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Abstract. The k-dimensional system of neutral type nonlinear difference equations with
delays in the following form

∆
(

xi(n) + pi(n) xi(n− τi)
)
= ai(n) fi(xi+1(n− σi)) + gi(n),

∆
(

xk(n) + pk(n) xk(n− τk)
)
= ak(n) fk(x1(n− σk)) + gk(n),

where i = 1, . . . , k − 1, is considered. The aim of this paper is to present sufficient
conditions for the existence of nonoscillatory bounded solutions of the above system
with various (pi(n)), i = 1, . . . , k, k ≥ 2.
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1 Introduction

In this paper we consider a nonlinear difference system of k (k ≥ 2) equations of the form
∆
(

xi(n) + pi(n) xi(n− τi)
)
= ai(n) fi(xi+1(n− σi)) + gi(n),

∆
(

xk(n) + pk(n) xk(n− τk)
)
= ak(n) fk(x1(n− σk)) + gk(n),

(1.1)

where n ∈ N0, i = 1, . . . , k − 1, ∆ is the forward difference operator defined by ∆u(n) =

u(n + 1) − u(n). Here R is a set of real numbers, N = {0, 1, 2, . . . } and σi, τi ∈ N for i =

1, . . . , k. By n0 we denote max {τ1, . . . , τk, σ1, . . . , σk}, and N0 = {n0, n0 + 1, . . . }. Moreover ai =

(ai(n)), gi = (gi(n)), pi = (pi(n)) for i = 1, . . . , k are given sequences of real numbers, xi =

(xi(n)) for i = 1, . . . , k are unknown real sequences and functions fi : R→ R. Throughout this
paper X denotes an unknown vector (x1, . . . , xk) and X(n) denotes (x1(n), . . . , xk(n)) ∈ Rk.
For the elements of Rk the symbol | · | stands for the maximum norm.
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By B we denote the Banach space of all bounded sequences in Rk with the supremum
norm, i.e.

B =

{
X : N→ Rk : ‖X‖ = sup

n∈N

|X(n)| < ∞

}
,

and by B the following subset of B

B = {X = (x1, . . . , xk) ∈ B : xi is nonnegative or nonpositive for i = 1, . . . , k} .

A sequence of real numbers is said to be nonoscillatory if it is either eventually positive
or eventually negative. By a solution of system (1.1) we mean a vector X such that its compo-
nents, i.e. x1, . . . , xk, satisfy the system (1.1) for sufficiently large n. The solution X of system
(1.1) is called nonoscillatory if all its components are nonoscillatory. The solution X of system
(1.1) is called bounded if all its components are bounded.

Any higher-order nonlinear neutral difference equation could be rewritten as k-dimen-
sional system of difference equations with one equation of neutral type but not vice-versa.
Higher-order nonlinear neutral difference equations have been studied by many authors, see
for example [2–4, 8–10, 13–23], and the references cited therein. The theorems presented here
generalize and improve the results obtained for three dimensional system in [13].

The following definition and theorems will be used in the sequel.

Definition 1.1 (Uniformly Cauchy subset, [6]). A set Ω of sequences in l∞ is uniformly Cauchy
if for every ε > 0, there exists an integer n such that |X(i)− X(j)| < ε whenever i, j > n for
any X ∈ Ω.

Lemma 1.2 (Arzelà–Ascoli theorem, [1]). A bounded and uniformly Cauchy subset of l∞ is relatively
compact.

Theorem 1.3 (Krasnoselskii’s fixed point theorem, [7]). Let Ω be a bounded closed convex subset
of a Banach space and let F, T be maps such that Fx + Ty ∈ Ω for every pair x, y ∈ Ω. If F is a
contraction and T is completely continuous, then the equation Fx + Tx = x has a solution in Ω.

Theorem 1.4 (Schauder’s fixed point theorem, [5]). Let Ω be a nonempty, compact and convex
subset of a Banach space and let T : Ω→ Ω be continuous. Then T has a fixed point in M.

2 Main results

In this section, using the Krasnoselskii’s fixed point theorem and Schauder’s fixed point the-
orem, we establish sufficient conditions for the existence of nonoscillatory bounded solutions
of system (1.1).

Theorem 2.1. Assume that for i = 1, . . . , k

∞

∑
n=1
|ai(n)| < ∞, (2.1)

∞

∑
n=1
|gi(n)| < ∞, (2.2)

fi : R→ R is a continuous function (2.3)
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and for any closed subset J ⊂ R

max
i=1,...,k

sup
t∈J
{| fi(t)|} > 0. (2.4)

Assume also that for each i = 1, . . . , k the terms of sequence pi are of the same sign for n ∈ N0. If for
each i = 1, . . . , k there exists a positive real constant cpi such that

0 ≤ pi(n) ≤ cpi < 1, n ∈N0, (2.5)

or
− 1 < −cpi ≤ pi(n) ≤ 0, n ∈N0, (2.6)

then system (1.1) has a bounded nonoscillatory solution.

Proof. For the fixed positive real number r we define a set

Ω1 =

{
X ∈ B :

1
8
(1− cpi)r ≤ |xi(n)| ≤ r, i = 1, . . . , k, n ∈N

}
.

Clearly Ω1 is a bounded closed convex subset of the Banach space B. Since condition (2.3) is
satisfied, we can take

M f = max
i=1,...,k

{
| fi(t)| : |t| ∈

[
1
8
(1− cpi)r, r

]}
.

From (2.1) and (2.2), there exists such n1 ∈N0 that

∞

∑
n=n1

|ai(n)| ≤
(1− cpi)r

8M f
,

∞

∑
n=n1

|gi(n)| ≤
(1− cpi)r

4
.

Let I1, I2, I3, I4 be subsets of the set {1, . . . , k} and moreover, Ii ∩ Ij = ∅ for i 6= j, i, j = 1, 2, 3, 4
and I1 ∪ I2 ∪ I3 ∪ I4 = {1, . . . , k}.
We consider four cases

(i) {
0 ≤ pi(n) ≤ cpi < 1,

xi(n) > 0, for i ∈ I1, n ≥ n1,

(ii) {
−1 < −cpi ≤ pi(n) ≤ 0,

xi(n) < 0, for i ∈ I2, n ≥ n1,

(iii) {
0 ≤ pi(n) ≤ cpi < 1,

xi(n) < 0, for i ∈ I3, n ≥ n1,

(iv) {
−1 < −cpi ≤ pi(n) ≤ 0,

xi(n) > 0, for i ∈ I4, n ≥ n1.
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Next, we define the maps F, T : Ω1 → B where

F =

 F1
...

Fk

 , T =

 T1
...

Tk

 ,

(FiX)(n) =


(FiX)(n1) for i = 1, . . . , k, 0 ≤ n < n1,

−pi(n)xi(n− τi) +
(1+cpi )r

2 for i ∈ I1 ∪ I2, n ≥ n1,

−pi(n)xi(n− τi) +
(1−cpi )r

2 for i ∈ I3 ∪ I4, n ≥ n1,

(2.7)

and for i = 1, . . . , k− 1

(TiX)(n) =

(TiX)(n1) for 0 ≤ n < n1,

−
∞
∑

s=n
ai(s) fi(xi+1(s− σi))−

∞
∑

s=n
gi(s) for n ≥ n1,

(2.8)

and

(TkX)(n) =

(TkX)(n1) for 0 ≤ n < n1,

−
∞
∑

s=n
ak(s) fk(x1(s− σk))−

∞
∑

s=n
gk(s) for n ≥ n1.

(2.9)

We will show that F and T satisfy the assumptions of Theorem 1.3. First we prove that if
X, X̄ ∈ Ω1, then FX + TX̄ ∈ Ω1.

For n ≥ n1, i ∈ I1 ∪ I2 and i 6= k we have

(FiX)(n) + (TiX̄)(n) = − pi(n)xi(n− τi) +
(1 + cpi)r

2

−
∞

∑
s=n

ai(s) fi(x̄i+1(s− σi))−
∞

∑
s=n

gi(s)

≤
(1 + cpi)r

2
+

∞

∑
s=n
|ai(s)| | fi(x̄i+1(s− σi))|+

∞

∑
s=n
|gi(s)|

≤ 1
2

r +
1
2

cpi r + M f ·
(1− cpi)r

8M f
+

(1− cpi)r
4

=
7
8

r +
1
8

cpi r ≤ r.

Moreover,

(FiX)(n) + (TiX̄)(n) = − pi(n)xi(n− τi) +
(1 + cpi)r

2

−
∞

∑
s=n

ai(s) fi(x̄i+1(s− σi))−
∞

∑
s=n

gi(s)

≥ − |pi(n)||xi(n− τi)|+
(1 + cpi)r

2

−
∞

∑
s=n
|ai(s)| | fi(x̄i+1(s− σi))| −

∞

∑
s=n
|gi(s)|

≥ − cpi r +
1
2

r +
1
2

cpi r−M f ·
(1− cpi)r

8M f
−

(1− cpi)r
4

=
1
8
(1− cpi)r.
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For n ≥ n1 and i ∈ I3 ∪ I4, and i 6= k we have

(FiX)(n) + (TiX̄)(n) = − pi(n)xi(n− τi) +
(1− cpi)r

2

−
∞

∑
s=n

ai(s) fi(x̄i+1(s− σi))−
∞

∑
s=n

gi(s)

≤ |pi(n)||xi(n− τi)|+
(1− cpi)r

2

+
∞

∑
s=n
|ai(s)| | fi(x̄i+1(s− σi))|+

∞

∑
s=n
|gi(s)|

≤ cpi r +
1
2

r− 1
2

cpi r + M f ·
(1− cpi)r

8M f
+

(1− cpi)r
4

=
1
8

cpi r +
7
8

r ≤ r.

On the other hand,

(FiX)(n) + (TiX̄)(n) = − pi(n)xi(n− τi) +
(1− cpi)r

2

−
∞

∑
s=n

ai(s) fi(x̄i+1(s− σi))−
∞

∑
s=n

gi(s)

≥
(1− cpi)r

2
−

∞

∑
s=n
|ai(s)| | fi(x̄i+1(s− σi))| −

∞

∑
s=n
|gi(s)|

≥ 1
2

r− 1
2

cpi r−M f ·
(1− cpi)r

8M f
−

(1− cpi)r
4

=
1
8
(1− cpi)r.

For i = k there is a different definition of the mapping Tk, but all estimations are analogous,
and hence omitted.

The task is now to prove that F is a contraction mapping. It is easy to see that

|(FiX)(n)− (FiX̄)(n)| ≤ |pi(n)| |xi(n− τi)− x̄i(n− τi)|
≤ cpi |xi(n− τi)− x̄i(n− τi)|,

for any X, X̄ ∈ Ω1, i = 1, . . . , k and n ≥ n1. Hence

‖FX− FX̄‖ ≤ max
i=1,...,k

{cpi} · ‖X− X̄‖,

where, by (2.5) and (2.6), there is 0 < maxi=1,...,k {cpi} < 1.
The next step is to show continuity of T. Let Xj = (x1j, . . . , xkj) ∈ Ω1 for j ∈N and for i =

1, . . . , k there is xij(n)→ xi(n) as j→ ∞. Since Ω1 is closed, we have X = (x1, . . . , xk) ∈ Ω1. By
(2.1), (2.3), (2.8) and Lebesgue’s dominated convergence theorem we obtain for i = 1, . . . , k− 1

∣∣(TiXj)(n)− (TiX)(n)
∣∣ ≤ ∞

∑
s=n
|ai(s)| | fi(xi+1 j(s− σi))− fi(xi+1(s− σi))| → 0 if j→ ∞,

where n ∈N. Analogously we conclude for i = k. Therefore

‖(TXj)− (TX)‖ → 0 if j→ ∞,
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and we see that T is a continuous mapping.
In order to prove that T is completely continuous we can use Lemma 1.2. Hence we have

to show that TΩ1 is uniformly Cauchy (see Definition 1.1). We show transformations for any
Ti, i = 1, . . . , k− 1. Similar arguments apply to Tk.

Let X ∈ Ω1. We conclude from the assumptions (2.1), (2.2) and (2.3) that for any given
ε > 0 there exists an integer n2 > n1 such that for n ≥ n2 we have

∞

∑
s=n
|ai(s)| | fi(xi+1(s− σi))|+

∞

∑
s=n
|gi(s)| <

ε

2
.

Hence, for n4 > n3 ≥ n2, we obtain

|(TiX)(n4)− (TiX)(n3)| =
∣∣∣∣∣ ∞

∑
s=n4

ai(s) fi(xi+1(s− σi)) +
∞

∑
s=n4

gi(s)

−
∞

∑
s=n3

ai(s) fi(xi+1(s− σi))−
∞

∑
s=n3

gi(s)

∣∣∣∣∣ < ε.

Therefore TΩ1 is uniformly Cauchy.
By Theorem 1.3, there exists X such that (FX)(n) + (TX)(n) = X(n).
Finally, we verify that X satisfies system (1.1) for n ≥ n1. As (FiX)(n) + (TiX)(n) = xi(n),

i = 1, . . . , k, we have for i ∈ I1 ∪ I2 and i 6= k

− pi(n)xi(n− τi) +
(1 + cpi)r

2
−

∞

∑
s=n

ai(s) fi(xi+1(s− σi))−
∞

∑
s=n

gi(s) = xi(n),

∆ (xi(n) + pi(n) xi(n− τi)) = −∆
∞

∑
s=n

ai(s) fi(xi+1(s− σi))− ∆
∞

∑
s=n

gi(s),

∆ (xi(n) + pi(n) xi(n− τi)) = ai(n) fi(xi+1(n− σi)) + gi(n). (2.10)

Similarly, we get (2.10) for i ∈ I3 ∪ I4 and i 6= k. In all cases, for i = k, the reasoning is also the
same as above. The proof is complete.

Note that for pi(n) ≡ 0, i = 1, . . . , k, system (1.1) is not of the neutral type, but Theorem 2.1
is still true.

Example 2.2. Consider a difference system

∆
(

x1(n) + 1
2n x1(n− 1)

)
= 5n4−21n3+22n2+4n−8

4n6−16n5+10n4+16n3−14n2 x2(n− 2) + 1
n2 ,

∆
(

x2(n)− 1
2n x2(n− 2)

)
= 2n5−17n4+43n3−48n2+27n−7

2n8−4n7−6n6+8n5+8n4 x3
3(n− 1)− 1

n2 ,

∆
(

x3(n) + 1
2n x3(n− 1)

)
= 3n3−3n2+2

4n5−2n4−6n3 x4(n− 1) + 1
n3 ,

∆
(

x4(n)− 1
2n x4(n− 1)

)
= 2n2−5n+3

n4+n3 x2
1(n− 1).

All assumptions of Theorem 2.1 are satisfied. The system above has the bounded (but not
unique) solution X =

((
1 + 1

n

)
,
(
−2 + 1

n2

)
,
(
−1− 1

n

)
,
(
2− 1

n

))
for n ≥ 3.
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Theorem 2.3. Assume that conditions (2.1), (2.2), (2.3) and (2.4) are satisfied. If there exist positive
real numbers c̃pi , i = 1, . . . , k that

1 < c̃pi ≤ pi(n), n ∈N0, (2.11)

or
pi(n) ≤ −c̃pi < −1, n ∈N0, (2.12)

then system (1.1) has a bounded nonoscillatory solution.

Proof. We define a subset Ω2 of B in the following way

Ω2 =

{
X ∈ B :

1
8
(c̃pi − 1)r ≤ |xi(n)| ≤ c̃pi r, i = 1, . . . , k, n ∈N

}
.

where r is a fixed positive real number. Obviously Ω2 is a bounded, closed and convex subset
of B. Let us set

M̃ f = max
i=1,...,k

{
| fi(t)| : |t| ∈

[
1
8
(c̃pi − 1)r, c̃pi r

]}
.

From assumptions (2.1) and (2.2), we conclude that there exists n5 ∈N0 that

∞

∑
n=n5

|ai(n)| ≤
(c̃pi − 1)r

8M̃ f
,

∞

∑
n=n5

|gi(n)| ≤
(c̃pi − 1)r

4
.

Let Ĩ1, Ĩ2, Ĩ3, Ĩ4 be such subsets of the set {1, . . . , k} that Ĩi ∩ Ĩj = ∅ for i 6= j, i, j = 1, 2, 3, 4 and
Ĩ1 ∪ Ĩ2 ∪ Ĩ3 ∪ Ĩ4 = {1, . . . , k}.

Since we seek for the nonoscillatory solution, we consider the following cases

(i) {
1 < c̃pi ≤ pi(n),

xi(n) > 0, for i ∈ Ĩ1, n ≥ n5,

(ii) {
pi(n) ≤ −c̃pi < −1,

xi(n) < 0, for i ∈ Ĩ2, n ≥ n5,

(iii) {
1 < c̃pi ≤ pi(n),

xi(n) < 0, for i ∈ Ĩ3, n ≥ n5,

(iv) {
pi(n) ≤ −c̃pi < −1,

xi(n) > 0, for i ∈ Ĩ4, n ≥ n5.

We define the maps F, T : Ω2 → B in the following way

(FiX)(n) =


(FiX)(n5) for i = 1, . . . , k, 0 ≤ n < n5,

− xi(n+τi)
pi(n+τi)

+
(1+c̃pi )r

2 for i ∈ Ĩ1 ∪ Ĩ2, n ≥ n5,

− xi(n+τi)
pi(n+τi)

+
(c̃pi−1)r

2 for i ∈ Ĩ3 ∪ Ĩ4, n ≥ n5,

(2.13)
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and for i = 1, . . . , k− 1

(TiX)(n) =

(TiX)(n5) for 0 ≤ n < n5,

− 1
pi(n+τi)

∞
∑

s=n+τi

ai(s) fi(xi+1(s− σi))− 1
pi(n+τi)

∞
∑

s=n+τi

gi(s) for n ≥ n5,
(2.14)

and

(TkX)(n) =

(TkX)(n5) for 0 ≤ n < n5,

− 1
pk(n+τk)

∞
∑

s=n+τk

ak(s) fk(x1(s− σk))− 1
pk(n+τk)

∞
∑

s=n+τi

gk(s) for n ≥ n5.
(2.15)

Let X, X̄ ∈ Ω2, n ≥ n5. Then also FX + TX̄ ∈ Ω2. We will present all transformations for
the i-th components of F and T, where i = 1, . . . , k− 1. We have for i ∈ Ĩ1 ∪ Ĩ2

(FiX)(n) + (TiX̄)(n) = − xi(n + τi)

pi(n + τi)
+

(1 + c̃pi)r
2

− 1
pi(n + τi)

∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi))

− 1
pi(n + τi)

∞

∑
s=n+τi

gi(s)

≤
(1 + c̃pi)r

2
+

1
|pi(n + τi)|

∞

∑
s=n+τi

|ai(s)| | fi(xi+1(s− σi))|

+
1

|pi(n + τi)|
∞

∑
s=n+τi

|gi(s)|

≤ 1
2

c̃pi r +
1
2

r + M̃ f ·
(c̃pi − 1)r

8M̃ f
+

(c̃pi − 1)r
4

=
7
8

c̃pi r +
1
8

r ≤ c̃pi r.

On the other hand,

(FiX)(n) + (TiX̄)(n) = − xi(n + τi)

pi(n + τi)
+

(1 + c̃pi)r
2

− 1
pi(n + τi)

∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi))

− 1
pi(n + τi)

∞

∑
s=n+τi

gi(s)

≥ − |xi(n + τi)|
|pi(n + τi)|

+
(1 + c̃pi)r

2

− 1
|pi(n + τi)|

∞

∑
s=n+τi

|ai(s)| | fi(xi+1(s− σi))|

− 1
|pi(n + τi)|

∞

∑
s=n+τi

|gi(s)|

≥ − r +
1
2

c̃pi r +
1
2

r− M̃ f ·
(c̃pi − 1)r

8M̃ f
−

(c̃pi − 1)r
4

=
1
8
(c̃pi − 1)r.
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Next we have for i ∈ Ĩ3 ∪ Ĩ4

(FiX)(n) + (TiX̄)(n) = − xi(n + τi)

pi(n + τi)
+

(c̃pi − 1)r
2

− 1
pi(n + τi)

∞

∑
s=n+τi

ai(s) fi(x̄i+1(s− σi))

− 1
pi(n + τi)

∞

∑
s=n+τi

gi(s)

≤ |xi(n + τi)|
|pi(n + τi)|

+
(c̃pi − 1)r

2

+
1

|pi(n + τi)|
∞

∑
s=n+τi

|ai(s)| | fi(x̄i+1(s− σi))|

+
1

|pi(n + τi)|
∞

∑
s=n+τi

|gi(s)|

≤ r +
1
2

c̃pi r−
1
2

r + M̃ f ·
(c̃pi − 1)r

8M̃ f
+

(c̃pi − 1)r
4

=
7
8

c̃pi r +
1
8

r ≤ c̃pi r.

Moreover,

(FiX)(n) + (TiX̄)(n) = − xi(n + τi)

pi(n + τi)
+

(c̃pi − 1)r
2

− 1
pi(n + τi)

∞

∑
s=n+τi

ai(s) fi(x̄i+1(s− σi))

− 1
pi(n + τi)

∞

∑
s=n+τi

gi(s)

≥
(c̃pi − 1)r

2

− 1
|pi(n + τi)|

∞

∑
s=n+τi

|ai(s)| | fi(x̄i+1(s− σi))|

− 1
|pi(n + τi)|

∞

∑
s=n+τi

|gi(s)|

≥ 1
2

c̃pi r−
1
2

r− M̃ f ·
(c̃pi − 1)r

8M̃ f
−

(c̃pi − 1)r
4

=
1
8
(c̃pi − 1)r.

To see that F is a contraction mapping let us observe that for i = 1, . . . , k

|(FiX)(n)− (FiX̄)(n)| ≤ 1
|pi(n + τi)|

|xi(n + τi)− x̄i(n + τi)|

≤ 1
c̃pi

|xi(n + τi)− x̄i(n + τi)|.

Hence
‖FX− FX̄‖ ≤ 1

mini=1,...,k {c̃pi}
‖X− X̄‖,
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but 1
mini=1,...,k {c̃pi}

< 1 by (2.11) and (2.12).

The proof of the continuity of the mapping T can be performed exactly in the same way
as previously.

By virtue of Theorem 1.3, there exists X that (FX)(n) + (TX)(n) = X(n). Finally, we show
that X satisfies system (1.1) for n ≥ n5. Let (FiX)(n) + (TiX)(n) = xi(n) for i = 1, . . . , k. We
show all transformations only for i ∈ Ĩ1 ∪ Ĩ2 and i 6= k, because for the other cases they are
analogous. Since

xi(n) = −
xi(n + τi)

pi(n + τi)
+

(1 + c̃pi)r
2

− 1
pi(n + τi)

∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi)

− 1
pi(n + τi)

∞

∑
s=n+τi

gi(s),

then we have

∆
(

xi(n) +
xi(n + τi)

pi(n + τi)

)
= − ∆

(
1

pi(n + τi)

∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi))

)

− ∆

(
1

pi(n + τi)

∞

∑
s=n+τi

gi(s)

)
.

Therefore

1
pi(n + τi + 1)

∆
(

xi(n + τi) + pi(n + τi)xi(n)
)
+

(
∆

1
pi(n + τi)

)(
xi(n + τi) + pi(n + τi)xi(n)

)
= − 1

pi(n + τi + 1)
∆

(
∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi))

)
− 1

pi(n + τi + 1)
∆

(
∞

∑
s=n+τi

gi(s)

)

−
(

∆
1

pi(n + τi)

)( ∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi))

)
−
(

∆
1

pi(n + τi)

)( ∞

∑
s=n+τi

gi(s)

)
.

It is easy to notice that

−∆

(
∞

∑
s=n+τi

ai(s) fi(xi+1(s− σi))

)
= ai(n + τi) fi(xi+1(n + τi − σi)),

and

−∆

(
∞

∑
s=n+τi

gi(s)

)
= gi(n + τi).

Then

∆
(

xi(n + τi) + pi(n + τi)xi(n)
)
= ai(n + τi) fi(xi+1(n + τi − σi)) + gi(n + τi).

Now we can transform the last equation into

∆
(

xi(n) + pi(n)xi(n− τi)
)
= ai(n) fi(xi+1(n− σi)) + gi(n).

The proof is complete.
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Example 2.4. Now, let us consider a difference system

∆
(
x1(n) +

(
2 + 1

2n

)
x1(n− 2)

)
= − 13·8n−1+3·4n−1

16n−4·8n+4n+1 x2
2(n− 2) + 1

2n ,

∆
(
x2(n) +

(
−1− 1

2n

)
x2(n− 2)

)
= −3·4n−6·2n

2·8n+4·4n x3(n− 1)− 1
2n ,

∆
(
x3(n) +

(
1 + 1

2n

)
x3(n− 1)

)
= 4·4n+3·2n

6·8n+4·4n x4(n− 1),

∆
(
x4(n) +

(
−1− 1

2n

)
x4(n− 1)

)
= 4·8n+3·4n

8·16n+32·8n+32·4n x2
1(n− 2).

All assumptions of Theorem 2.3 are satisfied. The sequence

X =

((
2 +

1
2n

)
,
(
−2 +

1
2n

)
,
(
−1− 1

2n

)
,
(

3 +
1
2n

))
for n ≥ 2

is the bounded solution of the above system.

Now we can formulate the theorem that join both Theorem 2.1 and Theorem 2.3.
Let I5, I6, I7, I8 be subsets of the set {1, . . . , k} such that Ii ∩ Ij = ∅ for i 6= j, i, j = 5, 6, 7, 8

and I5 ∪ I6 ∪ I7 ∪ I8 = {1, . . . , k}.

Theorem 2.5. Let assumptions (2.1), (2.2), (2.3) and (2.4) hold. If there exist positive real numbers
cpi , i ∈ I5 ∪ I6 and c̃pi , i ∈ I7 ∪ I8 that satisfy the inequalities

0 ≤ pi(n) ≤ cpi < 1, for i ∈ I5, n ∈N0,

−1 < −cpi ≤ pi(n) ≤ 0, for i ∈ I6, n ∈N0,

1 < c̃pi ≤ pi(n), for i ∈ I7, n ∈N0,

pi(n) ≤ −c̃pi < −1, for i ∈ I8, n ∈N0,

then system (1.1) has a bounded nonoscillatory solution.

Proof. For the fixed positive real number r we define the set

Ω3 =

{
X ∈ B :

1
8
(1− cpi)r ≤ |xi(n)| ≤ r, i ∈ I5 ∪ I6,

1
8
(c̃pi − 1)r ≤ |xi(n)| ≤ c̃pi r, i ∈ I7 ∪ I8, n ∈N

}
.

Ω3 is bounded closed convex subset of the Banach space B.
Let n6 = max {c1, c5}. From assumptions (2.1) and (2.2) we have

∞

∑
n=n6

|ai(n)| ≤
(1− cpi)r

8M f
, i ∈ I5 ∪ I6,

∞

∑
n=n6

|gi(n)| ≤
(1− cpi)r

4
, i ∈ I5 ∪ I6,

∞

∑
n=n6

|ai(n)| ≤
(c̃pi − 1)r

8M̃ f
, i ∈ I7 ∪ I8,

∞

∑
n=n6

|gi(n)| ≤
(c̃pi − 1)r

4
, i ∈ I7 ∪ I8,
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where

M f = max
i∈I5∪I6

{
| fi(t)| : |t| ∈

[
1
8
(1− cpi)r, r

]}
,

M̃ f = max
i∈I7∪I8

{
| fi(t)| : |t| ∈

[
1
8
(c̃pi − 1)r, c̃pi r

]}
.

We can now proceed analogously as in the proof of Theorem 2.1 and Theorem 2.3. Re-
peating reasoning in these proofs we define for n ≥ n6 the maps F, T : Ω3 → B by formulas
(2.7)–(2.8) for i ∈ I5 ∪ I6 and (2.13)–(2.15) for i ∈ I7 ∪ I8. The rest of the proof also runs as in
Theorem 2.1 and Theorem 2.3.

In the next theorem we consider the case pi(n) ≡ 1, i = 1, . . . , k and get even better result
than in the previous theorems.

Theorem 2.6. Assume that conditions (2.1), (2.2), (2.3) and (2.4) are satisfied. If pi(n) ≡ 1,
i = 1, . . . , k then for any real constants d1, . . . , dk there exists a solution X of system (1.1) that
limn→∞ X(n) = (d1, . . . , dk).

Proof. Let di ∈ R, i = 1, . . . , k and let ε be any positive real number. There exists a constant
M > 0 such that

| fi(t)| ≤ M for t ∈ [di − ε, di + ε], i = 1, . . . , k.

Let us denote

Sai(n) =
∞

∑
j=n
|ai(j)|, Sgi(n) =

∞

∑
j=n
|gi(j)|, i = 1, . . . , k.

By (2.1) and (2.2) there exists such an index n7 ≥ n0 that for n ≥ n7 we have

Sai(n) ≤
ε

2M
, and Sgi(n) ≤

ε

2
, i = 1, . . . , k.

We define a subset Ω5 of B by

Ω5 =
{

X∈B : X(0) = · · · = X(n7 − 1)=D and |X(n)− D|≤ M|SA(n)|+ |SG(n)| for n ≥ n7
}
,

where D = (d1, . . . , dk), SA = (Sa1 , . . . , Sak), SG = (Sg1 , . . . , Sgk). It is easy to check, that Ω5 is
the convex subset of B. It can be also shown that Ω5 is compact (see, for example, the proof
of Theorem 1 in [12] or Lemma 4.7 in [11]). Now, for n ≥ 0, we define a map

T : Ω5 → B,

as follows, for i = 1, . . . , k− 1

(TiX)(n) =



di, for n < n7,

di −
∞
∑

j=1

n+2jτi−1
∑

s=n+(2j−1)τi

ai(s) fi (xi+1(s− σi))−
∞
∑

j=1

n+2jτi−1
∑

s=n+(2j−1)τi

gi(s),

for n ≥ n7 and τi > 0,

di − 1
2

∞
∑

s=n
ai(s) fi (xi+1(s− σi))− 1

2

∞
∑

s=n
gi(s),

for n ≥ n7 and τi = 0,
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and

(TkX)(n) =



dk, for n < n7,

dk −
∞
∑

j=1

n+2jτk−1
∑

s=n+(2j−1)τk

ak(s) fk (x1(s− σk))−
∞
∑

j=1

n+2jτk−1
∑

s=n+(2j−1)τk

gk(s),

for n ≥ n7 and τk > 0,

dk − 1
2

∞
∑

s=n
ak(s) fk (x1(s− σk))− 1

2

∞
∑

s=n
gk(s),

for n ≥ n7 and τk = 0.

We will show that T(Ω5) ⊆ Ω5. It is obvious that

∞

∑
j=1

n+2jτi−1

∑
s=n+(2j−1)τi

|ai(s)| ≤
∞

∑
s=n
|ai(s)| , i = 1, . . . , k, (2.16)

∞

∑
j=1

n+2jτi−1

∑
s=n+(2j−1)τi

|gi(s)| ≤
∞

∑
s=n
|gi(s)| , i = 1, . . . , k. (2.17)

Moreover, if X ∈ Ω5, then |xi(n)− di| ≤ h for all n ∈ N, i = 1, . . . , k. Hence
| fi(xi+1(n))| ≤ M, i = 1, . . . , k − 1 and also | fk(x1(n))| ≤ M for every X ∈ Ω5, n ∈ N.
Therefore and by (2.16) and (2.17), for n ≥ n7 and τi > 0, we get

|(TiX)(n)− di| ≤ M
∞

∑
s=n
|ai(s)|+

∞

∑
s=n
|gi(s)| = MSai(n) + Sgi(n), (2.18)

for i = 1, . . . , k− 1. The same estimation holds for i = k.
For n ≥ n7, τi = 0 we have

|(TiX)(n)− di| =
∣∣∣∣∣12 ∞

∑
s=n

ai(s) fi (xi+1(s− σi)) +
1
2

∞

∑
s=n

gi(s)

∣∣∣∣∣
≤ MSai(n) + Sgi(n), i = 1, . . . , k− 1,

and similarly for i = k. This gives T(X) ∈ Ω5 for every X ∈ Ω5 and T(Ω5) ⊆ Ω5. Similarly as
in the proof of Theorem 2.1, it can be shown that T is continuous.

By Schauder’s fixed point theorem there exists X ∈ Ω5 such that T(X) = X, which is a
solution of system (1.1). In fact, for n ≥ n7, τi > 0 and i = 1, . . . , k− 1 we have

xi(n) = di −
∞

∑
j=1

n+2jτi−1

∑
s=n+(2j−1)τi

ai(s) fi (xi+1(s− σi))−
∞

∑
j=1

n+2jτi−1

∑
s=n+(2j−1)τi

gi(s).

Hence

xi(n) + xi(n− τi) = 2di −
∞

∑
j=1

n+2jτi−1

∑
s=n+2(j−1)τi

ai(s) fi (xi+1(s− σi))

−
∞

∑
j=1

n+2jτi−1

∑
s=n+2(j−1)τi

gi(s)

= 2di −
∞

∑
s=n

ai(s) fi (xi+1(s− σi))−
∞

∑
s=n

gi(s), i = 1, . . . , k− 1.
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Therefore

∆ (xi(n) + xi(n− τi)) = −
∞

∑
s=n+1

ai(s) fi (xi+1(s− σi))

+
∞

∑
s=n

ai(s) fi (xi+1(s− σi))

−
∞

∑
s=n+1

gi(s) +
∞

∑
s=n

gi(s), i = 1, . . . , k− 1,

and finally

∆ (xi(n) + xi(n− τi)) = ai(n) fi (xi+1(n− σi)) + gi(n), i = 1, . . . , k− 1.

In the case τi = 0 we obtain

∆ (xi(n) + xi(n)) = 2∆xi(n)

= 2∆

(
di −

1
2

∞

∑
s=n

ai(s) fi (xi+1(s− σi))−
1
2

∞

∑
s=n

gi(s)

)
= ai(n) fi (xi+1(n− σi)) + gi(n), i = 1, . . . , k− 1.

The same reasoning applies to the case i = k. It is clear that X fulfills system (1.1) for
n ≥ n7. By (2.1) and (2.2) sequences Sai and Sgi , i = 1, . . . , k, tend to zero. From (2.18) we get
lim
n→∞

X(n) = D, that is our claim.

Example 2.7. Let us consider the following system

∆ (x1(n) + x1(n− 1)) = − 11·3n

12·9n−108·3n+243 x2
2(n− 2) + 1

3n ,

∆ (x2(n) + x2(n− 2)) = 20
6·3n+81 x3(n− 3),

∆ (x3(n) + x3(n− 2)) = 23
9·3n−9 x4(n− 1)− 1

3n ,

∆ (x4(n) + x4(n− 3)) = 35·3n

12·9n+108·3n+243 x2
1(n− 2) + 7

3n .

All assumptions of Theorem 2.6 are satisfied. It is easy to check that

X =

((
2 +

1
3n

)
,
(
−2 +

1
3n

)
,
(
−2− 1

3n

)
,
(

3− 1
3n

))
for n ≥ 3 is the solution of the above system having the property limn→∞ X(n) = (2,−2,−2, 3).

In the theorem below we consider the case pi(n) ≡ −1, i = 1, . . . , k.

Theorem 2.8. Let conditions (2.3) and (2.4) be satisfied and assume
∞

∑
n=1

n|ai(n)| < ∞, i = 1, . . . , k, (2.19)

∞

∑
n=1

n|gi(n)| < ∞, i = 1, . . . , k. (2.20)

If pi(n) ≡ −1, i = 1, . . . , k, then for any real constants d1, . . . , dk there exists a solution X of system
(1.1) that limn→∞ X(n) = (d1, . . . , dk).
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Proof. We can now proceed analogously to the proof of Theorem 2.6. Let di ∈ R, i = 1, . . . , k
and let ε be any positive real number. There exists a constant M > 0 such that

| fi(t)| ≤ M for t ∈ [di − ε, di + ε], i = 1, . . . , k.

Write

Sai(n) =
∞

∑
j=n

j|ai(j)|, Sgi(n) =
∞

∑
j=n

j|gi(j)|, i = 1, . . . , k.

If the sequences a1, . . . , ak and g1, . . . , gk satisfy (2.19) and (2.20), then immediately satisfy (2.1)
and (2.2) consequently. Hence, for n ≥ n7, we have

Sai(n) ≤
ε

2M
, and Sgi(n) ≤

ε

2
, i = 1, . . . , k.

We define a map
T : Ω5 → B,

in the following way, for i = 1, . . . , k− 1

(TiX)(n) =


di for n < n7

di −
∞
∑

j=1

∞
∑

s=n+jτi

ai(s) fi (xi+1(s− σi))−
∞
∑

j=1

∞
∑

s=n+jτi

gi(s) for n ≥ n7,

and

(TkX)(n) =


dk for n < n7,

dk −
∞
∑

j=1

∞
∑

s=n+jτk

ak(s) fk (x1(s− σk))−
∞
∑

j=1

∞
∑

s=n+jτk

gk(s) for n ≥ n7.

We will prove that T(Ω5) ⊆ Ω5. It is easy to observe that

∞

∑
j=1

∞

∑
s=n+jτi

|ai(s)| ≤
∞

∑
s=n

s |ai(s)| , i = 1, . . . , k, (2.21)

∞

∑
j=1

∞

∑
s=n+jτi

|gi(s)| ≤
∞

∑
s=n

s |gi(s)| , i = 1, . . . , k. (2.22)

By (2.21) and (2.22) for n ≥ n7 we get

|(TiX)(n)− di| =
∣∣∣∣∣ ∞

∑
j=1

∞

∑
s=n+jτi

ai(s) fi (xi+1(s− σi)) +
∞

∑
j=1

∞

∑
s=n+jτi

gi(s)

∣∣∣∣∣
≤ M

∞

∑
s=n

s |ai(s)|+
∞

∑
s=n

s |gi(s)| = MSai(n) + Sgi(n)

(2.23)

for i = 1, . . . , k− 1. Analogously we get this for i = k. Hence T(X) ∈ Ω5 for any X ∈ Ω5 and
T(Ω5) ⊆ Ω5. Reasoning similarly as in the proof of Theorem 2.1, it can be shown that T is
continuous.

By Schauder’s fixed point theorem there exists X ∈ Ω5 such that T(X) = X and it is a
solution of system (1.1). For n ≥ n7 we have

xi(n) = di −
∞

∑
j=1

∞

∑
s=n+jτi

ai(s) fi (xi+1(s− σi))−
∞

∑
j=1

∞

∑
s=n+jτi

gi(s),
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for i = 1, . . . , k− 1, and

xi(n− τi) = di −
∞

∑
j=1

∞

∑
s=n+(j−1)τi

ai(s) fi (xi+1(s− σi))−
∞

∑
j=1

∞

∑
s=n+(j−1)τi

gi(s).

Since

xi(n)− xi(n− τi) = −
∞

∑
s=n

ai(s) fi (xi+1(s− σi))−
∞

∑
s=n

gi(s),

we have

∆ (xi(n)− xi(n− τi)) = ai(n) fi (xi+1(n− σi)) + gi(n), i = 1, . . . , k− 1.

The same conclusion can be drawn for i = k.
Finally we see that X satisfies system (1.1) for n ≥ n7. By (2.19) and (2.20) sequences Sai

and Sgi , i = 1, . . . , k, tend to zero. From (2.23) we get

lim
n→∞

X(n) = D.
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