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Abstract. In this paper, we consider the following Emden–Fowler type dynamic equa-
tions on time scales(

a(t)|x∆(t)|α sgn x∆(t)
)∆

+ b(t)|x(t)|β sgn x(t) = 0,

when α < β. The classification of the nonoscillatory solutions are investigated and
some necessary and sufficient conditions of the existence of oscillatory and nonoscilla-
tory solutions are given by using the Schauder–Tychonoff fixed point theorem. Three
possibilities of two classes of double integrals which are not only related to the co-
efficients of the equation but also linked with the classification of the nonoscillatory
solutions and oscillation of solutions are put forward. Moreover, an important property
of the intermediate solutions on time scales is indicated. At last, an example is given to
illustrate our main results.
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nonoscillatory solutions.
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1 Introduction

Emden–Fowler dynamic equations originated in the early 20th century and they were estab-
lished in the early research of gas dynamics in astrophysics [8]. They also occur in the study
of fluid mechanics, relativity, nuclear physics and chemical reaction systems, one can see the
survey article by Wong [15] for detailed background of the generalized Emden–Fowler equa-
tion. With the development of science and technology, the super-linear Emden–Fowler type
dynamic equations on time scales have played an important and extensive role in physics and
engineering technology. We refer the reader to [16] and the references cited therein. The basic
theorems and applications can be found in Agarwal et al. [1]. In the recent years, there have
been lots of results for Emden–Fowler type equations in [2, 4, 7, 9].
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In 2007 and 2011, Cecchi et al. [3] and Naito [13] studied the asymptotic behavior of
nonoscillatory solutions for differential equations of the following forms(

a(t)φ(x)′
)′
+ b(t)φ(x) = 0,

and
(p(t)|x′|α sgn x′)′ + q(t)|x|β sgn x = 0,

respectively. In 2008, Cecchi et al. [2] considered the intermediate solutions for Emden–Fowler
type equations (

a(t)|x′(t)|α sgn x′(t)
)′
+ b(t)|x(t)|β sgn x(t) = 0.

In 2010, Kamo and Usami [11] discussed the slowly decaying positive solutions for the quasi-
linear ordinary differential equations

(p(t)|u′|α−1u′)′ + q(t)|u|λ−1u = 0.

In 2011, Jia et al. [10] discussed oscillatory solutions for the second order super-linear dynamic
equations on time scales

x∆∆(t) + p(t) f
(
x(σ(t))

)
= 0.

In 2011, Erbe et al. [7] considered the asymptotic behavior of solutions for Emden–Fowler
equations on time scales

x∆∆(t) + p(t)xα(t) = 0, α > 0, (1.1)

where p ∈ Crd([t0, ∞)T, R), α is the quotient of odd positive integers, and T denotes a time
scale which is unbounded from above. This article proposed an important property about the
solution of (1.1) under the condition

∫ ∞
t0

tα|p(t)|∆t < ∞.
Zhou and Lan gave a classification of nonoscillatory solutions for the second-order neutral

delay dynamic equations on time scales

[x(t)− c(t)x(t− τ)]∆∆ + f (t, x(g1(t)), . . . , x(gm(t))) = 0, t ∈ T,

and some existence results of each kind of nonoscillatory solutions were also established in
[17].

In 2014, Došlá and Marini [4] studied the nonoscillatory solutions for second order Emden–
Fowler type differential equation(

a(t)|x′(t)|α sgn x′(t)
)′
+ b(t)|x(t)|β sgn x(t) = 0.

This article has an important and far-reaching influence because it solved the open problem
on the possible coexistence of three types of nonoscillatory solutions for super-linear Emden–
Fowler differential equations. However, to the best of our knowledge, the coexistence of
nonoscillatory solutions for dynamic equations on time scales has been scarcely investigated.

Motivated by [4], we consider the second order super-linear dynamic equations on time
scales (

a(t)|x∆(t)|α sgn x∆(t)
)∆

+ b(t)|x(t)|β sgn x(t) = 0, (1.2)

where 0 < α < β are constants and a(t) > 0, b(t) ≥ 0 are rd-continuous functions on [0, ∞)T,
and

Ia =
∫ ∞

0

1
a1/α(s)

∆s = ∞, Ib =
∫ ∞

0
b(s)∆s < ∞.
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When a(t) ≡ 1, that is equation(
|x∆(t)|α sgn x∆(t)

)∆
+ b(t)|x(t)|β sgn x(t) = 0. (1.3)

If α 6= β, then the prototype of (1.3) is the Emden–Fowler equation

x∆∆ + b(t)|x|β sgn x = 0. (1.4)

Moreover, the half-linear case of (1.2) is the following form(
a(t)|x∆(t)|α sgn x∆(t)

)∆
+ b(t)|x(t)|α sgn x(t) = 0. (1.5)

We will consider only the eventually positive solutions of (1.2) in the following section and
denote

x[1](t) = a(t)|x∆(t)|α sgn x∆(t)

for convenience.
The main work of this article can be listed as follows. Firstly, we improve the result in [6].

We will show that the case when the solution is a constant as x[1](t) tends to a constant is im-
possible. Secondly, we investigate the necessary and sufficient conditions for the existence of
oscillatory and nonoscillatory solutions by methods different from [6]. Thirdly, we present an
important property about intermediate solutions on time scales which generalize the related
contributions to the subject in [4]. The research about the second order super-linear dynamic
equations on time scales unifies the cases of differential equations and difference equations.

The paper is organized as follows. In Section 2, we introduce some definitions and a
lemma about oscillatory and nonoscillatory solutions and the Schauder–Tychonoff fixed point
theorem. In Section 3, we investigate the classification of the nonoscillatory solutions. Then
we give some necessary and sufficient conditions for the existence of some oscillatory and
nonoscillatory solutions by the Schauder–Tychonoff fixed point theorem. We propose three
possibilities of two classes of double integrals which is related to the coefficients of the equa-
tion and an important property of the intermediate solutions. Moreover, an example is given
to illustrate our main results.

2 Preliminaries

In this section, we collect some definitions and a lemma about dynamic equations on time
scales.

Definition 2.1 ([14]). We say that a nontrivial solution x of (1.2) has a generalized zero at t, if
x(t)x(σ(t)) ≤ 0. If x(t) = 0 we say that solution x has a common zero at t.

Definition 2.2 ([14]). We say that a solution x of equation (1.2) is nonoscillatory on T, if there
exists τ ∈ T such that there does not exist any generalized zero at t for t ∈ [τ, ∞)T.

A nontrivial solution x of equation (1.2) is called oscillatory on T, if for every τ ∈ T has x
a generalized zero on [τ, ∞)T.

Definition 2.3 ([6]). We say that equation (1.2) is super-linear, if there exists a constant γ > 0
such that |v−γ||b(s)vβ| is nondecreasing in |v| for each fixed s and∫ ∞

M

∆v
vγ/α

< ∞ for any M > 0. (2.1)

Lemma 2.4 (Schauder–Tychonoff fixed point theorem [12]). Let X be a locally convex space,
K ⊂ X be nonempty and convex, S ⊂ K, S be compact. Given a continuous map F : K → S, then there
exists x̃ ∈ S such that F(x̃) = x̃.
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3 Main results

In this section, we investigate the classification of the nonoscillatory solutions. Then we give
some necessary and sufficient conditions for the existence of some oscillatory and nonoscilla-
tory solutions by Schauder–Tychonoff fixed point theorem. We also present three possibilities
of two classes of double integrals which is related to the coefficients of the equation and an
important property of the intermediate solutions. We extend some results of [4] to time scales.

Theorem 3.1. The class P of all eventually positive solutions of (1.2) can be divided into three sub-
classes:

M+
∞,` = {x ∈ P : x(∞) = ∞, x[1](∞) = `, 0 < ` < ∞},

M+
∞,0 = {x ∈ P : x(∞) = ∞, x[1](∞) = 0},

M+
`,0 = {x ∈ P : x(∞) = `, x[1](∞) = 0, 0 < ` < ∞}.

The superscript symbol “+” means that solutions are eventually positive increasing. We
call solutions in M+

∞,`, M+
∞,0, M+

`,0 dominant solutions, intermediate solutions and subdomi-
nant solutions.

Proof. Let x(t) be a positive solution of (1.2) for large t. Then there exists a t0 > 0 such that
x(t) > 0 as t ≥ t0. From (1.2) we have

(x[1](t))∆ = −b(t)|x(t)|βsgn x(t) ≤ 0,

so x[1](t) is non-increasing for t ≥ t0, which implies that x[1](t) is eventually positive or
negative.

We conclude that x[1](t) ≥ 0, t ≥ t0. Otherwise, if x[1](t) < 0 for t ≥ t0, then there is a
positive number c, such that x[1](t) ≤ −c. Integrating the last inequality from 0 to t and letting
t→ ∞, we have x(t)→ −∞ as t→ ∞ since x∆(t) < 0, which is contrary to the assumption of
the eventually positive solution. So x[1](t) ≥ 0, i.e. x∆(t) ≥ 0.

Thus for any `, 0 < ` < ∞, the possible cases of x[1](t) and x(t) when t→ ∞ are as follows:

(i) x(∞) = `, x[1](∞) = `;

(ii) x(∞) = ∞, x[1](∞) = `;

(iii) x(∞) = ∞, x[1](∞) = 0;

(iv) x(∞) = `, x[1](∞) = 0.

Now we prove the case (i) is impossible. If limt→∞ x[1](t) = `, then there exists t0 > 0
such that x[1](t) ≥ `

2 for t ≥ t0, i.e. x∆(t) ≥ `1/α

(2a)1/α . Integrating the last inequality and by the
condition Ia = ∞, we have x(∞) = ∞. The proof is completed.

Denote

J =
∫ ∞

0

1
a1/α(s)

(∫ ∞

s
b(r)∆r

)1/α

∆s, K =
∫ ∞

0
b(s)

(∫ s

0

1
a1/α(r)

∆r
)β

∆s.

Jm =
∫ ∞

0

1
a1/α(s)

(∫ ∞

s
b(r)∆r

)1/m

∆s, Km =
∫ ∞

0
b(s)

(∫ s

0

1
a1/α(r)

∆r
)m

∆s.

Now we give some sufficient and necessary conditions for the existence of oscillatory and
nonoscillatory solutions.
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Theorem 3.2. The following hold for (1.2):

i1) The class M+
`,0 is nonempty if and only if J < ∞. Moreover, for any `, 0 < ` < ∞, there exists

x ∈M+
`,0 such that limt→∞ x(t) = `.

i2) The class M+
∞,` is nonempty if and only if K < ∞. Moreover, for any `, 0 < ` < ∞, there exists

x ∈M+
∞,` such that limt→∞ x[1](t) = `.

i3) Let α < β. Equation (1.2) is oscillatory if and only if J = ∞.

i4) Let α > β. Equation (1.2) is oscillatory if and only if K = ∞.

Proof. i1) (The “only if” part) Let x(t) be a nonoscillatory solution in M+
`,0, t > t0 > 0. i.e.

x(∞) = `, x[1](∞) = 0. Integrating equation (1.2) from t to ∞, we get

a(t)(x∆(t))α =
∫ ∞

t
b(t)xβ(t)∆t,

i.e.

x∆(t) =
1

a1/α(t)

(∫ ∞

t
b(s)xβ(s)∆s

)1/α

≥ 1
a1/α(t)

(
`

2

)β/α (∫ ∞

t
b(s)∆s

)1/α

.

Integrating the above inequality from 0 to ∞, we obtain

x(∞) ≥ x(0) +
(
`

2

)β/α ∫ ∞

0

1
a1/α(s)

(∫ ∞

s
b(r)∆r

)1/α

∆s.

By contrary, if J = ∞, then x(∞) = ∞, which is a contradiction with x(∞) = `, 0 < ` < ∞. So
J < ∞.

(The “if” part) Suppose J < ∞, then there exist c > 0, t1 > 0 such that

cβ/α
∫ ∞

t1

1
a1/α(t)

(∫ ∞

t
b(s)∆s

)1/α

∆t ≤ c
2

. (3.1)

Define X = {x ∈ Crd[t1, ∞)T : c
2 ≤ x(t) ≤ c, t ≥ t1} and

Tx(t) = c−
∫ ∞

t

1
a1/α(s)

(∫ ∞

s
b(r)xβ(r)∆r

)1/α

∆s, t ≥ t1.

Now, we separate the proof into the following two steps.
(i) T maps X into itself. If x ∈ X, then from (3.1) we get

0 ≤
∫ ∞

t

1
a1/α(s)

(∫ ∞

s
b(r)xβ(r)∆r

)1/α

∆s ≤ c
2

.

So c
2 ≤ Tx ≤ c, which implies that Tx ∈ X.
(ii) T is continuous. Obviously Tx is compact. Let {xn} be a sequence of measurable

functions of X converging to x ∈ X as n→ ∞ in the topology of Crd[t1, ∞)T.
Since 0 ≤ xn(t) ≤ c, we get c

2 ≤ Txn(t) ≤ c. The Lebesgue dominated convergence
theorem shows that Txn(t1) → Tx(t1), which implies Txn(t) → Tx(t) uniformly on [t1, ∞),
that is T is continuous.

Therefore, applying the Schauder–Tychonoff fixed point theorem, we see that there exists
an element x ∈ X such that x = Tx, which shows that x(t) is a positive solution of equation
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(1.2) for t ≥ t1. Since x(t) is uniformly bounded, then from Theorem 3.1 we get that x(t) is an
element in M+

`,0.
i2) (The “only if” part) Let x(t) be a nonoscillatory solution in M+

∞,`, t > t1 > 0, i.e.
x(∞) = ∞, x[1](∞) = `. According to the definition of limit, we know

a(t)(x∆(t))α ≥ `

2
, i.e. x∆(t) ≥

( `2 )
1/α

a1/α(t)
.

Integrating from 0 to t, we get

x(t) ≥
(
`

2

)1/α ∫ t

0

1
a1/α(s)

∆s.

Substituting the above to equation (1.2) and integrating from 0 to ∞, we have∫ ∞

0
(x[1](t))∆ ∆t = −

∫ ∞

0
b(t)xβ(t)∆t

≤ −
(
`

2

)1/α ∫ ∞

0
b(t)

(∫ t

0

1
a1/α(s)

∆s
)β

∆t,

i.e.

x[1](∞) ≤ x[1](0)−
(
`

2

)1/α ∫ ∞

0
b(t)

(∫ t

0

1
a1/α(s)

∆s
)β

∆t.

By contrary, if K = ∞, then x[1](∞) ≤ −∞, which is a contradiction with the condition
x[1](∞) = `, 0 < ` < ∞. So K < ∞.

(The “if” part) Suppose K < ∞ holds. We can choose proper ` > 0 such that

∫ ∞

t1

b(t)
(∫ t

t1

(2`)1/α

a1/α(s)
∆s
)β

∆t ≤ `.

Define the subset X of Crd[t1, ∞)T and the mapping A : X → Crd[t1, ∞)T by

X =

{
x ∈ Crd[t1, ∞)T :

∫ t

t1

`1/α

a1/α(s)
∆s ≤ x(t) ≤

∫ t

t1

(2`)1/α

a1/α(s)
∆s, t ≥ t1

}
and

Ax(t) =
∫ t

t1

(`+
∫ ∞

s b(r)xβ(r)∆r)1/α

a1/α(s)
∆s, t ≥ t1. (3.2)

Now, in order to use the Schauder–Tychonoff fixed point theorem in Lemma 2.4 we sepa-
rate the proof into the following three steps.

(i) A maps X into itself. For any x ∈ X, we have

0 ≤
∫ ∞

s
b(r)xβ(r)∆r ≤

∫ ∞

s
b(r)

(∫ t

t1

(2`)1/α

a1/α(u)
∆u
)β

∆r ≤ `, s ≥ t1, (3.3)

from (3.2) and (3.3) we obtain∫ t

t1

`1/α

a1/α(s)
∆s ≤ Ax(t) ≤

∫ t

t1

(2`)1/α

a1/α(s)
∆s, t ≥ t1,

which implies that Ax ∈ X.
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(ii) AX is compact. Since A maps X into itself, we only need to illustrate X is compact. Let

y(t) =
x(t)∫ t

t1

1
a1/α(s) ∆s

.

Then
`1/α ≤ y(t) ≤ (2`)1/α.

For any xn ∈ X, since

yn =
xn(t)∫ t

t1

1
a1/α(s) ∆s

is bounded, from the compactness theorem, we can know that there exists a convergent sub-
sequence ynk . So for any xn ∈ X there exists a convergent subsequence xnk , which shows that
X is compact.

(iii) A is continuous. Let {xn} be a sequence of measurable functions of X converging to
x ∈ X as n→ ∞ in the topology of Crd[t1, ∞)T.

From 0 ≤ xn(t) ≤
∫ t

t1

(2`)1/α

a1/α(s) ∆s, we obtain

0 ≤
∫ ∞

t1

b(t)xβ
n(t)∆t ≤

∫ ∞

t1

b(t)
(∫ t

t1

(2`)1/α

a1/α(s)
∆s
)β

∆t

≤ (2`)1/α
∫ ∞

0
b(t)

(∫ t

0

1
a1/α(s)

∆s
)β

∆t = (2`)1/αK < ∞.

The Lebesgue dominated convergence theorem shows that∫ ∞

t1

b(s)xβ
n(s)∆s→

∫ ∞

t1

b(s)xβ(s)∆s as n→ ∞,

i.e. Axn(∞) → Ax(∞), which implies Axn(t) → Ax(t) uniformly on [t1, ∞), that is A is
continuous.

Therefore, applying the Schauder–Tychonoff fixed point theorem, we see that there exists
an element x ∈ X such that x = Ax, which shows that x(t) is a positive solution of equation
(1.2) for t ≥ t1. So x(t) is an element in M+

∞,`.
i3) The “only if” part follows from i1).
To prove the “if” part. Assume for contradiction that (1.2) has a nonoscillatory solution

x(t). We may assume without loss of generality that x(t) > 0 for t ≥ t0 > 0. Integrating (1.2)
from t to ∞ and noting that limt→∞ a(t)(x∆(t))α ≥ 0, we have

a(t)
(
x∆(t)

)α ≥
∫ ∞

t
b(s)xβ(s)∆s, t ≥ t0,

which implies

x∆(t) ≥ 1
a1/α(t)

(∫ ∞

t
b(s)xβ(s)∆s

)1/α

, t ≥ t0.

Dividing the above by xγ/α(t), we obtain

x∆(t)
xγ/α(t)

≥ 1
a1/α(t)

(∫ ∞

t

b(s)xβ(s)
xγ(t)

∆s
)1/α

≥ 1
a1/α(t)

(∫ ∞

t

b(s)xβ(s)
xγ(s)

∆s
)1/α

.
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Since x(t) is an eventually positive solution, there exists a positive constant c0 such that x(t) ≥
c0 for t ≥ t0. We have

b(t)xβ(t)
xγ(t)

≥
b(t)cβ

0

cγ
0

, t ≥ t0,

hence

x∆(t)
xγ/α(t)

≥
(

1
cγ

0

1
a(t)

∫ ∞

t
b(s)cβ

0 ∆s
)1/α

≥ 1

cγ/α
0

(
1

a(t)

∫ ∞

t
b(s)cβ

0 ∆s
)1/α

, t ≥ t0.

Integrating above over [t0, t] and by condition (2.1), we have

1

cγ/α
0

∫ t

t0

(
1

a(t)

∫ ∞

t
b(s)cβ

0 ∆s
)1/α

≤
∫ x(t)

x(t0)

∆v
vγ/α

< ∞,

which implies ∫ ∞

t0

(
1

a(t)

∫ ∞

t
b(s)cβ

0 ∆s
)1/α

∆t < ∞.

But this contradicts J = ∞.
The proof of i4) is similar to that of i3), so it is omitted here. The proof is completed.

Motivated by [5], now we give the following proof.

Lemma 3.3. If 0 < m ≤ 1, then Jm = ∞⇒ Km = ∞.

Proof. Let p = 1/m. Obviously p ≥ 1. The integrals Jm, Km can be written as

Jm =
∫ ∞

0

1
a1/α(t)

(∫ ∞

t
b(s)∆s

)p

∆t, Km =
∫ ∞

0
b(t)

(∫ t

0

1
a1/α(s)

∆s
)1/p

∆t.

Put 1
a1/α(t,s) = 0 for s < t and 1

a1/α(t,s) =
1

a1/α(t) for s ≥ t. Then we obtain

p
√

Jm = p

√∫ ∞

0

1
a1/α(t)

(∫ ∞

t
b(s)∆s

)p

∆t = p

√∫ ∞

0

[∫ ∞

t
(

1
a1/α(t)

)1/pb(s)∆s
]p

∆t

= p

√∫ ∞

0

[∫ ∞

0
(

1
a1/α(t, s)

)1/pb(s)∆s
]p

∆t ≤
∫ ∞

0

p

√∫ ∞

0

1
a1/α(t, s)

b(s)p ∆t ∆s

=
∫ ∞

0
b(s)∆s p

√∫ ∞

0

1
a1/α(t, s)

∆t =
∫ ∞

0
b(s)∆s p

√∫ s

0

1
a1/α(t)

∆t

=
∫ ∞

0
b(s)∆s p

√∫ s

0

1
a1/α(t, s)

∆s +
∫ ∞

s

1
a1/α(t, s)

∆s

=
∫ ∞

0
b(s)∆s p

√∫ s

0

1
a1/α(t, s)

∆s ≤
∫ ∞

0
b(s)∆s p

√∫ ∞

0

1
a1/α(t)

∆t = Km.

The proof is completed.

Lemma 3.4. If α < β, then J = ∞⇒ K = ∞.
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Proof. Consider two cases: (i) α ≤ 1; (ii) α > 1.
Case (i): Let t0 ≥ 0 be such that

∫ t
0

1
a1/α(s) ∆s > 1 for t ≥ t0. Since J = ∞, by Lemma 3.3

Kα = ∞. Since α < β, we have K > Kα = ∞.
Case (ii): We have

J =
∫ ∞

0

1
a1/α(t)

(∫ ∞

t
b(s)∆s

)1/α

∆t for t ≥ t0.

Integrating by parts we have

J =
∫ ∞

0

(∫ t

0

1
a1/α(s)

∆s
)∆ (∫ ∞

t
b(s)∆s

)1/α

∆t

=
1
α

∫ ∞

0
b(t)

(∫ σ(t)

0

1
a1/α(s)

∆s
)(∫ ∞

t
b(s)∆s

) 1−α
α

∆t.

Since 1 < α < β, by the Hölder inequality, we obtain

J ≤ 1
α

(∫ ∞

0

(∫ σ(t)

0

1
a1/α(s)

∆s
)β

b(t)∆t

) 1
β

×

∫ ∞

0

b(t)(1−1/β)2(∫ ∞
t b(s)∆s

) (α−1)β
(β−1)α

∆t


β−1

β

.

Since
∫ ∞

0 b(s)∆s < ∞, (1− 1/β)2 < 1 and (α−1)β
(β−1)α < 1, we get

∫ ∞

0

b(t)(1−1/β)2(∫ ∞
t b(s)∆s

) (α−1)β
(β−1)α

∆t


β−1

β

≤

∫ ∞

0

b(t)(∫ ∞
t b(s)∆s

) (α−1)β
(β−1)α

∆t


β−1

β

< M,

where M is a finite positive constant. So we can choose proper M such that J ≤ M
α K1/β. Since

J = ∞, this inequality yields the assertion. The proof is completed.

Theorem 3.5. The possible cases of mutual behavior of integrals J, K, when α < β are as follows:

C1) J = ∞, K = ∞;

C2) J < ∞, K = ∞ when α < β;

C3) J < ∞, K < ∞.

Proof. The theorem can be easily proved by applying Lemmas 3.3, and 3.4.

Lemma 3.6. Let µ > 1, λµ > 1 and f , g be nonnegative rd-continuous functions on [t2, ∞). Then(∫ t

t2

g(s)
(∫ t

s
f (r)∆r

)λ

∆s

)µ

≤ λµ

(
µ− 1

λµ− 1

)µ−1 (∫ t

t2

f (r)
(∫ r

t2

g(s)∆s
)µ

∆r
)(∫ t

t2

f (r)∆r
)λµ−1

.

(3.4)

Proof. Consider two cases: (i) f > 0; (ii) f has zeros.
Case (i): Integrating by parts, we have∫ t

t2

f (s)
(∫ t

s
f (r)∆r

)λ−1 (∫ s

t2

g(u)∆u
)

∆s =
1
λ

∫ t

t2

g(s)
(∫ t

σ(s)
f (r)∆r

)λ

∆s.
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According to the above equality and Hölder’s inequality, we obtain

∫ t

t2

g(s)
(∫ t

σ(s)
f (r)∆r

)λ

∆s

= λ
∫ t

t2

f 1/p(s) f 1/q(s)
(∫ t

s
f (r)∆r

)λ−1 (∫ s

t2

g(u)∆u
)

∆s

≤ λ

(∫ t

t2

f (s)
(∫ s

t2

g(u)∆u
)p

∆s
)1/p

(∫ t

t2

f (s)
(∫ t

s
f (r)∆r

)(λ−1)q

∆s

)1/q

,

where p > 1, 1/p + 1/q = 1. Letting p = µ, q = µ
µ−1 , we get

∫ t

t2

g(s)
(∫ t

σ(s)
f (r)∆r

)λ

∆s

≤ λ

(∫ t

t2

f (s)
(∫ s

t2

g(u)∆u
)µ

∆s
)1/µ (∫ t

t2

f (s)
(∫ t

s
f (r)∆r

)γ

∆s
)(µ−1)/µ

,

(3.5)

where γ = (λ− 1)µ/(µ− 1) > −1. Moreover, we have

∫ t

t2

f (s)
(∫ t

s
f (τ)∆τ

)γ

∆s =
1

γ + 1

(∫ t

t2

f (s)∆s
)γ+1

.

Hence, from (3.5) we obtain

∫ t

t2

g(s)
(∫ t

σ(s)
f (r)∆r

)λ

∆s

≤ λ

(
µ− 1

λµ− 1

)(µ−1)/µ (∫ t

t2

f (s)
(∫ s

t2

g(u)∆u
)µ

∆s
)1/µ (∫ t

t2

f (r)∆r
)(λµ−1)/µ

.

Case (ii): If f has zeros for t ≥ t2, for any s ∈ [t2, t)T, let I(s) = cl{r ∈ (s, t) : f (r) > 0}.
Since

∫ t
s f (r)∆r =

∫
I(s) f (r)∆r, the conclusion is true as before. The proof is completed.

Theorem 3.7. Let 1 < α < β, and
∫ ∞

0 sβb(s)∆s < ∞. Then any intermediate solution x of (1.3)

satisfies lim inft→∞
tx∆(t)
x(t) > 0.

Proof. Integrating equation (1.3), we obtain x∆(t) =
(∫ ∞

s b(r)xβ(r)∆r
)1/α . We can choose t3

large enough so that x(t) > 0, x∆(t) > 0 and
∫ ∞

t1
rβb(r)∆r < 1 for t ≥ t1.

Choose t4 large enough such that

k
(∫ ∞

t2

rβb(r)∆r
)(β−α)/α

< 1, (3.6)

where k = 1
α

(
α(β−1)

β−α

)(β−1)/β
. Let η = max{t3, t4}. Integrating (1.3) twice, we obtain

x(t)− x(η) =
∫ t

η

(∫ t

σ(s)
b(r)xβ(r)∆r +

∫ ∞

t
b(r)xβ(r)∆r

)1/α

∆s

for t ≥ η.
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From the inequality
(X + Y)1/α ≤ X1/α + Y1/α,

where X, Y are positive numbers, we obtain

x(t)− x(η) ≤
∫ t

η

(∫ t

σ(s)
b(r)xβ(r)∆r

)1/α

∆s + t
(∫ ∞

t
b(r)xβ(r)∆r

)1/α

∆s.

Let f (r) = b(r)xβ(r), g(s) ≡ 1, λ = 1/α and µ = β and by Lemma 3.6 we have

x(t)− x(η) ≤ k
(∫ t

η
rβb(r)xβ(r)∆r

)1/β (∫ t

η
b(r)xβ(r)∆r

)(β−α)/α

+ t
(∫ ∞

t
b(r)xβ(r)∆r

)1/α

,

from (3.6),

x(t)− x(η) ≤
(∫ t

η
rβb(r)xβ(r)∆r

)1/β

+ t
(∫ ∞

t
b(r)xβ(r)∆r

)1/α

=

(∫ t

η
rβb(r)xβ(r)∆r

)1/β

+ tx∆(t).

Since (∫ t

η
rβb(r)xβ(r)∆r

)1/β

≤ x(t)
(∫ ∞

η
rβb(r)∆r

)1/β

,

we obtain

1− x(η)
x(t)

≤
(∫ ∞

η
rβb(r)∆r

)1/β

+
tx∆(t)
x(t)

,

i.e.
tx∆(t)
x(t)

≥ 1− x(η)
x(t)

−
(∫ ∞

η
rβb(r)∆r

)1/β

.

We obtain the assertion from (3.6). The proof is completed.

4 Examples

In this section, we will present an example to illustrate our main results.

Example 4.1. Let T = R. Consider the following Emden–Fowler equation

x′′ +
1

(t + 2)3 |x|
2 sgn x = 0, t ≥ 0. (4.1)

We have α = 1, β = 2, a(t) = 1 and b(t) = 1
(t+2)3 Thus

J =
∫ ∞

0

1
a1/α(t)

(∫ ∞

t
b(s) ds

)1/α

dt

=
∫ ∞

0

∫ ∞

t

1
(s + 2)3 ds dt

= 0 < ∞.

(4.2)

From Theorem 3.2 we can get that (4.1) above has subdominant solutions for t ≥ 0.
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5 Conclusion

At the end of this paper, let us suggest the further possible research in the theory of dynamic
equations, concretely for Emden–Fowler dynamic equations. First, the coexistence of three
classes of nonoscillatory solutions can be studied. Second, the sufficient and necessary con-
ditions for the existence of intermediate solutions may be established. Third, the cases of
sub-linear and half-linear about the corresponding conclusions can also be considered.
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