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1 Introduction and preliminaries

As is well-known, Halanay-type differential inequalities have been very useful in the stability
analysis of time-delay systems and these have led to some interesting new stability conditions.
In [5], Halanay proved the following result.

Basic Halanay lemma. If

f ′(t) ≤ −α f (t) + β sup
s∈[t−τ,t]

f (s), for t ≥ t0

and α > β > 0, then there exist γ > 0 and K > 0 such that

f (t) ≤ Ke−γ(t−t0), for t ≥ t0.

In 2000, S. Mohamad and K. Gopalsamy established the following result.

Lemma 1.1 ([8]). Let x(·) be a nonnegative differentiable function satisfying

x′(t) ≤ −a(t)x(t) + b(t) sup
s∈[t−τ(t),t]

x(s), t > t0, (1.1)

x(s) = |ϕ(s)| for s ∈ [t0 − τ∗, t0], (1.2)
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where ϕ(s) is defined for s ∈ [t0 − τ∗, t0] and is continuous and bounded. We assume further
that τ(t), a(t), b(t) are defined for t ∈ R and are nonnegative, continuous bounded functions; and
supt∈R τ(t) = τ∗. Suppose

a(t)− b(t) ≥ σ∗ > 0, (1.3)

where σ∗ = inft∈R (a(t)− b(t)) > 0. Then there exists a positive number µ̃ such that

x(t) ≤
(

sup
s∈[t0−τ∗,t0]

x(s)

)
e−µ̃(t−t0), t > t0. (1.4)

In many of the results, the condition a(t)− b(t) > δ, δ > 0 for all t is assumed to hold.
In [7], the authors replace this point-wise inequality by an inequality of integral type of the
form

∫ t0+(n+1)T
t0+nT [a(t)− b+(t)] dt ≥ δ > 0. Obviously this inequality is more general since the

inequality a(t)− b(t) > δ, δ > 0 only needs to hold “on average”, or in the mean sense.
In 2012, Bo Liu proved the following lemma (in what follows, for any function u = u(t)

we use the notation u+(t) = max{0, u(t)}).

Lemma 1.2 ([7]). Let x(·) be a nonnegative function satisfying

(H1) x′(t) ≤ −a(t)x(t) + b(t) sup
0≤s≤τ

x(t− s), t ≥ 0, (1.5)

x(s) = φ(s), s ∈ [−τ, 0], (1.6)

where τ > 0 is a constant and φ(s) is a nonnegative continuous function defined for s ∈ [−τ, 0].

(H2) a(·), b(·) are defined in R and are continuous bounded functions and we define Ma; Mb > 0, by

max{|a(t)|} = Ma and max{|b(t)|} = Mb.

(H3) ∃t0 > 0, T > 0 and δ > 0, ∀n ∈ N

∫ t0+(n+1)T

t0+nT
[a(t)− b+(t)] dt > δ > 0. (1.7)

Then for each τ < 1
Ma

ln(1 + δ
M+

b T ), where M+
b = supt∈[−τ,∞) b+(t); it follows that x(t) is ex-

ponentially stable, i.e., there exists C > 0 (which may depend on the initial value) and α > 0 such
that

x(t) ≤ Ce−αt, t ∈ [0, ∞). (1.8)

As a consequence of Lemma 1.2, we note that the condition (1.7) can be viewed as a
relaxation of the condition (1.3). This means that for asymptotic stability of the system, we do
not need the inequality (1.3) to hold at every time t, but only require it to hold in an average
sense. Often, it is easier to investigate the time average system, so this lemma provides an
average system-based approach for the study of delayed dynamical systems.

To study such problems more generally in the time-scale setting, the authors in [1] intro-
duced the notion of shift operators, δ−(s, t), δ+(s, t) and obtained the following lemma.



An extended Halanay inequality 3

Lemma 1.3 ([1]). If

ω4(t) ≤ f
(
t, ω(t), g

(
ω(δ−(h1, t)), ω(δ−(h2, t)), . . . , ω(δ−(hr, t))

))
for t ∈ [s0, δ+(α, s0))T and y(t; s0, ω) is a solution of the equation

y4(t) = f
(
t, y(t), g

(
y(δ−(h1, t)), y(δ−(h2, t)), . . . , y(δ−(hr, t))

))
,

which coincides with ω in [δ−(hr, s0), s0]T, then, supposing that this solution is defined in
[s0, δ+(α, s0))T, it follows that ω(t) ≤ y(t; s0, ω) for t ∈ [s0, δ+(α, s0))T.

For completeness, we recall the following concepts related to the notion of time scales. We
refer to [3] and [4] for additional details concerning the calculus on time scales.

Definition 1.4. Let T be a time scale (i.e., a closed nonempty subset of R) with sup T = ∞.
The forward jump operator is defined by

σ(t) := inf{s ∈ T : s > t}, (1.9)

and the backward jump operator is defined by

ρ(t) := sup{s ∈ T : s < t}, (1.10)

where sup ∅ := inf T, where ∅ denotes the empty set. If σ(t) > t, we say t is right-scattered,
while if ρ(t) < t we say t is left-scattered. If σ(t) = t, we say that t is right-dense, while
if ρ(t) = t and t 6= inf T we say t is left-dense. Given a time scale interval [c, d]T :=
{t ∈ T : c ≤ t ≤ d} in T the notation [c, d]κT denotes the interval [c, d]T in case ρ(d) = d
and denotes the interval [c, d)T in case ρ(d) < d. The graininess function µ for a time scale
T is defined by µ(t) := σ(t)− t, and for any function f : T → R the notation f σ(t) denotes
f (σ(t)). We also recall that the notation Crd denotes the set of all functions which are contin-
uous at all right-dense points and have finite left-sided limits at left-dense points. We say that
x : T→ R is differentiable at t ∈ T provided

x∆(t) := lim
s→t

x(t)− x(s)
t− s

, (1.11)

exists when σ(t) = t (here by s→ t it is understood that s approaches t in the time scale) and
when x is continuous at t and σ(t) > t

x4(t) :=
x(σ(t))− x(t)

µ(t)
, (1.12)

Note that if T = R , then the delta derivative is just the standard derivative, and when
T = Z the delta derivative is just the forward difference operator. Hence our results contain
the discrete and continuous cases as special cases and generalize these results to time scales
with bounded graininess.

Definition 1.5. A function h : T→ R is said to be regressive provided 1 + µ(t)h(t) 6= 0 for all
t ∈ T , where µ(t) = σ(t)− t. The set of all regressive rd-continuous functions ϕ : T → R is
denoted by R while the set R+ is given by R+ = {ϕ ∈R : 1 + µ(t)ϕ(t) > 0 for all t ∈ T} . Let
ϕ ∈ R. The exponential function on T is defined by eϕ(t, s) = exp

( ∫ t
s ξµ(r)(ϕ(r))∆r

)
.

Here ξµ(s) is the cylinder transformation given by

ξµ(r)(ϕ(r)) :=

 1
µ(r) Log

(
1 + µ(r)ϕ(r)

)
, µ(r) > 0,

ϕ(r), µ(r) = 0.
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It is well known that (see [3, Theorem 2.48]) if p ∈ R+, then ep(t, s) > 0 for all t ∈ T. Also,
the exponential function y(t) = ep(t, s) is the unique solution to the initial value problem
y∆ = p(t)y, y(s) = 1. Other properties of the exponential function are given in the following
lemma.

Lemma 1.6 ([1, 3]). Let p, q ∈ R. Then

(i) e0(s, t) ≡ 1 and ep(t, t) ≡ 1,

(ii) ep(σ(t), s) =
(

1 + µ(t)p(t)
)

ep(t, s),

(iii)
1

ep(t, s)
= e	p(t, s) where 	 p(t) = − p(t)

1 + µ(t)p(t)
,

(iv) ep(t, s) =
1

ep(s, t)
= e	p(s, t),

(v) ep(t, s)ep(s, r) = ep(t, r),

(vi)
( 1

ep(·, s)

)∆
= − p(t)

eσ
p(·, s)

.

(1.13)

Lemma 1.7 ([1]). For a nonnegative function ϕ with −ϕ ∈ R+, we have the inequalities

1−
∫ t

s
ϕ(u) ≤ e−ϕ(t, s) ≤ exp

{
−
∫ t

s
ϕ(u)

}
for all t ≥ s. (1.14)

If ϕ is rd-continuous and nonnegative, then

1 +
∫ t

s
ϕ(u) ≤ eϕ(t, s) ≤ exp

{∫ t

s
ϕ(u)

}
for all t ≥ s. (1.15)

Remark 1.8. If p ∈ R+ and p(r) > 0 for all r ∈ [s, t]T, then

ep(t, r) ≤ ep(t, s), ep(a, b) < 1 and e−p(b, a) < 1 for s ≤ a < b ≤ t. (1.16)

In this paper, in the time scale setting, we establish a new Halanay-type inequality, using
differential and integral inequality comparison methods and obtain thereby an improvement
of the results in [7] and several other references.

2 Main theorem

Theorem 2.1. Let x(·) be a nonnegative function satisfying:
x4(t) ≤ −a(t)x(t) + b(t) sup

0≤s≤τ(t)
x(t− s) + c(t)

∫ ∞

0
K(t, s)x(t− s)∆s; t ≥ t0,

x(s) = φ(s); s ∈ (−∞, t0]T.
(2.1)

where τ(t) denotes a nonnegative, continuous and bounded function defined for t ∈ T and τ :=
supt∈T τ(t); φ(s) is a nonnegative continuous function defined for s ∈ (−∞, t0]T. We suppose further
that 1− a(t)µ(t) > 0, and that a(t), b(t); c(t); a(t)

1−µ(t)a(t) are continuous and bounded functions for
t ∈ [t0,+∞)T.

We also assume supt∈T

{
|a(t)|, |b(t)|, |c(t)|, |a(t)|

1−µ(t)a(t)

}
=: A and that the delay kernel K(t, s)

is nonnegative and continuous for (t, s) ∈ T× [0, ∞)T and satisfies the following properties:
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(I) ∫ ∞

0
K(t, s)eA(t, t− s)∆s is uniformly bounded for t ∈ T; (2.2)

(II) There exists t̃ > t0, T > 0 and δ > 0 such that for each n ∈N, we have∫ t̃+(n+1)T

t̃+nT

[
a(t)− b+(t)− c+(t)

∫ ∞

0
K(t, s)∆s

]
∆t > δ. (2.3)

Then for each τ < 1
A ln(1− B + δ

AT ) where supt∈T

∫ ∞
0 K(t, s) (eA(t, t− s)− 1)∆s =: B < δ

AT ; x(t)
is exponentially stable, i.e., there exists M > 0 (which may depend on the initial value), and α > 0
such that

x(t) ≤ Me	α(t, t0), t ∈ [t0, ∞)T. (2.4)

Proof. From condition (2.3) and 0 < K(t, s) < K(t, s)eA(t, t− s); A > 0; s > 0, it follows that∫ ∞

0
K(t, s)∆s and

∫ ∞

0
K(t, s) (eA(t, t− s)− 1)∆s

are uniformly bounded for t ∈ T.
That is, there exist real numbers B, C > 0 with

sup
t∈T

∫ ∞

0
K(t, s) (eA(t, t− s)− 1)∆s = B, and sup

t∈T

∫ ∞

0
K(t, s)∆s =: C.

From (2.1), we have
x4(t) ≤ −a(t)x(t) + b+(t) sup

0≤s≤τ

x(t− s) + c+(t)
∫ ∞

0
K(t, s)x(t− s)∆s; t ≥ t0,

x(s) = φ(s); s ∈ (−∞, t0]T.
(2.5)

Suppose now that y(t) is a nonnegative function satisfying the autonomous system:
y4(t) = −a(t)y(t) + b+(t) sup

0≤s≤τ

y(t− s) + c+(t)
∫ ∞

0
K(t, s)y(t− s)∆s; t ≥ t0,

y(s) = φ(s); s ∈ (−∞, t0]T.
(2.6)

We first note that the following inequality holds:

x(t) ≤ y(t); t ∈ [t0, ∞)T. (2.7)

To see this, we can directly apply the results in Lemma 1.3, which gives x(t) ≤ y(t) for all
t ∈ [t0, ∞)T.

We next will prove the following inequality:

y(t) ≤ Me	α(t, t0), t ∈ [t0, ∞)T. (2.8)

To establish (2.8), we prove the following preliminary inequality:

for all t1, t2: t2 > t1 ≥ t0 we have y(t1) ≤ y(t2)eA(t2, t1). (2.9)

Since ∀t ≥ t0, y(t) ≥ 0, b+(t) sup0≤s≤τ̂ y(t− s) ≥ 0 and c+(t)
∫ ∞

0 K(t, s)y(t − s)∆s ≥ 0,
we have

y4(t) = −a(t)y(t) + b+(t) sup
0≤s≤τ

y(t− s) + c+(t)
∫ ∞

0
K(t, s)y(t− s)∆s ≥ −a(t)y(t)
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and (
y(t)

e−a(t, t1)

)∆

=
y4(t) + a(t)y(t)

e−a(σ(t), t1)
≥ 0. (2.10)

Since y(t)
e−a(t,t1)

is a monotonically increasing function for t ≥ t1, we see that

y(t) ≥ y(t1)e−a(t, t1) for t > t1; (2.11)

and so

∀t1, t2: t2 > t1 ≥ t0, y(t1) ≤ y(t2)e	(−a)(t2, t1) ≤ y(t2)eA(t2, t1); (2.12)

where 	(−a(t)) = a(t)
1−µ(t)a(t) =⇒ |	(−a(t))| ≤ A, which implies that (2.9) holds.

Therefore we have

sup
0≤s≤τ

y(t− s) ≤ sup
0≤s≤τ

y(t)eA(t, t− s) ≤ y(t)eA(t, t− τ);∫ ∞

0
K(t, s)y(t− s)∆s ≤ y(t)

∫ ∞

0
K(t, s)eA(t, t− s)∆s.

(2.13)

We put (2.13) into (2.6), and so we obtain

y4(t) ≤ −a(t)y(t) + b+(t)y(t)eA(t, t− τ) + c+(t)y(t)
∫ ∞

0
K(t, s)eA(t, t− s)∆s

=

(
−a(t) + b+(t)eA(t, t− τ) + c+(t)

∫ ∞

0
K(t, s)eA(t, t− s)∆s

)
y(t). (2.14)

Let
p(t) = −a(t) + b+(t)eA(t, t− τ) + c+(t)

∫ ∞

0
K(t, s)eA(t, t− s)∆s. (2.15)

From (2.14), (2.15), we have

∀t1, t2: t2 > t1 ≥ t0, y(t2) ≤ y(t1)ep(t2, t1). (2.16)

By the assumptions (2.3), (2.15), we have

∫ t̃+(n+1)T

t̃+nT
p(t)∆t =

∫ t̃+(n+1)T

t̃+nT

[
−a(t) + b+(t)eA(t, t− τ) + c+(t)

∫ ∞

0
K(t, s)eA(t, t− s)∆s

]
∆t

=
∫ t̃+(n+1)T

t̃+nT

[
−a(t) + b+(t) + c+(t)

∫ ∞

0
K(t, s)∆s

]
∆t

+
∫ t̃+(n+1)T

t̃+nT
b+(t) (eA(t, t− τ)− 1)∆t

+
∫ t̃+(n+1)T

t̃+nT
c+(t)

∫ ∞

0
K(t, s) [eA(t, t− s)− 1]∆s ∆t

< − δ + AT(exp(Aτ) + B− 1). (2.17)

Since τ < 1
A ln(1− B + δ

AT ), we have that −δ + AT(exp(Aτ) + B− 1) < 0.
Denote

α =
δ− AT(exp(Aτ) + B− 1)

T
> 0. (2.18)
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By (2.16), (2.18), then for each n ∈ N

y(t̃ + nT) ≤ y(t̃ + (n− 1)T)ep(t̃ + nT, t̃ + (n− 1)T)

≤ y(t̃ + (n− 1)T) exp

(∫ t̃+nT

t̃+(n−1)T
p(t) dt

)
< y(t̃ + (n− 1)T) exp(−αT)

< y(t̃) exp(−αnT). (2.19)

Therefore, for t > t̃ > t0, ∃n ∈N⇒ t ∈
(
t̃ + nT, t̃ + (n + 1)T

]
T

, and

t− (t̃ + nT) < t̃ + (n + 1)T − (t̃ + nT) = T,

p(t) = −a(t) + b+(t)eA(t, t− τ) + c+(t)
∫ ∞

0
K(t, s)eA(t, t− s)∆s

≤ A + A exp(Aτ) + A(B + C) = A[exp(Aτ) + B + C + 1] := θ.

(2.20)

By (2.19), (2.20) and (1.16)

y(t)eα(t, t0) ≤ y(t̃ + nT)ep(t, t̃ + nT)eα(t, t0)

≤ y(t̃ + nT)eθ(t, t̃ + nT) · exp
(∫ t

t0

α du
)

≤ y(t̃) exp
[
θ(t− t̃− nT)− αnT + αt− αt0

]
≤ y(t̃) exp

[
(θ + α)(t− t̃− nT) + αt̃− αt0

]
≤ y(t̃) exp

[
(θ + α)T + α(t̃− t0)

]
; (2.21)

when t0 ≤ t ≤ t̃,
y(t)eα(t, t0) ≤ sup

s≤t̃

(
y(s)eα(s, t0)

)
. (2.22)

Let

M = max

{
sup
s≤t̃

(
y(s)eα(s, t0)

)
, y(t̃) exp

[
(θ + α)T + α(t̃− t0)

]}
, (2.23)

where θ = A[exp(Aτ) + B + C + 1].
By (2.21), (2.22), (2.23) and (2.7), we have

x(t) ≤ y(t) ≤ Me	α(t, t0), t ∈ [t0, ∞)T. (2.24)

This completes the proof.

When c(t) = 0, we can obtain the following corollary, which can be regarded as an exten-
sion of Theorem 1 of [7].

Corollary 2.2. Let x(·) be a nonnegative function satisfying

x4(t) ≤ −a(t)x(t) + b(t) sup
0≤s≤τ(t)

x(t− s); t ≥ t0; (2.25)

x(s) = φ(s); s ∈ (−∞, t0]T. (2.26)

where τ(t) denotes a nonnegative, continuous and bounded function defined for t ∈ T and τ =

supt∈T τ(t); φ(s) is a nonnegative continuous function defined for s ∈ (−∞, t0]T. We also assume
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a(t), b(t), a(t)
1−µ(t)a(t) are continuous bounded functions fort ∈ T with 1− a(t)µ(t) > 0 and define

A > 0 by

A := sup
t∈T

{
|a(t)|, |b(t)|, |a(t)|

1− µ(t)a(t)

}
.

Suppose also that there exist t̃ > t0, T > 0 and δ > 0 such that for each n ∈N.

∫ t̃+(n+1)T

t̃+nT

[
a(t)− b+(t)

]
∆t > δ. (2.27)

Then for each τ < 1
A ln(1 + δ

AT ), x(t) is exponentially stable, i.e., there exists M > 0 (which may
depend on the initial value), and α > 0 such that

x(t) ≤ Me	α(t, t0), t ∈ [t0, ∞)T. (2.28)

3 Examples

Suppose x(·) is a nonnegative function satisfying the following delay dynamic equation:

x∆(t) = −a(t)xσ(t) + b(t)x(t− τ) + c(t)
∫ ∞

0
K(t, s)x(t− s)∆s, t ∈ [t0,+∞)T (3.1)

where x(s) = ϕ(s), for s ∈ (−∞, t0]T, and where ϕ is rd-continuous, nonnegative and
bounded, and τ is a constant. Let a(t), b(t); c(t); a(t)

1−µ(t)a(t) denote rd-continuous and bounded
functions for t ∈ [t0,+∞)T; 1− a(t)µ(t) > 0. Namely

∃A > 0, ∀t ∈ T, s.t. sup
t∈T

{
|a(t)|, |b(t)|, |c(t)|, |a(t)|

1− µ(t)a(t)

}
= A; (3.2)

Assume further that the delay kernel K(t, s) is nonnegative and continuous for (t, s) ∈
T× [t0, ∞)T and satisfies the following properties.∫ ∞

0
K(t, s)eA(t, t− s)∆s is uniformly bounded for t ∈ T; (3.3)

∃t̃ > t0, T > 0 and δ > 0 such that for each n ∈N∫ t̃+(n+1)T

t̃+nT

[
a(t)− b+(t)− c+(t)

∫ ∞

0
K(t, s)∆s

]
∆t > δ. (3.4)

From (3.1), we have

x(t) = x(t0)e−a(t, t0) +
∫ t

t0

e−a(t, σ(s))
[

b(s)x(s− τ) + c(s)
∫ ∞

0
K(s, v)x(s− v)∆v

]
∆s. (3.5)

Let the function y(t) be defined as follows: y(t) = x(t), for t ∈ (−∞, t0]T and

y(t) = x(t0)e−a(t, t0)

+
∫ t

t0

e−a(t, σ(s))

[
b(s) sup

0≤θ≤τ

x(s− θ) + c(s)
∫ ∞

0
K(s, v)x(s− v)∆v

]
∆s

(3.6)

for t > t0. Then we have x(t) ≤ y(t), for all t ∈ (−∞,+∞)T.
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By [3, Theorem 5.37], we get that

y∆(t) = − a(t)

{
x(t0)e−a(t, t0)

+
∫ t

t0

e−a(t, σ(s))

[
b(s) sup

0≤θ≤τ

x(s− θ) + c(s)
∫ ∞

0
K(s, v)x(s− v)∆v

]
∆s

}

+ b(t) sup
0≤θ≤τ

y(t− θ) + c(t)
∫ ∞

0
K(t, v)y(t− v)∆v

≤− a(t)y(t) + b(t) sup
0≤θ≤τ

y(t− θ) + c(t)
∫ ∞

0
K(t, v)y(t− v)∆v (3.7)

for all t ∈ [t0, ∞).

Therefore, it follows from the main theorem that for each τ < 1
A ln(1 − B + δ

AT ) with
supt∈T

∫ ∞
0 K(t, s) (eA(t, t− s)− 1)∆s = B; x(t) is exponentially stable, i.e., there exists M > 0

(which may depend on the initial value), α > 0 such that

x(t) ≤ y(t) ≤ Me	α(t, t0), t ∈ [t0, ∞)T. (3.8)

In the following, we let T = Z and will choose some explicit functions for a(t), b(t), c(t),
K(t, s).

Let x(·) be a nonnegative function satisfying (here we have µ(t) = 1)

∆x(n) ≤ −a(n)x(n) + b(n) sup
0≤j≤τ

x(n− j) + c(n)
∞

∑
j=0

K(n, j)x(n− j), n ≥ 1

where

a(4n) =
11
16

, a(4n + 1) = −1
8

, a(4n + 2) =
5
8

,

a(4n + 3) =
3
4

; b(n) =
1
16

; c(n) =
4n + 3
4n + 4

;

K(n, j) =
1

16(4n + 4)j ; ∀n ≥ 1;

and

sup
n≥1

{
|a(n)|, |b(n)|, |c(n)|, |a(n)|

1− a(n)

}
= A = 3,

∀n ≥ 1,
∞

∑
j=0

K(n, j)eA(n, n− j) =
∞

∑
j=0

1
16(4n + 4)j (1 + A)jeA(n− j, n− j);

=
∞

∑
j=0

1
16

( 1
n + 1

)j
eA(n− j, n− j) =

n + 1
16n

;

B = sup
n≥1

∞

∑
j=0

K(n, j)
(

eA(n, n− j)− 1
)
= sup

n≥1

3n + 3
16n(4n + 3)

=
3
56

,
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where eA(n− j, n− j) = 1. Thus

a(n)− b+(n)− c+(n)
∞

∑
j=0

K(n, j) = a(n)− 1
8

;

If n = 4k, then a(4k)− b+(4k)− c+(4k)
∞

∑
j=0

K(4k, j) =
9

16
> 0.

If n = 4k + 1, then a(4k + 1)− b+(4k + 1)− c+(4k + 1)
∞

∑
j=0

K(4k + 1, j) = −1
4
< 0.

If n = 4k + 2, then a(4k + 2)− b+(4k + 2)− c+(4k + 2)
∞

∑
j=0

K(4k + 2, j) =
1
2
> 0.

If n = 4k + 3, then a(4k + 3)− b+(4k + 3)− c+(4k + 3)
∞

∑
j=0

K(4k + 3, j) =
5
8
> 0.

This shows that the point-wise Halanay inequality does not apply to this example. However,
since we have that there exists T = 4 and δ = 7

5 such that

(n+1)T−1

∑
k=nT

(
a(k)− b+(k)− c+(k)

∞

∑
j=0

K(k, j)

)
=

4(n+1)−1

∑
k=4n

(
a(k)− 1

8

)
=

23
16

>
7
5
= δ. (3.9)

Therefore, it follows that if τ < 1
A ln(1 − B + δ

AT ) = 1
3 ln 893

840 ≈ 0.0204, and 3
56 = B <

δ
AT = 7

60 , then x(t) is exponentially stable, i.e., there exists M > 0 (which may depend on the
initial value), and

α =
δ− AT(exp(Aτ) + B− 1)

T
=

7
5 − 12(e0.03 + 3

56 − 1)
4

≈ 0.0979 (let τ = 0.01), (3.10)

such that
x(t) ≤ Me	0.0979(n, 1), n ≥ 1.
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