α)) f ∞.

This contradicts the assumption

λ <
1

‖h‖(2 + H(α)) f ∞

.

So S is bounded and the equation LF(u) = u has a solution. Assume u0 ∈ C[0, 1] is a solution.
Since G, h, f are all non-negative, u0 is non-negative. Since f (0) > 0 it is clear that 0 is not a
solution and, by Lemma 2.5 it follows that u0(t) ≥ tα−1‖u0‖, so u0 is positive on (0, 1]. The
proof is complete.

Remark 3.4. If f is non-negative and f (0) = 0 then the theorem proves existence of a non-
negative solution, but in this case 0 is obviously a solution.

Theorem 3.3 can be easily generalized to the case of F(t, x) : [0, 1]× [0, ∞)→ (0, ∞) instead
of h(t) f (x) to obtain existence of a solution for the equation

Dα
0+u(t) + λF(t, u(t)) = 0, 0 < t < 1, 2 < α < 3 (3.5)

subject to the boundary condition (1.2).

Theorem 3.5. Let F(t, x) : [0, 1]× [0, ∞)→ (0, ∞) be non-decreasing in x. Denote

F∞ := lim sup
x→∞

max
t∈[0,1]

F(t, x)
x

.

If F∞ < +∞, the BVP (3.5)–(1.2) has at least one positive solution for

λ ∈
(

0,
1

(2 + H(α))F∞

)
.

4 Existence of a positive solution by fixed point index

We work in the space X = C[0, 1] as in Section 3. Existence of a solution for BVP (1.1)–(1.2) is
equivalent to the existence of a fixed point for the Hammerstein operator N defined by (3.1).
To use fixed point index, a proper cone needs to be constructed. We use a well-known type of
cone, see for example [5, 8, 26]. Define the cone K as

K = {u ∈ X : u(t) ≥ q(t)‖u‖, t ∈ [0, 1]}, (4.1)
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where q(t) = tα−1 (see Lemma 2.5). For λ ∈ (0, ∞), it follows from

q(t)G(1, s) ≤ G(t, s) ≤ G(1, s)

that N(λ, K) ⊂ K. If u ∈ K, then ‖u‖ = u(1). Let Kr = {u ∈ K, ‖u‖ < r} and ∂Kr =

{u ∈ K, ‖u‖ = r}. We will use the following lemmas for fixed point index, see, for example,
[15].

Lemma 4.1. Let N : K → K be a completely continuous mapping. If

Nu 6= µu, for all u ∈ ∂Kr, and all µ ≥ 1,

then the fixed point index i(N, Kr, K) = 1.

Lemma 4.2. Let N : K → K be a completely continuous mapping and satisfy Nu 6= u for u ∈ ∂Kr. If
‖Nu‖ ≥ ‖u‖, for u ∈ ∂Kr, then the fixed point index i(N, Kr, K) = 0.

Define the linear operator T : C[0, 1]→ C[0, 1]:

T(u)(t) =
∫ 1

0
G(t, s)h(s)u(s)ds. (4.2)

Then T(K) ⊂ K and using the Ascoli–Arzelà theorem, it can be shown that T is a completely
continuous. Let the spectral radius of the operator T be denoted r(T). Under our hypotheses
it is known that r(T) > 0, see for example [26]. By the well-known Krein–Rutman theorem
[15], r(T) is an eigenvalue of T with a positive eigenvector (in K), the so-called principal
eigenvalue. Then µ1 = 1

r(T) is called the principal characteristic value of T.

Theorem 4.3. Assume that h(s) ≥ 0 for s > 0 and f (x) > 0 for x > 0. Denote

f∞ = lim
x→∞

f (x)
x

, f 0 = lim sup
x→0+

f (x)
x

, l = min
x∈(0,∞)

f (x)
x

. (4.3)

If f∞ = ∞, and 0 < f 0 < ∞, then the BVP (1.1)–(1.2) has at least one positive solution for 0 < λ <

1/( f 0r(T)) and has no positive solution for λ > 1/(lr(T)).

Proof. Let λ < 1
f 0r(T)

. Select ε > 0 small enough such that λ( f 0 + ε)r(T) < 1. Assume that

δ > 0 is such that f (x)
x < f 0 + ε for x ∈ (0, 2δ). We claim that N(λ, u) 6= µu for u ∈ ∂Kδ, and

µ ≥ 1.
Otherwise, there exist u0 ∈ ∂Kδ and µ0 ≥ 1 such that N(λ, u0) = µ0u0. Note that 0 ≤

δq(t) ≤ u0(t) ≤ ‖u0‖ = δ. Then

µ0u0(t) = N(λ, u0)(t) =
∫ 1

0
G(t, s)h(s) f (u0(s)) ds

≤ λ( f 0 + ε)
∫ 1

0
G(t, s)h(s)u0(s) ds

= λ( f 0 + ε)Tu0(t).

Thus Tu0(t) ≥ µ0

λ( f 0+ε)
u0(t). By an old known result, see for example [25, Theorem 2.7], this

implies r(T) ≥ µ0/(λ( f 0 + ε)), a contradiction. By Lemma 4.1, i(N, Kδ, K) = 1.
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We now show that i(N, KR, K) = 0 for R sufficiently large. Choose c > 0 such that∫ 1
c G(1, s)h(s)ds > 0. Select M > 0 large enough such that

λM
∫ 1

c
G(1, s)h(s)q(s)ds > 1.

There exists M1 > 0, such that f (x)
x > M for x ≥ M1. We may take M1 > max{cα−1, 2δ} and

then we let R = M1
cα−1 . For u ∈ ∂KR, we have

u(t) ≥ q(t)‖u‖ ≥ cα−1‖u‖ = M1, for t ∈ [c, 1].

Therefore

‖N(λ, u)‖ = N(λ, u)(1) = λ
∫ 1

0
G(1, s)h(s) f (u(s))ds

≥ λM
∫ 1

c
G(1, s)h(s)u(s)ds

≥ λM‖u‖
∫ 1

c
G(1, s)h(s)q(s)ds > ‖u‖.

By Lemma 4.2, i(N, KR, K) = 0. From the additivity property of fixed point index,

i(N, KR \ Kδ, K) = i(N, KR, K)− i(N, Kδ, K) = −1.

So N has a fixed point in KR \ Kδ. It is a positive solution of (1.1)–(1.2).
For λ > 1

lr(T) , nonexistence of a positive solution can be obtained by [26, Theorem 8].

Remark 4.4. Assume the conditions of Theorem 4.3 are satisfied. If l = f 0, then the BVP
(1.1)–(1.2) has at least one positive solution for λ ∈

(
0, 1

lr(T)

)
and has no positive solution for

λ ∈
( 1

lr(T) ,+∞
)
. It would be interesting to know whether or not there is a positive solution

when λ = 1
lr(T) .

Remark 4.5. It is easy to construct functions satisfying the conditions of Theorem 4.3.

Remark 4.6. A parameter µ ∈ R is an eigenvalue of an nonlinear operator N : X → X if there
exists u ∈ X, u 6= 0 such that µu = Nu, and u is called the corresponding eigenvector. A
principal eigenvalue is an eigenvalue with a positive eigenvector [24]. Theorem 4.3 implies
that for µ > f 0r(T), µ is a principle eigenvalue of the Hammerstein integral operator:

Nu =
∫ 1

0
G(t, s)h(s) f (u)ds. (4.4)

By the results of [11], all eigenvalues of an nonlinear operator N are in the nonlinear spectrum
of N. Since the spectrum is a closed set, we obtain that [ f 0r(T), ∞) ⊂ σ(N) [11].

5 Two positive solutions by iteration

Using iteration techniques, existence of two positive solutions can be obtained when f is non-
decreasing. The results extend the previous work [14] on an algebraic system. We again use
the notations of (4.1)–(4.3). In addition, let

f0 = lim
x→0

f (x)
x

, A =
∫ 1

0
G(1, s)h(s)ds. (5.1)
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Lemma 5.1. Assume f is non-decreasing for x ∈ (0,+∞), f0 = ∞ and l = minx∈(0,∞)
f (x)

x > 0. If
0 < λ1 < λ2 < 1

lA , then there exists u1 ≤ u2, u1, u2 ∈ K \ {θ}, such that N(λ1, u1)(t) = u1(t) and
N(λ2, u2)(t) = u2(t).

Proof. Assume x0 ∈ (0, ∞) such that f (x0) = lx0. Note that

l <
1

λ2A
<

1
λ1A

.

Let

u0(t) =
x0

A

∫ 1

0
G(t, s)h(s)ds for t ∈ [0, 1].

It is clear that u0 ∈ K \ {θ} and ‖u0‖ = x0. For t ∈ [0, 1],

N (λ1, u0) (t) = λ1

∫ 1

0
G(t, s)h(s) f (u0(s))ds

≤ λ1

∫ 1

0
G(t, s)h(s) f (‖u0‖)ds

= λ1lx0

∫ 1

0
G(t, s)h(s)ds

<
x0

A

∫ 1

0
G(t, s)h(s)ds = u0(t).

Let u1
1(t) = N(λ1, u0)(t) and uj

1(t) = N(λ1, uj−1
1 )(t) = N j(λ1, u0)(t), j = 2, 3, . . . , for t ∈ [0, 1].

Then
u0 > u1

1 > u2
1 > · · · > uj

1 > uj+1
1 > · · · ≥ θ.

Since the sequence {uj
1}∞

j=1 is decreasing and has a lower bound, for any t ∈ [0, 1], limj→∞ uj
1(t)

exists and the convergence is uniform. Assume that limj→∞ uj
1 = u1, we show that u1(t) > 0

for t ∈ (0, 1]. Otherwise, since u1 ∈ K, we would have u1(t) = 0 for t ∈ (0, 1] and then
limj→∞ uj

1(t) = 0 for t ∈ (0, 1], and uj
1 ∈ K implies that ‖uj

1‖ → 0. Since limx→0
f (x)

x = ∞, for
any H > 0, there exists J such that for j > J we have

f (uj
1(t))

uj
1(t)

> H, t ∈ [0, 1].

Select H large enough such that λ1HA > 1. For j > J,

uj+1
1 (1) = N(λ1, uj

1(1))

= λ1

∫ 1

0
G(1, s)h(s) f (uj

1(s))ds

> λ1H
∫ 1

0
G(1, s)h(s)q(s)‖uj

1‖ds

≥ uj
1(1)λ1H

∫ 1

0
G(1, s)h(s)q(s)ds

≥ uj
1(1).

The contradiction shows that u1 ∈ K \ θ and u1 is a fixed point of N(λ1, u).
Similarly, from u1

2(t) = N(λ2, u0)(t) and uj
2(t) = N(λ2, uj−1

2 )(t), j = 2, 3, . . . , we can
construct a sequence

u0 > u1
2 > u2

2 > · · · > uj
2 > uj+1

2 > · · · ≥ θ
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such that lim uj
2 → u2 ∈ K \ θ as j → ∞, and u2 is a fixed point of N(λ2, u). It is easy to see

that
u1

1 = N(λ1, u0) < N(λ2, u0) = u1
2.

Since f is non-decreasing, we have uj
1 ≤ uj

2 for j = 2, 3, . . . . Therefore, u1 ≤ u2. The proof is
complete.

Lemma 5.2. Suppose f is non-decreasing on (0, ∞), f (x) > 0 for x > 0 and f∞ = ∞. For any b > 0,
let

Sb = {u ∈ K : N(λ, u) = u, for λ ∈ [b, ∞)}.

Then Sb is bounded.

Proof. Assume there exist un ∈ Sb and λn ∈ [b, ∞) such that

N(λn, un) = un, and lim
n→∞
‖un‖ = ∞.

Select H large enough such that

Hbcα−1
∫ 1

c
G(1, s)h(s)ds > 1,

where 1 > c > 0 is a constant. There exist M > 0 such that for n > M, f (cα−1‖un‖) >

Hcα−1‖un‖. Since un ∈ K, ‖un‖ = un(1) and un(s) ≥ q(s)‖un‖, n = 1, 2, . . . and for n > M,
we have

un(1) = λn

∫ 1

0
G(1, s)h(s) f (un(s))ds

≥ λn

∫ 1

c
G(1, s)h(s) f (q(s)un(1))ds

≥ λn

∫ 1

c
G(1, s)h(s) f (cα−1un(1))ds

> un(1)bHcα−1
∫ 1

c
G(1, s)h(s)ds > un(1).

This contradiction shows that Sb is bounded.

Lemma 5.3. Assume that f0 = f∞ = ∞ and f is also non-decreasing for x ∈ (0,+∞). Let

A =
∫ 1

0
G(1, s)h(s)ds, l = min

x∈(0,∞)

f (x)
x

.

Then the Hammerstein integral operator (2.1) has a fixed point for λ = 1
lA .

Proof. Choose a sequence 0 < λ1 < λ2 < · · · < λn < λn+1 < · · · < 1
lA satisfying

lim
n→∞

λn =
1

lA
.

By Lemma 5.1, there exists a non-decreasing sequence {un}∞
n=1 ⊂ {K \ θ} such that

un(t) = N(λn, un)(t) = λn

∫ 1

0
G(t, s)h(s) f (un(s))ds. (5.2)
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By Lemma 5.2, {un}∞
n=1 is equicontinuous and uniformly bounded. Let n → ∞ in equation

(5.2) and let limn→∞ un(t) = u?(t) for t ∈ [0, 1]. Using Lebesgue’s dominated convergence
theorem, we have

u?(t) =
1

lA

∫ 1

0
G(t, s)h(s) f (u?(s))ds.

Therefore u? is the fixed point associated with λ = 1
lA . The proof is complete.

Theorem 5.4. Assume f0 = f∞ = ∞ and f is also non-decreasing for x ∈ (0,+∞). Then BVP
(1.1)–(1.2) has at least two, one and no positive solution for λ ∈

(
0, 1

lA

)
, λ = 1

lA and λ ∈
( 1

lr(T) , ∞
)

respectively.

Proof. Assume that λ ∈
(
0, 1

lA

)
. By Lemmas 5.1 and 5.3, there exist u∗, uλ ∈ {K \ θ}, uλ ≤ u?

such that

N
(

1
lA

, u?

)
(t) = u?(t) and N(λ, uλ)(t) = uλ(t), t ∈ [0, 1].

If uλ = u?, we would have the contradiction:

N(λ, uλ) = uλ = u? = N
(

1
lA

, u?

)
= N

(
1

lA
, uλ

)
.

Hence uλ < u?. In the following, we will construct two open sets Ω1 ⊂ Ω2 ⊂ C[0, 1], where
Ω2 = {u ∈ C[0, 1], ‖u‖ ≤ R}, R is same as in the proof of Theorem 4.3 for KR with the
extra condition that M1 is large enough such that M1

cα−1 > ‖u∗‖ + 1. Following the proof of
Theorem 4.3, we have

N(λ, u)‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Now, let
Ω1 = {u ∈ C[0, 1], −δ < u(t) < u?(t)}.

For u ∈ K ∩ ∂Ω1, we have ‖u‖ = u(1) = u?(1) and

‖N(λu)(1)‖ = λ
∫ 1

0
G(1, s)h(s) f (u(s))ds

<
1

lA

∫ 1

0
G(1, s)h(s) f (u?(s))ds = u?(1).

So ‖N(λ, u)‖ < ‖u‖ for u ∈ K ∩ ∂Ω1. By the well-known Guo–Krasnoselskii fixed point
theorem, N has a fixed point uλ ∈ K ∩ (Ω2 \Ω1). It is a positive solution of (1.1)–(1.2). Since
uλ ∈ Ω1, uλ 6= uλ. The BVP (1.1)–(1.2) has two positive solutions.

6 Eigenvalues and eigenvectors

In the literature, existence of positive solutions for the Hammerstein integral equation (4.4)
has been extensively studied, for example, see [19] and the references therein. In this section,
we obtain results on the convergence of eigenvalues and their corresponding eigenvectors for
the operator N.

Recall that µ is an eigenvalue of N if there exists u ∈ C[0, 1], u 6= 0 such that N(u) = µu
(see Remark 4.6). Define the following conditions on f : R+ → R+, where R+ = [0, ∞).

H1: f (0) > 0;
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H2: There exist L ≥ l > 0 such that L ≥ f (x)
x ≥ l;

H3: infx≥0 f (x) = d > 0 and supx≥0 f (x) = D < +∞.

Theorem 6.1. Assume that h : (0, 1)→ R+ and denote

A =
∫ 1

0
G(1, s)h(s)ds, B =

∫ 1

0
G(1, s)q(s)h(s)ds.

Then

a) if H1 holds, the Hammerstein operator N defined by (4.4) has a sequence of eigenvalues µn such
that µn → ∞, and the corresponding eigenvectors uniformly converges to zero;

b) if H2 holds, N has a sequence of eigenvalues µn such that µn → µ0 ∈ [lB, LA]. The correspond-
ing eigenvectors ‖yn‖ → ∞;

c) if H3 is satisfied, then (1) N has a sequence of eigenvalues νn such that νn → ∞, and the
corresponding eigenvectors uniformly converges to zero; (2) N also has a sequence of eigenvalues
µn → 0 such that the corresponding eigenvectors ‖yn‖ → ∞.

Proof. a) Let K be the cone defined by (4.1). For r > 0, define

(Nru)(t) =

‖u‖
∫ 1

0
G(t, s)h(s) f

(
r

u(s)
‖u‖

)
ds if u 6= 0,

0 if u = 0.

Nr is a positively homogeneous, compact operator. From u ∈ K, ‖u‖ = u(1) and q(t)G(1, s) ≤
G(t, s) ≤ G(1, s), it can be shown that Nr : K → K. Since f (0) > 0, there exists δ > 0 such that
f (x) > f (0)

2 for |x| < δ. Let 0 < r < δ, then for u ∈ K and ‖u‖ = 1,

‖Nru‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s) f (ru(s))ds

≥ f (0)
2

max
t∈[0,1]

∫ 1

0
G(t, s)h(s)ds

≥ f (0)
2

max
t∈[0,1]

∫ 1

0
q(t)G(1, s)h(s)ds

=
f (0)

2

∫ 1

0
G(1, s)h(s)ds

=
f (0)A

2
> 0.

We have inf{‖Nru‖ : u ∈ K, ‖u‖ = 1} > 0. Since Nr is compact, there exists λr > 0 and ur ∈ K
such that Nrur = λrur [6]. Thus

1
λr

∫ 1

0
G(t, s)h(s) f (rur(s))ds = ur(t).

In addition,

λr = λr max
t∈[0,1]

ur(t) = max
t∈[0,1]

∫ 1

0
G(t, s)h(s) f (rur(s))ds ≥ f (0)A

2
. (6.1)
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Let yr = rur, then ‖yr‖ = r and

∫ 1

0
G(t, s)h(s) f (rur(s))ds =

λr

r
yr(t).

Let r → 0, we can obtain the eigenvalue sequence µr =
λr
r → ∞ and ‖yr‖ → 0.

b) Let Nr be defined in a) and select r > 1. For u ∈ K and ‖u‖ = 1, we have

‖Nru‖ = max
t∈[0,1]

∫ 1

0
G(t, s)h(s) f (ru(s))ds

≥ lr max
t∈[0,1]

q(t)
∫ 1

0
G(1, s)h(s)u(s)ds

≥ lr
∫ 1

0
G(1, s)q(s)h(s)ds ≥ lrB.

By a similar argument to that of a), there exist λr and ur ∈ K, ‖ur‖ = 1 such that Nrur = λrur

and λr ≥ lrB. In addition,

λr = λr max
t∈[0,1]

ur(t)

= max
t∈[0,1]

∫ 1

0
G(t, s)h(s) f (rur(s))ds

≤ Lr
∫ 1

0
G(1, s)h(s)ds = LrA.

Let rn → ∞ (n→ ∞), we have
1

LA
≤ rn

λrn

≤ 1
lB

.

Let µ0 = limn→∞
λrn
rn

and yn = rnun, then ‖yn‖ → ∞ as n→ ∞, µ0 ∈ [lB, LA].

c) The conclusion (1) follows directly from a) since H1 is satisfied. (2) As in the proof of b),
there exist λr and ur ∈ P, ‖ur‖ = 1 such that Nrur = λrur and λr ≥ lB. We also have

λr = max
t∈[0,1]

∫ 1

0
G(t, s)h(s) f (rx(s))ds ≤ DA. (6.2)

Again, let yn = rnun, as rn → ∞, we have ‖yn‖ → ∞ and µn = λrn
rn
→ 0. The proof is

complete.

Remark 6.2. Consider the Hammerstein-type operator with a parameter N(λ, u) defined by
(3.1). According to the definitions of bifurcation point and asymptotic bifurcation point given
in [22], Theorem 6.1 can be stated as the following:

a) if H1 holds, then 0 is a bifurcation point of N(λ, u) = u;

b) if H2 holds, then N(λ, u) = u has an asymptotic bifurcation point λ0 ∈
[

1
LA , 1

lB

]
;

c) in case of H3 is satisfied, 0 is a bifurcation point and ∞ is an asymptotic bifurcation point
of N(λ, u) = u.
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Remark 6.3. Theorem 6.1 not only proves that there exists a sequence {λn}∞
1 with correspond-

ing solutions of (1.1)–(1.2), but also gives some the properties of the set of solutions. In case
a), there exist λn → 0 with corresponding solutions un. In addition, the set of solutions
‖un‖ → 0. Case b) ensures (1.1)–(1.2) has solutions for 1

LA ≤ λn ≤ 1
lB and the corresponding

solutions un → ∞. At the last, case c) provides existence of solutions with λn → ∞ and the
corresponding solutions ‖un‖ → ∞ .
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