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Abstract. This paper deals with the multiplicity of solutions for Dirichlet boundary
conditions of second-order quasilinear equations with impulsive effects. By using crit-
ical point theory, a new result is obtained. An example is given to illustrate the main
result.
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1 Introduction

Consider the following problem with impulses
−u′′(t) + a(t)u(t)− (|u(t)|2)′′u(t) = f (t, u(t)), t ∈ J,

∆(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,

(1.1)

where t0 = 0 < t1 < t2 < · · · < tm < tm+1 = T, J = [0, T] \ {t1, t2, . . . , tm}, f ∈ C([0, T]×R; R),
Ij ∈ C(R; R), a(t) ∈ L∞[0, T], ∆(u′(tj)) = u′(t+j ) − u′(t−j ) and u′(t±j ) = limt→t±j

u′(t), j =

1, 2, . . . , m.
This problem is derived from a class of quasilinear Schrödinger equation. When we look

for the standing wave solution whose form is Ψ(t, x) = e−iwtu(x), w ∈ R of the following
quasilinear Schrödinger equation

i∂tΨ = −Ψ′′ + W(x)Ψ− (|Ψ|2)′′Ψ− µ|Ψ|q−1Ψ, x ∈ R, (1.2)

where q > 1, µ > 0, we can obtain the elliptic equation of the form

− u′′ + (W(x)− w)u− (|u|2)′′u = µ|u|q−1u, x ∈ R, (1.3)
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which was investigated by some scholars (see [2, 4, 9, 19, 22]).
It is generally known that critical point theory is a classical method to deal with the

existence and multiplicity of solutions for differential equations (see [3, 7, 12, 16, 21, 26, 30]).
Then a natural question is asked: Can we consider the multiplicity of solutions for second-
order quasilinear equations with impulsive effects which are produced by the quasilinear term
(|u|2)′′u and u′′ by using critical point theory?

Impulsive differential equations can be used to describe many evolution processes (see
[5, 10, 11, 14, 17, 27]). Some classical methods and theorems such as fixed point theorems, the
method of lower and upper solutions and coincidence degree theory have been widely used
to investigate impulsive differential equations (see [1, 8, 13, 15, 20]). Recently, critical point
theory has been proved to be an effective tool to investigate boundary value problems for
impulsive differential equations. Many valuable results have been obtained by some scholars
(see [6, 18, 24, 25, 28, 29]).

In [18], Nieto and O’Regan studied the linear Dirichlet problem with impulses
−u′′(t) + λu(t) = σ(t), a.e. t ∈ [0, T],

∆(u′(tj)) = dj, j = 1, 2, . . . , p,

u(0) = u(T) = 0,

(1.4)

and the nonlinear Dirichlet problem with impulses
−u′′(t) + λu(t) = f (t, u(t)), a.e. t ∈ [0, T],

∆(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , p,

u(0) = u(T) = 0.

(1.5)

and got some results by using critical point theory.
In [29], Zhou and Li investigated the nonlinear Dirichlet problem with impulses

−u′′(t) + g(t)u(t) = f (t, u(t)), a.e. t ∈ [0, T],

∆(u′(tj)) = Ij(u(tj)), j = 1, 2, . . . , p,

u(0) = u(T) = 0.

(1.6)

and obtained the existence of infinitely many solutions by employing the Symmetric Mountain
Pass Theorem.

However, there are few articles which considered the multiplicity of standing wave so-
lutions for the impulsive Dirichlet boundary value problem involving the quasilinear term
(|u|2)′′u. The impulsive effects which brought from the quasilinear term (|u|2)′′u are more
complicated than u′′.

Motivated by the works mentioned above, in this paper, our purpose is to investigate
the multiplicity of solutions for Dirichlet boundary conditions of second-order quasilinear
equations with impulsive effects (1.1). Moreover, the nonlinearity f does not need to satisfy
the Ambrosetti–Rabinowitz condition (see [3]). Furthermore, the impulsive terms Ij(u) need
to satisfy the suplinear condition rather than the sublinear condition as those in [18,23,28,29].
By making use of the variant fountain theory (see [30]), the multiplicity of solutions for the
problem (1.1) are obtained.
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2 Preliminaries

In this section, the following theorem will be needed in the proof of our main results. Let E
be a Banach space with the norm ‖·‖ and E = ⊕∞

j=kXj with dim Xj < ∞ for any j ∈ N. Set

Yk = ⊕k
j=0Xj, Zk = ⊕∞

j=kXj.

Theorem 2.1 ([30, Theorem 2.2]). The C1-functional Φλ : E → R defined by Φλ(u) = A(u) −
λB(u), λ ∈ [1, 2], satisfies

(B1) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Moreover,

Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2]× E.

(B2) B(u) ≥ 0; B(u)→ +∞ as ‖u‖ → +∞ on any finite dimensional subspace of E.

(B3) There exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk ,‖u‖=ρk

Φλ(u) ≥ 0 > bk(λ) := max
u∈Yk ,‖u‖=rk

Φλ(u) for all λ ∈ [1, 2]

and

dk(λ) := inf
u∈Zk ,‖u‖≤ρk

Φλ(u)→ 0 as k→ +∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, u(λn) ∈ Yn such that

Φ′λn
|Yn(u(λn)) = 0, Φλn(u(λn))→ ck ∈ [dk(2), bk(1)] as n→ +∞.

Particularly, if {u(λn)} has a convergent subsequence for every k, then Φ1 has infinitely many non-
trivial critical points {uk} ∈ E \ {0} satisfying Φ1(uk)→ 0− as k→ +∞.

In the Sobolev space H1
0(0, T), consider the inner product

〈u, v〉 =
∫ T

0
u(t)v(t)dt +

∫ T

0
u′(t)v′(t)dt, ∀u, v ∈ H1

0(0, T),

inducing the norm

‖u‖H1
0
=

(∫ T

0
|u(t)|2 + |u′(t)|2dt

) 1
2

.

By Poincaré’s inequality ∫ T

0
|u(t)|2dt ≤ 1√

λ

∫ T

0
|u′(t)|2dt,

where λ = π2

T2 is the first eigenvalue of the problem −u′′ = λu with Dirichlet boundary
conditions, the norm ‖u‖H1

0 (0,T) and ‖u′‖L2 are equivalent.
But, in this paper, we define the following inner product in H1

0(0, T)

〈u, v〉1 =
∫ T

0
a(t)u(t)v(t)dt +

∫ T

0
u′(t)v′(t)dt, ∀u, v ∈ H1

0(0, T),

whose norm is

‖u‖ =
(∫ T

0
a(t)|u(t)|2 + |u′(t)|2

) 1
2

.
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Throughout our paper, we assume that ess inft∈[0,T] a(t) > −λ, which together with Lemma 2.1
in [29] yields that the norm ‖u‖H1

0
and ‖u‖ are equivalent. Thus, by the Sobolev Embedding

Theorem, there exists a constant c > 0 such that ‖u‖∞ := maxt∈[0,T] |u(t)| ≤ c‖u‖.
For each u ∈ H1

0(0, T), u is absolutely continuous and u′ ∈ L2(0, T). In this case, ∆u(t) =
u′(t+j )− u′(t−j ) = 0 may not hold for any t ∈ (0, T). It leads to the impulsive effects. Thus,

−
∫ T

0
(|u(t)|2)′′u(t)v(t)dt = −

m

∑
j=0

∫ tj+1

tj

(|u(t)|2)′′u(t)v(t)dt

= − (
m

∑
j=0

2u′(t−j+1)u
2(t−j+1)v(t

−
j+1)− 2u′(t+j )u

2(t+j )v(t
+
j )

−
∫ tj+1

tj

2u′2(t)u(t)v(t) + 2u2(t)u′(t)v′(t)dt)

=
m

∑
j=1

2∆u′(tj)u2(tj)v(tj) + 2u′(0)u2(0)v(0)− 2u′(T)u2(T)v(T)

+
∫ T

0
2u′2(t)u(t)v(t) + 2u2(t)u′(t)v′(t)dt

=
m

∑
j=1

2Ij(u(tj))u2(tj)v(tj) +
∫ T

0
2u′2(t)u(t)v(t) + 2u2(t)u′(t)v′(t)dt.

Similarly, we have

−
∫ T

0
u′′(t)v(t)dt =

m

∑
j=1

Ij(u(tj))v(tj) +
∫ T

0
u′(t)v′(t)dt.

Define the functional Φ : H1
0(0, T)→ R by

Φ(u) =
1
2
‖u‖2 +

m

∑
j=1

∫ u(tj)

0
(2t2 + 1)Ij(t)dt +

∫ T

0
u′2(t)u2(t)dt−

∫ T

0
F(t, u(t))dt,

where F(t, u) =
∫ u

0 f (t, s)ds. Clearly, Φ ∈ C1(H1
0(0, T), R),

〈Φ′(u), v〉 =
∫ T

0
u′(t)v′(t) + a(t)u(t)v(t)dt +

∫ T

0
2u′2(t)u(t)v(t) + 2u2(t)u′(t)v′(t)dt

+
m

∑
j=1

(2u2(tj) + 1)Ij(u(tj))v(tj)−
∫ T

0
f (t, u(t))v(t)dt.

Definition 2.2. A function u ∈ H1
0(0, T) is a weak solution of the problem (1.1), if it is a critical

point of Φ.

Next, let
Φλ(u) := A(u)− λB(u),

where

A(u) :=
1
2
‖u‖2 +

m

∑
j=1

∫ u(tj)

0
(2t2 + 1)Ij(t)dt +

∫ T

0
u′2(t)u2(t)dt,

B(u) :=
∫ T

0
F(t, u(t))dt,

λ ∈ [1, 2]. Clearly, the critical points of Φ1(u) = Φ(u) correspond to the weak solutions of the
problem (1.1). In H1

0(0, T), we can choose a completely orthonormal basis ej and set Xj = Rej.
Thus, Zk and Yk can be defined.
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3 Main result

Theorem 3.1. Assume that F(t, u) is even about u and the following conditions are satisfied.

(H1) Ij(u) are odd about u and Ij(u)u ≥ 0, (j = 1, 2, . . . , m).

(H2) There exist constants bj > 0 and γj ∈ [1, ∞) such that |Ij(u)| ≤ bj |u|γj .

(H3) F(t, u) = o(|u|ν) as |u| → 0 uniformly on [0, T].

(H4) There exist constants l1, L > 0 such that

| f (t, u)| ≤ l1|u|p, |u| ≥ L, p ∈ [0, 1), t ∈ [0, T].

(H5) There exist constants l2, l3 > 0 such that

F(t, u) ≥ l2|u|θ + l3|u|ν, θ, ν ∈ [1, 2), t ∈ [0, T].

Then the problem (1.1) has infinitely many solutions.

In order to prove Theorem 3.1, we need the following lemmas.

Lemma 3.2. Under the assumptions of Theorem 3.1, there exists a ρk small enough such that ak(λ) :=
infu∈Zk ,‖u‖=ρk

Φλ(u) ≥ 0 and dk(λ) := infu∈Zk ,‖u‖≤ρk
Φλ(u) → 0 as k → +∞ uniformly for any

λ ∈ [1, 2].

Proof. Let Γk := supu∈Zk ,‖u‖=1 ‖u‖∞. Then Γk → 0 as k→ +∞. By (H3), for given ε1 > 0, there
exists δ1 > 0 such that

F(t, u) ≤ ε1|u|ν, |u| ≤ δ1, t ∈ [0, T].

Based on (H4), we have

F(t, u) ≤ l1|u|p+1, |u| ≥ L, t ∈ [0, T].

From the continuity of F(t, u), for (t, |u|) ∈ [0, T]× [δ1, L], there exists M > 0 such that

F(t, u) ≤ ε1|u|ν + l1|u|p+1 + M.

So, we have

F(t, u) ≤ ε1|u|ν + (Mδ
−1−p
1 + l1)|u|p+1, u ∈ R, t ∈ [0, T]. (3.1)

Based on (H1), for any u ∈ Zk and ‖u‖ small enough, we have

Φλ(u) =
1
2
‖u‖2 +

m

∑
j=1

∫ u(tj)

0
(2t2 + 1)Ij(t)dt +

∫ T

0
u′2(t)u2(t)dt− λ

∫ T

0
F(t, u(t))dt

≥ 1
2
‖u‖2 − λε1

∫ T

0
|u|νdt− λ(Mδ

−1−p
1 + l1)

∫ T

0
|u|p+1dt

≥ 1
2
‖u‖2 − 2ε1TΓν

k‖u‖ν − 2TΓp+1
k (Mδ

−1−p
1 + l1)‖u‖p+1

≥ 1
8

ρ2
k ≥ 0,

where ‖u‖ = ρk := (16TΓp+1
k (Mδ

−1−p
1 + l1) + 16ε1TΓν

k)
1

1−p (without loss of generality, assume
that v ≥ p + 1). It is easy to find that ρk → 0 as k → +∞. Thus, we can obtain that ak(λ) ≥ 0
and dk(λ)→ 0 as n→ +∞ uniformly for λ ∈ [1, 2].
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Lemma 3.3. Under the assumptions of Theorem 3.1, there exists a rk small enough such that bk(λ) :=
maxu∈Yk ,‖u‖=rk

Φλ(u) < 0 for λ ∈ [1, 2].

Proof. Let M1 = max{b1, b2, b3, . . . }. For any u ∈ Yk, by the equivalence of the norms on the
finite-dimensional space Yk and (H5), we have

Φλ(u) =
1
2
‖u‖2 +

m

∑
j=1

∫ u(tj)

0
(2t2 + 1)Ij(t)dt +

∫ T

0
u′2(t)u2(t)dt− λ

∫ T

0
F(t, u(t))dt

≤ 1
2
‖u‖2 + 2M1

m

∑
j=1

c3+γj‖u‖3+γj + M1

m

∑
j=1

c1+γj‖u‖1+γj + c2c2
1‖u‖4

− λl2
∫ T

0
|u|θdt− λl3

∫ T

0
|u|νdt

≤ 1
2
‖u‖2 + 2M1

m

∑
j=1

c3+γj‖u‖3+γj + M1

m

∑
j=1

c1+γj‖u‖1+γj + c2c2
1‖u‖4

− λl2c2‖u‖θ − λl3c3‖u‖ν,

which together with θ, ν ∈ [1, 2) yields that Φλ(u) < 0 for ‖u‖ := rk < ρk small enough and
λ ∈ [1, 2].

Lemma 3.4. Under the assumptions of Theorem 3.1, there exist λn → 1, u(λn) ∈ Yn such that

Φ′λn
|Yn(u(λn)) = 0, Φλn(u(λn))→ ck ∈ [dk(2), bk(1)] as n→ +∞.

Proof. Clearly, Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Since F(t, u)
is even about u and Ij(u) are odd about u, we have Φλ(−u) = Φλ(u) for all (λ, u) ∈
[1, 2] × H1

0(0, T). Furthermore, by (H5) and the equivalence of the norms on the finite-
dimensional space on H1

0(0, T), there exist two positive constants c4, c5 such that B(u) ≥
l2c4‖u‖θ + l3c5‖u‖ν. So, B(u) ≥ 0, B(u) → +∞ as ‖u‖ → +∞. Thus, (B1) and (B2) are satis-
fied. By Lemma 3.2 and 3.3, (B3) holds. In view of Theorem 2.1, we can obtain Lemma 3.4.

Next, we show the proof of Theorem 3.1.

Proof of Theorem 3.1. Let u(λn) := un ∈ Yn. First, we will prove that {un} is bounded on
H1

0(0, T). Based on Lemma 3.4, there exist λn → 1, un ∈ Yn such that Φ′λn
|Yn(un) = 0,

Φλn(un)→ ck ∈ [dk(2), bk(1)] as n→ +∞. Thus, we have

Φλn(un) =
1
2
‖un‖2 +

m

∑
j=1

∫ un(tj)

0
(2t2 + 1)Ij(t)dt +

∫ T

0
u′2n u2

ndt− λn

∫ T

0
F(t, un)dt

≥ 1
2
‖un‖2 − 2

∫ T

0
F(t, un)dt.

By the same way as Lemma 3.2, we have

Φλn(un) ≥
1
2
‖un‖2 − 2Tcp+1(Mδ

−1−p
1 + l1)‖un‖p+1 − 2ε1Tcν‖un‖ν,

which implies that {un} is bounded on H1
0(0, T). Then there exists a subsequence of {un} (for

simplicity denoted again by {un}) such that un ⇀ u in H1
0(0, T) and un → u uniformly in
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C[0, T]. Thus,

〈Φ′λn
(un)−Φ′λn

(u), un − u〉 → 0,∫ T

0
(u′2n (t)un(t)− u′2(t)u(t))(un(t)− u(t))dt→ 0,

m

∑
j=1

(Ij(un(tj))− Ij(u(tj)))(un(tj)− u(tj))→ 0,

m

∑
j=1

(Ij(un(tj))u2
n(tj)− Ij(u(tj))u2(tj))(un(tj)− u(tj))→ 0,

∫ T

0
( f (t, un(t))− f (t, u(t)))(un(t)− u(t))dt→ 0,

as n→ +∞. Moreover,∫ T

0
(u2

n(t)u
′
n(t)− u2(t)u′(t))(u′n(t)− u′(t))dt

=
∫ T

0

[
(u2

n(t)− u2(t))u′n(t) + u2(t)(u′n(t)− u′(t))
]
(u′n(t)− u′(t))dt

=
∫ T

0
u′n(t)(u

′
n(t)− u′(t))(u2

n(t)− u2(t))dt +
∫ T

0
u2(t)|u′n(t)− u′(t)|2dt.

Since ∫ T

0
u′n(t)(u

′
n(t)− u′(t))(u2

n(t)− u2(t))dt→ 0

as n→ +∞, we have

〈Φ′λn
(un)−Φ′λn

(u), un − u〉

= ‖un − u‖2 + 2
∫ T

0
(u′2n (t)un(t)− u′2(t)u(t))(un(t)− u(t))dt

+2
∫ T

0
(u2

n(t)u
′
n(t)− u2(t)u′(t))(u′n(t)− u′(t))dt

+
m

∑
j=1

(Ij(un(tj))− Ij(u(tj)))(un(tj)− u(tj))

+2
m

∑
j=1

(Ij(un(tj))u2
n(tj)− Ij(u(tj))u2(tj))(un(tj)− u(tj))

−λn

∫ T

0
( f (t, un(t))− f (t, u(t)))(un(t)− u(t))dt

= ‖un − u‖2 + 2
∫ T

0
u2(t)|u′n(t)− u′(t)|2dt + o(1),

which implies that un → u in H1
0(0, T). Then Φ1 has infinitely many nontrivial critical points

{uk} ∈ H1
0(0, T) \ {0} satisfying Φ1(uk) → 0− as k → +∞. Thus, the problem (1.1) has

infinitely many solutions.

Example 3.5. 
−u′′(t) + a(t)u(t)− (|u(t)|2)′′u(t) = f (t, u(t)), t ∈ J,

∆(u′(tj)) = Ij(u(tj)), j = 1,

u(0) = u(1) = 0,
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where a(t) = 1, t1 = 1
2 , F(t, u) = |u|ln(1+ |u| 12 )+ |u| 54 (sin |u| 12 + 3), Ij(u) = u3, ν = 1. Clearly,

the conditions of (H1), (H2), (H3) and (H5) are satisfied. Moreover,

| f (t, u)| ≤ ln(1 + |u| 12 ) + |u| 12
2(1 + |u| 12 )

+ 5|u| 14 + 1
2
|u| 34 ≤ 2|u| 45 , |u| ≥ L,

where L should be large enough. Thus, (H4) holds. Then Example 3.5 has infinitely many
solutions.
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