
On random numbers in practice and their generating
principles and methods
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Abstract—Random numbers are indispensable necessities in
many areas of science and technology ranging from Monte
Carlo simulations, testing dynamical response of measuring
transmitters to secure encryption methods and different security
systems. A good number of such systems are applied in car
security and physical accessibility of many secure entities from ,
admission systems to accessibility of databases. Though computer
generated random numbers can be used for many applications,
they remain basically non-random in the sense that anything
that generated by an algorithm is at least theoretically pre-
dictable. Beside that type of random number generation could be
more costly then the elaborated and practically proved Pseudo-
Random Number Generation (PRNG) methods by hardware
devices include embedded microcontrollers.

Firstly we introduce one application then we discuss the
concept of randomness and its criteria, then the linear feedback
shift registers (LFSR) as traditional devices producing PRNs. In
connection of LFSRs we show the polynomial algebraic model of
generating PRNs.

In second part of this article we shell show a special decompo-
sition of theoretical background, by two way to microcontroller
environment.

I. INTRODUCTION

The One Time Pad (OTP) encryption and decryption could
be considered in the first approach as handling a standard
binary block of a piece of information but those blocks follow
each other as a stream cipher do. In the simplest case the
encryption process adds an n-bit random number to the same
n-bit long input plain text block. That random number is the
key that belong to that very block. (There is no encryption if
the n-bit key is all zero, consequently all zero key should be
avoided.) The decryption process practically is the same. We
should be aware that each random key must be used one time
only. That is the origin of the name of that method: One time
Pad.

In spite of the simplicity of this method in the years of 1930s
and 40s a very similar secret communication method was used
by the Soviet Union for the so called VENONA project for
communicating the details of US Manhattan project. That is
not a secret anymore. The practical implementation of such a
process needs a serial stream of n-bit random numbers.

There exist as many as 2n different n-bit binary numbers.
If the all-zero n-bit number is excluded we have to generate
2n−1 n-bit numbers which follow each other randomly in a

sequence, then the whole sequence repeats. That is what is
called pseudo-random (binary) number sequence. The starting
n-bit number is the seed of that sequence [1] [2].

II. GOLOMB’S CRITERIA OF RANDOMNESS

Within a random-like bit sequence we call block an all 1 bit
sequence before and after which there is at least one zero bit.
E.g.: 0111110. The name block is independent of the number
of 1s in that block. Within a random-like bit sequence we call
gap an all 0 bit sequence before and after which there is at
least one zero bit. E.g.: 100001. The name gap is independent
of the number of 0s in that gap. The common name for both
block and gap is run. We define the concept of length for runs.
There are k identical bits in a k-length run.

Defining randomness of a pseudo-random number sequence
(PRNS) two more concepts are needed. One is the period,
which is the length of the total PRNS. (That is 2n−1).

The other ones are the correlation index and the Autocor-
relation function AC(k) which is a single variable function,
where k is the measure of shift steps. Since th shift k is always
an integer, AC(k) is not continuous (though we generally map
it continuously). Using the concepts introduced above we can
define Golomb’s criteria of randomness as follows: A PRNS
is random-like if, and only if

(a) The 0s and 1s numbers in a period of the bit stream are
as well equal as it can be at all.

(b) The number of length l = 1 runs in a period must be
half of all runs. The number of length l = 2 runs in a

Fig. 1. The general concept of Linear Feedback Shift Register (LFSR).
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Fig. 2. General switching diagram of a Fibonacci LFSR.

period must be a quarter of all runs and so on; That is
the number of length l = i runs let be 1/2i;

(c) The value of autocorrelation function AC(k) let be the
same for each k, except k = 0 An additional condition
for that is that the period p must not be a divider of k,
but it exists automatically when k < p.

The measure of fulfillment of these Golomb [6] conditions
show how much a PRNS is random-like.[2].

III. THE LINEAR FEEDBACK SHIFT REGISTER

It may be stated that the most traditional electronic device
of realizing an n-bit PRN is an n-bit shift register with a
particular feedback. In fundamental cases the feedback is a
linear logic function, ie. it consist of linear logic operations
only, which are additions (OR and exclusive OR that is XOR.
Negation is also a linear operations). Note: There is no logic
multiplication among these linear logic operations, ie. AND
operation is prohibited. Fig. 1 shows that concept.[3][4]

Not all the taps must exist in a particular case. In a particular
state the (binary) content of the register is a particular PRN.
Let us denote the logic exclusive OR operation (which is
a modulo 2 addition) by a circle-plus symbol: and let that
symbol denote the logic gate as well which realizes that
operation. Such way the most generalized logic circuit of an
LFSR shown in Fig. 2.

The states of switches SW1, SW2 . . . SWn−1 determine which
cells of the register have effect on the feedback. In other
word which taps are active. The states of these switches
do not change in a specific application. The rightmost bit
always effects the feedback and at least one of the other
cells as well. In case of gate-type realization the XOR gates
are in serial connection in the feedback line. Consequently
their propagation delays are added together resulting a slower
operation of the entire device than it could operate in case of
having minimal number of XOR gates in the feedback line.
We should note, however that in case of modern computer
realization that slowing effect does not exist. Still we are
looking for realizations in which the number of XOR gates is
minimal. This type of LFSR has got simpler algebraic model
then other ones. All LFSRs whose circuit structure are the
same as Fig. 2 shows called Fibonacci type LFSRs. [5] [6]

IV. THE ALGEBRAIC MODEL OF A FINITE NUMBER SET
AND THAT OF AN LFSR

The algebraic model of the aforementioned finite number set
is a Galois field. All Galois fields contain pk elements where p
must be a prime number. It is also an attribute of any Galois

field that it contains one or more elements from which all
elements of that very field could be generated by a particular
algorithm discussed below. Such an element is a generator (or
primitive) element of the given set. The generation process use
a so called polynomial algebraic model as follows (1)

C(x) = α0x0 +α1x1 + · · · · · ·+αixi + · · · · · ·+αn−1xn−1, (1)

where αi takes its actual value from the two element set
{0,1} and x0 = 1.

A great practical advantage of this model that if we multiply
the polynomial by x all coefficients take one step to the right
which is a very convenient method of modeling the shift-
right operation. When the coefficient αn−1 steps to the right,
the register would overflow, but for the feedback αn−1 will
become α0 if the register is rotated as it is already shown
by Fig.1 and Fig.2. We have got the correct shifting model
if the multiplication of the polynomial by x is a modulo n
multiplication. That is modeling the direct feedback as well.
Consequently (2)

x ·αn−1xn−1 = αn−1x0, (2)

and in general (3)

xk ·αn−1xn−1 = αn−1xk⊕(n−1), (3)

where ⊕ symbol notate here a modulo n addition.
Note that the state of the register will not change if, and

only if its content all zero. Because of that fact that state is
excluded of all PRNG. The maximal number of all other states
can be 2n−1 and that maximum could be realized by choosing
an appropriate linear feedback.

V. THE SWITCHING POLYNOMIAL AND PRACTICAL
CONSIDERATIONS

The polynomial (1) is the switching polynomial of an n-
bit LFSR. Sometimes called characteristic polynomial as well.
This polynomial plays critical rule in generating maximal PRN
set and determining the feedback structure of LFSR for a given
number of n.

The LFSR could be modeled by the usual way of a
synchronous sequential machine (Mealy machine) as well, but
the polynomial algebraic modeling is more convenient in case
of LFSR. To generate a maximal length of PRN sequence the
form of the switching polynomial must be equal to a generator
polynomial of the Galois field that is the set of all PRN to be
generated. Theoretically any generator polynomial is suitable
for generating all 2n − 1 members of the maximal PRN set
(i.e. Galois field) but there are some practical considerations.
Some of them are as follows:

(a) Both αn−1 (i.e. the output of the n bit register) and α0
(i.e. input of the register) coefficients should be included
in the polynomial.



Fig. 3. Five bit Fibonacci LFSR.

(b) Beside those two coefficients at least one of the inter-
mediate coefficients αk should also be included. Conse-
quently a minimal characteristic polynomial must con-
tain as many as three members. It is not sure, however,
that such generator polynomial exists at all in case of a
particular length n.

(c) Each existing intermediate coefficient of a generator
polynomial determines one tap of the LFSR.

(d) The less number of taps the faster and more reliable
operation of the LFSR.

(e) If, and only if a particular n degree polynomial has got
more then one generator polynomial, it is advised to
choose the one that contains the less members (which is
three because of the aforementioned considerations).[7]

Then the general form of a recommended generator poly-
nomial is the following (4)

xn + xk +1, (4)

It is a rule of thumb applying such form of generator if
possible.

Note:
(a) Such form of a generator may not exist for every n.
(b) If it exists at all, deep algebraic considerations needed

to determine k. For practical cases one may get the
appropriate k from tablets. See for example. The same
book publishes a C program for generating primitive
polynomials as well [8].

(c) Generating maximal length PRNs the number of taps
must be even (incl. the output as one of the taps) and
the indices of the taps must be relative primes. In case
of one tap plus the output lcd(n,k) = 1.

(d) The generator polynomial determines the feedback
structure of the particular n-bit LFSR.

For demonstration purpose we show and analyze the follow-
ing 5-bit Fibonacci LFSR. The switching polynomial follows
(5)

1+ x3 + x5. (5)

Looking at Fig. 3 we should notice that the tap indices are
relative primes.[8]

Fig. 4. Representing the operation of an 8-bit Galois LFSR when the seed
is 00000001.

Fig. 5. Nonlinear PRN generator consisting three LFSR.

Just for curiosity we mention that not for all different n exist
3 member generation polynomial, but they may be generated
by more member polynomials. For example there are no 3
member polynomials for n = 12,13,14. In case of an n = 10
bit LFSR there are as many as 60 primitive polynomials, but
out of them only 2 have 3 members (when k = 3 or 7). It also
could attract some interest that the autocorrelation function is
not always as straight as it is in the above case.

The correcting medicine is to avoid linearity by applying
more than one LFSR and combining them by a logic function
f (in Fig. 5), which includes nonlinear logic operations,
namely logic multiplications (AND operation).

Even the step frequencies of the shift registers are not
necessarily equal to each other, but those frequencies must
have e a common divisor. The output step-frequency of this
arrangement, however, must be equal to that of the highest
step frequency register.[8]

VI. REALIZATION IN MICROCONTROLLER ENVIRONMENT

There are no miracles, everything what we want to do by
microcontroller is time-consuming. Handling of such claims
is a natural way by increasing the clock frequency and/or the
inner data bus width.

A typical application of embedded microcontrollers is in
addition to other functions which may be necessary to produce
a random number as well. We assume that the real-time
supervision on occasion, the generated random number used
for other purposes. Typically, such application is a control
of electronic unit, or electro-mechanical device, implement
authentication or encryptions occur.[9][10]

Every solution what in section III and V, we propose, typ-
ically a long-term application. If an eight bit microcontroller
(PIC16F788) has got 8MHz clock frequency, their instruction-
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Fig. 6. A main program and waiting subroutine with LFSR function.

time (ti) is 2,5µs. At an n long virtual shift register there
means at least (6);

ts = n · ti, (6)

where ts is the necessaries time for the total shifting. Of
course ts grown together with n, it can be very significant.
The optimal utilization of existing processor resources brings
two options, such as;

(a) Latent firmware application,
(b) utilization of hardware abilities of only any firmware

contribution of microcontroller.
These two methods can we reduce the microcontroller’s

resources, thus, the microcontroller is able to achieve better
control quality.

VII. LATENT FIRMWARE SOLUTION

The embedded microcontroller is often carried out during
the operation delays. NOP instructions by writing them re-
alizing it, often put in loop bodies. There is an opportunity
to ”blank instruction” replace the program lines in place

;------------Main Programm---------------

START
CLRF TRISD ;Configuration

;of microcontroller
BSF PORTD,7 ;Set of start value

Loop
NOP ;"Important" part
NOP ;of main program

CALL ALPHA
NOP ;"Important" part
NOP ;of main program

OTO LOOP

;-------------Subroutine-----------------
ALPHA
CLRF T1 ;Set of wait-time 1
CLRF T2 ;Set of wait-time 2

LABEL

RLF PORTD,0 ;Left shift in
;PORTD, result in W

XORWF PORTD,1 ;Ex-Or PORTD
;and register W

DECFSZ T1,F ;Decrement
GOTO LABEL ;of
DECFSZ T2,F ;cycle
GOTO LABEL ;variables
RETURN

;------------General END------------------
END

Fig. 7. Main program and the called waiting subroutine with rejected shifting.

to implement the desired LFSR function, with shifting and
feedback function too. Such a solution can be seen in the Fig.
6. In this case, a random number in a register, register array is
produced, which then can be read at the appropriate time.[14]

On the Fig. 7 is visible a random number generator algo-
rithm is placed on a waiting subroutine, in assembler language
of a popular eight bit Microchip c© microcontroller version.[12]

The proposed program coding process and algorithms, un-
fortunately only a circumstance to be solved. Very carefully
to make just such a program, and any change of timing in the
operation of the random generation process, the quality may
also be affected.[11]

On the Fig. 8 shown in a time functions of the micro-
controller outputs, with different triggering conditions of an
oscilloscope.

VIII. UTILIZATION OF HARDWARE ABILITIES

In the VII chapter we saw a solution, witch can effectively
optimize, at a certain application the workload of microcon-
troller during a random number generation.

The microcontroller’s internal peripherals being developed
in a way that most of the applications, the expected type of
waiting, delaying operation to be relieved of the core logic
of controllers. Thus, the available resources be used for other
applications.[13]



Fig. 8. Time diagram of a microcontroller’s parallel port at a random value

Fig. 9. Block diagram of COMPARE Module of PIC16F887 microcontroller.

In the microcontroller counter type peripheries (TIMER0,
TIMER1, TIMER2, CAPTURE) can be found to the serial-
parallel conversion is supported, with some parallel serial
conversion (also) are used (COMPARE, USART, SPI, I2C).
Fig. 9 shows block diagram of COMPARE module as a typical
serial output peripheries, on Fig. 10 seen block diagram of
TIMER1 module witch is a typical serial input peripheries.

On the Fig. 11 seen, the connection of the proposed method
by which a random number generator can be constructed by
suitably chosen micro-peripheries of the microcontroller.[17]

At the internal peripherals of microcontrollers are basically
two ways to communicate with the program, a polling process,
or a more efficient way the interrupt.

The suggested procedure based on the solution of a previous
section (IV). So the proposed random generator ’peripheries’
worked itself without program assistance. Main task of sort-
time interrupt subroutine is only a reading a parallel data
from output of serial-parallel peripheries (TIMER0 module)
and generate necessaries virtual feedback combination network
(Fig. 1, 2, and write back in parallel-serial device (COMPARE
module). Time-consumption during executed the interrupt sub-
routine is eliminated for the whole random generating.[15]
[16]

The Fig. 12 shows an excerpt of the generated random
number series.

µC

Firmware Routine
(Realised of
polynomial

feedbacking)

ΙΤSerial data

Serial Input of  µC  Peripheria
TIMER1 Modul of PIC

Serial Output of  µC  Peripheria
COMPARE Modul of CCP of PIC

Fig. 11. The practical structure of connected output of parallel-serial and
input of serial-parallel type peripheries. Software assistance is in between of
peripheries’s parallel site.

b79a2a1d6f34543ade68a875bcd152eb79a237
a4d6f34548ade21526b79a2a4e6f34549ede79
68a93cbcd1527a79a2a4f6f34548cd1527b00b
a2a4f6234549ec468a93d8ad1527b14a2a4ff6
62a493d8ae1527b15c2a4f62b8549ec572a9a2
3d8ae6527b15cea4f64573e93d8ae7e27b1515
cfc4f62b9fa9ec573f63d8ae7ec7b15cfe6c57
f68d8a1e7ed0b15cfda262b9fb46c573f68c8a
7ed1a1fb468573f68d124ae7ed1a65cfda34eb
fb469e73f68d3ee7edf89fb469f23f681d3e47
d311a7cafda34f94fb469f28f68d3e5a34f940
469f28268d13e506d1a7ca0ca34f941a469f28
68d3a0dc34f9411b869f28d3e506e4a7ca0dca
feb2a1d6f34543ade68a875bcd152eb79a2a4d
f34548ade21526b79a2a4e6f34549ede68a93c
cd1527a79a2a4f6f34548cd1527b09a2a4f623
549ec468a93d8ad1527b1442a493d8ae1527b1
c2a4f62b8549ec572a93d8ae6527bea4f64573
93d8ae7e27b15cfc4f62b9fa9ec573f63d8ae7
c7b15cfe6c573f68d8a1e7ed0b15cfda262b9f

Fig. 12. Part of generated binary noise in HEX format.

IX. CONCLUSION

This article summary and pointed out that a well-known sci-
entific approach of new way of today application necessaries.

We found unusual new application possibilities. We have
shown that a procedure for how to optimally adapted to an
existing environment, to a real device.

In the future work we will elaborate, and to test of random-
number generating application of other type of microcontroller
and their micro-peripheries.



Fig. 10. Block diagram of TIMR0 Module of PIC16F887 microcontroller.
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[13] Ádám, T., Amadou, K., Varga A.,Vásárhelyi, J. Active noise cancellation
strategies based on digital signal processing - an overview. Engineering
achievements across the global village. Radom : Printing House of
the Institute for Terotechnology, 2005. p. 305-312. (The International
Journal of Ingenium, ISSN 1363-514X ; 1-4.) International Conference
on CAD/CAM, Robotics, and Factories of the Future (21.) (2005)
(Krakow)

[14] Gy. Györök, L. Simon Programozható analóg áramkör megszakı́tásos
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