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Abstract. The purpose of this paper is to investigate the existence and uniqueness of
convex monotone positive solutions for a boundary value problem of an elastic beam
equation with a parameter. The proofs of the main results rely on a fixed point theorem
and some properties of eigenvalue problems for a class of general mixed monotone op-
erators. The results can guarantee the existence of a unique convex monotone positive
solution and can be applied to construct two iterative sequences for approximating it.
Moreover, we present some pleasant properties of convex monotone positive solutions
for the boundary value problem dependent on the parameter. Finally, an example is
given to illustrate the main results.
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1 Introduction

Recently, the study of fourth-order boundary value problems has attracted considerable atten-
tion, and fruits from research into it emerge continuously. For a small sample of such work, we
refer the reader to [1–8, 10–20, 22] and the references therein. The fourth-order problems usu-
ally characterize the deformations of an elastic beam and so they are useful for material me-
chanics. There are many papers discussing the existence and multiplicity of positive solutions
for the elastic beam equations, by using various methods, such as the Leray–Schauder contin-
uation method, the topological degree theory, the shooting method, fixed point theorems on
cones, the critical point theory, and the lower and upper solution method; see for example the
above works mentioned. For example, Webb et al. [17] studied the existence of positive solu-
tions of nonlinear fourth-order boundary-value problems with local and non-local boundary
conditions. By using the Krasnosel′skii fixed-point theorem of cone expansion-compression
type, Yao [19] investigated the positive solutions for a fourth-order boundary value problem
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with a parameter and obtained existence and multiplicity results. Pei and Chang [15] used
a monotone iterative technique and proved the existence of at least one symmetric positive
solution for a fourth-order boundary value problem. Li and Zhang [11] utilized a fixed point
theorem of generalized concave operators to establish the existence and uniqueness of mono-
tone positive solutions for a fourth-order boundary value problem. In [12], Li and Zhai get the
existence and uniqueness of monotone positive solutions for a fourth-order boundary value
problem via two fixed point theorems of mixed monotone operators with perturbation. In
[20], by using the fixed point index method, we get the existence of at least one or at least
two symmetric positive solutions for a fourth-order boundary value problem. And then, by
using a fixed point theorem of general α-concave operators, we also obtain the existence and
uniqueness of symmetric positive solutions for the boundary value problem.

The purpose of this paper is to establish the existence and uniqueness of convex monotone
positive solutions for the following nonlinear boundary value problems of an elastic beam
equation with a parameter

u(4)(t) = λ f (t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′′(1) = u(3)(1) + λg(u(1)) = 0,
(1.1)

where f : [0, 1]× [0,+∞) → [0,+∞) and g : [0,+∞) → [0,+∞), λ > 0 is a parameter. Here,
convex monotone positive solutions mean convex increasing positive solutions. When λ = 1
in boundary conditions, Wang et al. [16] used a fixed point theorem of cone expansion and
a fixed point theorem of generalized concave operators to obtain the existence, nonexistence,
and uniqueness of convex monotone positive solutions for problem (1.1). In [5], Cabada and
Tersian studied the existence and multiplicity of solutions for problem (1.1) by using a three
critical point theorem. Different from the above works mentioned, motivated by the work [21],
we will use the main fixed point theorem and properties of eigenvalue problems for a class
of general mixed monotone operators in [21] to prove the existence and uniqueness of convex
monotone positive solutions for problem (1.1). Moreover, we will construct two sequences for
approximating the unique solution and show that the positive solution with respect to λ has
some pleasant properties.

2 Preliminaries and previous results

In this section, we present some basic concepts in ordered Banach spaces and fixed point
theorems for general mixed monotone operators. For convenience of readers, we suggest that
one refer to [9, 21] for details.

Let (E, ‖ · ‖) be a real Banach space which is partially ordered by a cone P ⊂ E, i.e. x ≤ y
if and only if y− x ∈ P. If x ≤ y and x 6= y, then denote x < y or y > x. By θ we denote the
zero element of E. Recall that a non-empty closed convex set P ⊂ E is a cone if it satisfies (i)
x ∈ P, r ≥ 0⇒ rx ∈ P; (ii) x ∈ P, −x ∈ P⇒ x = θ.

P is called normal if there exists a constant N > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y
implies ‖x‖ ≤ N‖y‖; in this case the infimum of such constants N is called the normality
constant of P.

For all x, y ∈ E, the notation x ∼ y means that there exist µ > 0 and ν > 0 such that
µx ≤ y ≤ νx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e. h ≥ θ and h 6= θ), we
denote by Ph the set Ph = {x ∈ E : x ∼ h}. It is easy to see that Ph ⊂ P is convex and rPh = Ph
for all r > 0.
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Definition 2.1. An operator A : P × P → P is said to be a mixed monotone if A(x, y) is
increasing in x and decreasing in y, i.e., ui, vi (i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 implies
A(u1, v1) ≤ A(u2, v2). An element x ∈ P is called a fixed point of A if A(x, x) = x.

Recently, in [21] Zhai and Zhang discussed the following operator equations

A(x, x) = x and A(x, x) = λx,

where A : P× P→ P is a mixed monotone operator which satisfies the following assumptions:

(A1) there exists h ∈ P with h 6= θ such that A(h, h) ∈ Ph.

(A2) for any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1) such that A(tu, t−1v) ≥
ϕ(t)A(u, v).

The authors obtained the existence and uniqueness of positive solutions for the above equa-
tions and present the following interesting results.

Lemma 2.2. Suppose that P is a normal cone of E, and (A1), (A2) hold. Then operator A has a unique
fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n→ ∞.

Lemma 2.3. Suppose that P is a normal cone of E, and (A1), (A2) hold. Let xλ (λ > 0) denote the
unique solution of the nonlinear eigenvalue equation A(x, x) = λx in Ph. Then we have the following
conclusions:

(B1) if ϕ(t) > t
1
2 for t ∈ (0, 1), then xλ is strictly decreasing in λ, that is, 0 < λ1 < λ2 implies

xλ1 > xλ2 ;

(B2) if there exists β ∈ (0, 1) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then xλ is continuous in λ, that is,
λ→ λ0 (λ0 > 0) implies ‖xλ − xλ0‖ → 0;

(B3) if there exists β ∈ (0, 1
2 ) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then lim

λ→∞
‖xλ‖ = 0, lim

λ→0+
‖xλ‖ =

∞.

Remark 2.4. By using Lemmas 2.2, 2.3, we can investigate the existence and uniqueness of
positive solutions for many boundary value problems with a parameter, and then show some
pleasant properties of positive solutions with respect to λ. For example, two-point boundary
value problems, three-point boundary value problems were studied in [21], where the nonlin-
ear terms f (t, u, v) are required to be continuous. The hypothesis that f should be continuous
was not stated in Theorem 3.1 of [21] but with this addition the result holds. Unfortunately,
the nonlinear terms of examples 3.1–3.4 in [21] are not continuous, so those examples are not
valid.

3 Existence and uniqueness of convex monotone positive solutions
for problem (1.1)

In this section, we use Lemmas 2.2, 2.3 to study problem (1.1) and we present two new
results on the existence and uniqueness of convex monotone positive solutions, we show that
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the convex monotone positive solution with respect to λ has some pleasant properties. The
method is new to the literature and so is the existence and uniqueness result to fourth-order
boundary value problems.

In our considerations we will work in the Banach space C[0, 1], the space of all continuous
functions on [0, 1] with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that this space
can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Set P = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P is a normal
cone in C[0, 1] and the normality constant is 1.

From [2], if f , g are continuous, then problem (1.1) is equivalent to the integral equation

u(t) = λ
∫ 1

0
G(t, s) f (s, u(s))ds + λg(u(1))φ(t), t ∈ [0, 1],

where

G(t, s) =
1
6

{
s2(3t− s), 0 ≤ s ≤ t ≤ 1,

t2(3s− t), 0 ≤ t ≤ s ≤ 1,

and φ(t) = 1
2 t2 − 1

6 t3.
From [11], we give the following properties of the Green’s function G(t, s) and φ(t).

Lemma 3.1. For any t, s ∈ [0, 1], we have

1
3

s2t2 ≤ G(t, s) ≤ 1
2

st2,
1
3

t2 ≤ φ(t) ≤ 1
2

t2.

The following conclusion is simple, so we omit its proof.

Lemma 3.2. If u ∈ C4[0, 1] satisfies{
u(4)(t) ≥ 0, t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0, u(3)(1) ≤ 0,

then: (i) u(t) is monotone increasing on [0, 1]; (ii) u′′(t) ≥ 0, t ∈ [0, 1], that is, u(t) is a convex
function on [0, 1].

Theorem 3.3. Assume that

(H1) f : [0, 1]× [0,+∞)→ [0,+∞) and g : [0,+∞)→ [0,+∞) are continuous;

(H2) f (t, x) is increasing in x ∈ [0,+∞) for each t ∈ [0, 1] with f (t, 0) 6≡ 0, and g(x) is decreasing
in x ∈ [0,+∞);

(H3) for η ∈ (0, 1), there exist ϕi(η) ∈ (η, 1) (i = 1, 2) such that

f (t, ηx) ≥ ϕ1(η) f (t, x), g(ηx) ≤ 1
ϕ2(η)

g(x), ∀ t ∈ [0, 1], x ∈ [0,+∞).
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Then, for any given λ > 0, problem (1.1) has a unique convex monotone positive solution u∗λ in Ph,
where h(t) = t2, t ∈ [0, 1]. Moreover, for any initial values x0, y0 ∈ Ph, constructing successively the
sequences:

xn = λ
∫ 1

0
G(t, s) f (s, xn−1(s))ds + λg(yn−1(1))φ(t),

yn = λ
∫ 1

0
G(t, s) f (s, yn−1(s))ds + λg(xn−1(1))φ(t), n = 1, 2, . . . ,

we have xn → u∗λ, yn → u∗λ as n → +∞. Further, (i) if ϕi(t) > t
1
2 (i = 1, 2) for t ∈ (0, 1), then u∗λ

is strictly increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
< u∗λ2

; (ii) if there exists β ∈ (0, 1) such
that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then u∗λ is continuous in λ, that is, λ→ λ0 (λ0 > 0) implies
‖u∗λ − u∗λ0

‖ → 0; (iii) if there exists β ∈ (0, 1
2 ) such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then

limλ→0+ ‖u∗λ‖ = 0, limλ→+∞ ‖u∗λ‖ = +∞.

Proof. For any u, v ∈ P, we define

A(u, v)(t) =
∫ 1

0
G(t, s) f (s, u(s))ds + g(v(1))φ(t), t ∈ [0, 1].

Evidently, u is the solution of problem (1.1) if and only if u = λA(u, u). Noting that
f (t, x), g(x) ≥ 0 and G(t, s) ≥ 0, it is easy to check that A : P × P → P. In the sequel
we check that A satisfies all assumptions of Lemma 2.2.

Firstly, we prove that A is a mixed monotone operator. In fact, for ui, vi ∈ P, i = 1, 2 with
u1 ≥ u2, v1 ≤ v2, we know that u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1] and by (H2),

A(u1, v1)(t) =
∫ 1

0
G(t, s) f (s, u1(s))ds + g(v1(1))φ(t)

≥
∫ 1

0
G(t, s) f (s, u2(s))ds + g(v2(1))φ(t) = A(u2, v2)(t).

That is, A(u1, v1) ≥ A(u2, v2).
Next we show that A satisfies the condition (A2). From (H3), for η ∈ (0, 1), we have

g(η−1x) ≥ ϕ2(η)g(x), ∀ x ∈ [0,+∞). Let ϕ(t) = min{ϕ1(t), ϕ2(t)}, t ∈ (0, 1). Then ϕ(t) ∈
(t, 1). From (H3), for any η ∈ (0, 1) and u, v ∈ P, we obtain

A(ηu, η−1v)(t) =
∫ 1

0
G(t, s) f (s, ηu(s))ds + g(η−1v(1))φ(t)

≥ ϕ1(η)
∫ 1

0
G(t, s) f (s, u(s))ds + ϕ2(η)g(v(1))φ(t)

≥ ϕ(η)

[∫ 1

0
G(t, s) f (s, u(s))ds + g(v(1))φ(t)

]
= ϕ(η)A(u, v)(t), t ∈ [0, 1].

Hence, A(ηu, η−1v) ≥ ϕ(η)A(u, v), ∀ u, v ∈ P, η ∈ (0, 1). So the condition (A2) in Lemma 2.2
is satisfied. Now we show that A(h, h) ∈ Ph. On one hand, it follows from (H2) and Lemma 3.1
that

A(h, h)(t) =
∫ 1

0
G(t, s) f (s, h(s))ds + g(h(1))φ(t)

=
∫ 1

0
G(t, s) f (s, s2)ds + g(1)φ(t)
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≥
∫ 1

0

1
3

t2s2 f (s, 0)ds + g(1)
1
3

t2

=
1
3

[∫ 1

0
s2 f (s, 0)ds + g(1)

]
t2, t ∈ [0, 1].

On the other hand, also from (H2) and Lemma 3.1, we obtain

A(h, h)(t) ≤
∫ 1

0

1
2

t2s f (s, 1)ds + g(1)
1
2

t2

=
1
2

[∫ 1

0
s f (s, 1)ds + g(1)

]
t2, t ∈ [0, 1].

Let

r1 =
1
3

[∫ 1

0
s2 f (s, 0)ds + g(1)

]
, r2 =

1
2

[∫ 1

0
s f (s, 1)ds + g(1)

]
.

Since f (t, x) is continuous and increasing in x with f (t, 0) 6≡ 0, g(1) ≥ 0, we can get

0 < r1 =
1
3

[∫ 1

0
s2 f (s, 0)ds + g(1)

]
≤ 1

2

[∫ 1

0
s f (s, 1)ds + g(1)

]
= r2.

Consequently,

A(h, h)(t) ≥ r1h(t), A(h, h)(t) ≤ r2h(t), t ∈ [0, 1].

So we have
r1h ≤ A(h, h) ≤ r2h.

Hence A(h, h) ∈ Ph, the condition (A1) in Lemma 2.2 is satisfied. Therefore, by Lemma 2.3,
there exists a unique u∗λ ∈ Ph such that A(u∗λ, u∗λ) =

1
λ u∗λ. That is, u∗λ = λA(u∗λ, u∗λ), and then

u∗λ(t) = λ
∫ 1

0
G(t, s) f (s, u∗λ(s))ds + λg(u∗λ(1))φ(t), t ∈ [0, 1].

It is easy to check that u∗λ is a unique positive solution of the problem (1.1) for given λ > 0.
In view of u∗λ

(4)(t) = λ f (t, u∗λ(t)), 0 < t < 1 and u∗λ(0) = u∗λ
′(0) = u∗λ

′′(1) = u∗λ
(3)(1) +

λg(u∗λ(1)) = 0, then from Lemma 3.2, u∗λ(t) is increasing and convex on [0, 1]. Further, if
ϕi(t) > t

1
2 (i = 1, 2) for t ∈ (0, 1), then ϕ(t) > t

1
2 for t ∈ (0, 1). Lemma 2.3 (B1) means

that u∗λ is strictly decreasing in 1
λ . So u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2

implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

. If there exists β ∈ (0, 1) such that ϕi(t) ≥ tβ (i = 1, 2) for
t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1). Lemma 2.3 (B2) means that u∗λ is continuous in
λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗λ − u∗λ0

‖ → 0. If there exists β ∈ (0, 1
2 ) such that

ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1). Lemma 2.3 (B3) means
limλ→0+ ‖u∗λ‖ = 0, limλ→∞ ‖u∗λ‖ = ∞.

Let Aλ = λA, then Aλ also satisfies all the conditions of Lemma 2.2. By Lemma 2.2, for any
initial values x0, y0 ∈ Ph, constructing successively the sequences xn+1 = Aλ(xn, yn), yn+1 =

Aλ(yn, xn), n = 0, 1, 2, . . . , we have xn → u∗λ, yn → u∗λ as n→ ∞. That is,

xn+1 = λ
∫ 1

0
G(t, s) f (s, xn(s))ds + λg(yn(1))φ(t)→ u∗λ(t),

yn+1 = λ
∫ 1

0
G(t, s) f (s, yn(s))ds + λg(xn(1))φ(t)→ u∗λ(t),

as n→ ∞.
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Theorem 3.4. Assume (H1) and

(H4) f (t, x) is decreasing in x ∈ [0,+∞) for each t ∈ [0, 1] with f (t, 1) 6≡ 0, and g(x) is increasing
in x ∈ [0,+∞);

(H5) for η ∈ (0, 1), there exist ϕi(η) ∈ (η, 1) (i = 1, 2) such that

f (t, ηx) ≤ 1
ϕ1(η)

f (t, x), g(ηx) ≥ ϕ2(η)g(x), ∀ t ∈ [0, 1], x ∈ [0,+∞).

Then, for any given λ > 0, problem (1.1) has a unique convex monotone positive solution u∗λ in Ph,
where h(t) = t2, t ∈ [0, 1]. Moreover, for any initial values x0, y0 ∈ Ph, constructing successively the
sequences:

xn = λ
∫ 1

0
G(t, s) f (s, yn−1(s))ds + λg(xn−1(1))φ(t),

yn = λ
∫ 1

0
G(t, s) f (s, xn−1(s))ds + λg(yn−1(1))φ(t), n = 1, 2, . . . ,

we have xn → u∗λ, yn → u∗λ as n → +∞. Further, (i) if ϕi(t) > t
1
2 (i = 1, 2) for t ∈ (0, 1), then u∗λ

is strictly increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
< u∗λ2

; (ii) if there exists β ∈ (0, 1) such
that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then u∗λ is continuous in λ, that is, λ→ λ0 (λ0 > 0) implies
‖u∗λ − u∗λ0

‖ → 0; (iii) if there exists β ∈ (0, 1
2 ) such that ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then

limλ→0+ ‖u∗λ‖ = 0, limλ→+∞ ‖u∗λ‖ = +∞.

Proof. For any u, v ∈ P, we define

A(u, v)(t) =
∫ 1

0
G(t, s) f (s, v(s))ds + g(u(1))φ(t), t ∈ [0, 1].

Evidently, u is the solution of problem (1.1) if and only if u = λA(u, u). Similar to the proof
of Theorem 3.3, from (H4), we obtain that A : P× P→ P is a mixed monotone operator.

Next we show that A satisfies the condition (A2). From (H5), for η ∈ (0, 1), we have
f (t, η−1x) ≥ ϕ1(η) f (t, x), ∀ x ∈ [0,+∞). Let ϕ(t) = min{ϕ1(t), ϕ2(t)}, t ∈ (0, 1). Then
ϕ(t) ∈ (t, 1). From (H5), for any η ∈ (0, 1) and u, v ∈ P, we obtain

A(ηu, η−1v)(t) =
∫ 1

0
G(t, s) f (s, η−1v(s))ds + g(ηu(1))φ(t)

≥ ϕ1(η)
∫ 1

0
G(t, s) f (s, v(s))ds + ϕ2(η)g(u(1))φ(t)

≥ ϕ(η)

[∫ 1

0
G(t, s) f (s, v(s))ds + g(u(1))φ(t)

]
= ϕ(η)A(u, v)(t), t ∈ [0, 1].

Hence, A(ηu, η−1v) ≥ ϕ(η)A(u, v), ∀ u, v ∈ P, η ∈ (0, 1). So the condition (A2) in Lemma 2.2
is satisfied. Now we show that A(h, h) ∈ Ph. On one hand, it follows from (H4) and Lemma 3.1
that

A(h, h)(t) =
∫ 1

0
G(t, s) f (s, h(s))ds + g(h(1))φ(t)

=
∫ 1

0
G(t, s) f (s, s2)ds + g(1)φ(t)
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≥
∫ 1

0

1
3

t2s2 f (s, 1)ds + g(1)
1
3

t2

=
1
3

[∫ 1

0
s2 f (s, 1)ds + g(1)

]
t2, t ∈ [0, 1].

On the other hand, also from (H3) and Lemma 3.1, we obtain

A(h, h)(t) ≤
∫ 1

0

1
2

t2s f (s, 0)ds + g(1)
1
2

t2

=
1
2

[∫ 1

0
s f (s, 0)ds + g(1)

]
t2, t ∈ [0, 1].

Let

r3 =
1
3

[∫ 1

0
s2 f (s, 1)ds + g(1)

]
, r4 =

1
2

[∫ 1

0
s f (s, 0)ds + g(1)

]
.

Since f is continuous and f (t, 1) 6≡ 0, g(1) ≥ 0, we can get

0 < r3 =
1
3

[∫ 1

0
s2 f (s, 1)ds + g(1)

]
≤ 1

2

[∫ 1

0
s f (s, 0)ds + g(1)

]
= r4.

Consequently,

A(h, h)(t) ≥ r3h(t), A(h, h)(t) ≤ r4h(t), t ∈ [0, 1].

So we have
r3h ≤ A(h, h) ≤ r4h.

Hence A(h, h) ∈ Ph, the condition (A1) in Lemma 2.2 is satisfied. Therefore, by Lemma 2.3,
there exists a unique u∗λ ∈ Ph such that A(u∗λ, u∗λ) =

1
λ u∗λ. That is, u∗λ = λA(u∗λ, u∗λ), and then

u∗λ(t) = λ
∫ 1

0
G(t, s) f (s, u∗λ(s))ds + λg(u∗λ(1))φ(t), t ∈ [0, 1].

It is easy to check that u∗λ is a unique positive solution of the problem (1.1) for given λ > 0.
In view of u∗λ

(4)(t) = λ f (t, u∗λ(t)), 0 < t < 1 and u∗λ(0) = u∗λ
′(0) = u∗λ

′′(1) = u∗λ
(3)(1) +

λg(u∗λ(1)) = 0, then from Lemma 3.2, u∗λ(t) is increasing and convex on [0, 1]. Further, if
ϕi(t) > t

1
2 (i = 1, 2) for t ∈ (0, 1), then ϕ(t) > t

1
2 for t ∈ (0, 1). Lemma 2.3 (B1) means

that u∗λ is strictly decreasing in 1
λ . So u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2

implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

. If there exists β ∈ (0, 1) such that ϕi(t) ≥ tβ (i = 1, 2) for
t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1). Lemma 2.3 (B2) means that u∗λ is continuous in
λ, that is, λ → λ0 (λ0 > 0) implies ‖u∗λ − u∗λ0

‖ → 0. If there exists β ∈ (0, 1
2 ) such that

ϕi(t) ≥ tβ (i = 1, 2) for t ∈ (0, 1), then ϕ(t) ≥ tβ for t ∈ (0, 1). Lemma 2.3 (B3) means
limλ→0+ ‖u∗λ‖ = 0, limλ→∞ ‖u∗λ‖ = ∞.

Let Aλ = λA, then Aλ also satisfies all the conditions of Lemma 2.2. By Lemma 2.2, for any
initial values x0, y0 ∈ Ph, constructing successively the sequences xn+1 = Aλ(xn, yn), yn+1 =

Aλ(yn, xn), n = 0, 1, 2, . . . , we have xn → u∗λ, yn → u∗λ as n→ ∞. That is,

xn+1 = λ
∫ 1

0
G(t, s) f (s, yn(s))ds + λg(xn(1))φ(t)→ u∗λ(t),

yn+1 = λ
∫ 1

0
G(t, s) f (s, xn(s))ds + λg(yn(1))φ(t)→ u∗λ(t),

as n→ ∞.
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Remark 3.5. Comparing Theorems 3.3–3.4 with the main results in [11, 12], we provide some
alternative approaches to study the similar type of problems under different conditions. Our
analysis relies on some results of operator equation A(x, x) = λx, where A is general mixed
monotone. So the functions f , g in the problem (1.1) can have two different monotonicity. In
[11], the method used there is a theorem of operator equation Ax = x, where A is increasing.
So in [11] the functions f , g of fourth-order boundary value problems only have stationary
monotonicity. In [12], the authors used some results of operator equation A(x, x) + Bx =

x to study fourth-order boundary value problems. From [21], we know that A(x, x) + Bx
was proved to be general mixed monotone. Therefore, the main results in [12] are special
cases of Theorems 3.3–3.4. In addition, our results can guarantee the existence of a unique
convex monotone positive solution and can be applied to construct two iterative sequences for
approximating it. We present some pleasant properties of convex monotone positive solutions
for the boundary value problem dependent on the parameter. Because the operator equation
in Lemma 2.3 is only concerned with one parameter, we only study the problem (1.1) which
the parameter in the equation is the same as in the boundary condition, and thus our method
can not be applied to some boundary value problems with several different parameters.

To illustrate how our main results can be used in practice we present a simple example.

Example 3.6. Consider the following fourth-order boundary value problem:

u(4)(t) = λ{[u(t)] 1
4 + a(t)}, 0 < t < 1,

u(0) = u′(0) = u′′(1) = u(3)(1) + λ[u(1) + b]−
1
6 = 0,

(3.1)

where b > 0, a : [0, 1] → [0,+∞) is continuous with a 6≡ 0. Evidently, problem (3.1) fits the
framework of problem (1.1). In this example, let

f (t, x) = x
1
4 + a(t), g(x) = [x + b]−

1
6 .

Obviously, f : [0, 1]× [0,+∞) → [0,+∞) is continuous and g : [0,+∞) → [0,+∞) is contin-
uous. And it easy to see that f (t, x) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1], and g(x)
is decreasing in x ∈ [0,+∞). Moreover, from the given condition, we have f (t, 0) = a(t) 6≡ 0.
Set ϕ1(η) = η

1
4 , ϕ2(η) = η

1
6 , η ∈ (0, 1). Then ϕ1(η), ϕ2(η) ∈ (η, 1) and

f (t, ηx) = η
1
4 x

1
4 + a(t) ≥ ϕ1(η) f (t, x), g(ηx) = [ηx + b]−

1
6 ≤ 1

ϕ2(η)
g(x),

for t ∈ [0, 1], x ≥ 0. Hence, all the conditions of Theorem 3.3 are satisfied. An application of
Theorem 3.3 implies that problem (3.1) has a unique convex monotone positive solution u∗λ in
Ph = Pt2 , and for any initial values x0, y0 ∈ Pt2 , constructing successively the sequences

xn = λ
∫ 1

0
G(t, s)[x

1
4
n−1(s) + a(s)]ds + λ[yn−1(1) + b]−

1
6 φ(t),

yn = λ
∫ 1

0
G(t, s)[y

1
4
n−1(s) + a(s)]ds + λ[xn−1(1) + b]−

1
6 φ(t), n = 1, 2, . . . ,

we have xn(t) → u∗λ(t), yn(t) → u∗λ(t) as n → ∞, where G(t, s) is given as in Lemma 3.1.
Moreover, note that ϕ1(t), ϕ2(t) > t

1
2 for t ∈ (0, 1), then from Theorem 3.3, u∗λ is strictly

increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

. Take β = 1
4 and applying

Theorem 3.3, we know that u∗λ is continuous in λ and limλ→0+ ‖u∗λ‖ = 0, limλ→∞ ‖u∗λ‖ = ∞.
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