
Reconstruction of sub-wavelength
features and nano-positioning of gratings

using coherent Fourier scatterometry

Nitish Kumar,1,∗ Peter Petrik,1,2 Gopika K P Ramanandan,1 Omar El
Gawhary,1,3 Sarathi Roy,1 Silvania F Pereira,1 Wim M J Coene,4 and

H. Paul Urbach1

1Optics Research Group, Department of Imaging Physics, Faculty of Applied Sciences, Delft
University of Technology, Van der Waalsweg 8, 2628CH Delft, The Netherlands

2Research Centre for Natural Sciences, Institute for Technical Physicsand Materials Science,
Hungarian Academy of Sciences, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary
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Abstract: Optical scatterometry is the state of art optical inspection
technique for quality control in lithographic process. As such, any boost in
its performance carries very relevant potential in semiconductor industry.
Recently we have shown that coherent Fourier scatterometry (CFS) can lead
to a notably improved sensitivity in the reconstruction of the geometry of
printed gratings. In this work, we report on implementation of a CFS instru-
ment, which confirms the predicted performances. The system, although
currently operating at a relatively low numerical aperture (NA= 0.4)
and long wavelength (633 nm) allows already the reconstruction of the
grating parameters with nanometer accuracy, which is comparable to that
of AFM and SEM measurements on the same sample, used as reference
measurements. Additionally, 1 nm accuracy in lateral positioning has been
demonstrated, corresponding to 0.08% of the pitch of the grating used in
the actual experiment.
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1. Introduction

The demand for faster, smaller, lighter and, at the same time, high-data density electronic de-
vices sets stringent requirements for nanolithography, the science of writing small features into
a photo-sensitive resist layer on top of a silicon wafer [1]. Already forthe current 45 and 32 nm
technology nodes, the uniformity of the line-width or critical dimension (CD)over the wafer as
produced by lithographic scanners must be improved for an optimal yield and performance of
the electronic components. In order to obtain the intended line shapes and sizes, a reliable in-
line process control has to take place. This is achieved by printing specialtargets on the wafer,
typically gratings, which are successively measured in order to adjustdose, exposure time, over-
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lay/alignment and other relevant process parameters of the photo-lithographic machine [2, 3].
Currently, the metrology task of this process control is achieved by means ofIncoherent Optical
Scatterometry (IOS). In this technique, which is a very well established method for the inspec-
tion of periodic structures like gratings, an incoming beam is shone on the targetand the part of
the light which is scattered by it in reflection is measured in the farfield. Given somea priori
knowledge of the target, one can achieve high accuracies in the reconstructionof the shape of
the grating. The advantage over other competing inspection techniques, such as imaging, Scan-
ning Electron Microscopy (SEM) or Atomic Force Microscopy (AFM), is thatIOS is a very
fast technique which does not suffer from the Rayleigh diffraction limit, is easily integrable in a
lithographic machine, and can cope with the high throughputs of today’s scanners, in the order
of 200 wafers per hour.

The way nearfield techniques utilize coupling of probe and sample cannot be utilized in
production environment without decreasing the throughput. Rigorous farfield techniques are in
this sense a good alternative. However, such advantages also have a pricesince scatterometry
falls into the category of inverse problems in electromagnetism, which are known for being
severely ill-posed. Inverse problems occur in many other branches of science and technology
as well. Ill-posedness in this context means that the successful reconstruction of grating param-
eters from the farfield may not be possible, or may not be unique [4,5]. This implies that even a
very precise and accurate experimental farfield signal does not always provide enough informa-
tion content for reconstruction. It is the presence of somea priori information (as for example
an approximate grating structure) that enormously reduces the impact of the ill-posedeness and
makes scatterometry feasible in practice.

Many variations of the idea behind a scatterometer have emerged in thelast decades [6].
Some of the most widely used configurations are single incidence angle reflectometry, 2-Θ
scatterometry, spectroscopic ellipsometry, Fourier scatterometry, interferometric Fourier scat-
terometry,etc., [7–15] with a wide range of applications [16–20]. In an earlier paper, it has been
predicted theoretically how, and under which conditions, CFS can be more sensitive than the
classical IOS [21]. In this paper, we demonstrate the reconstruction of theparameters of a peri-
odic grating using Coherent Fourier Scatterometry (CFS), which represents a step towards the
further improvement of sensitivity of scatterometry in the sub-nanometerregime. Beside pro-
viding an accurate reconstruction of the grating’s parameters, CFS also carries the strong po-
tential of being used as subnanometer wafer alignment tool since the scattered signal is highly
sensitive to the grating position as well. Last, but not least, CFS withfocused spot is not limited
to measuring periodic structures but can be applied to analysis of multilayer structures, mate-
rial sciences, photonics industry, biosensing, detection of isolated structures and other forms of
non-contact metrology.

2. Simulation and experimental considerations

2.1. Coherent Fourier scatterometry

In CFS, light from a coherent source is focused on periodic structures (typically gratings) on the
wafer. The focused spot interacts with the grating and the farfield is recorded [22]. In this way,
the angular spectrum for all scattered waves is recorded at once for all incident plane waves
within the focused spot. In the event of overlapping reflected orders in the lens pupil, there is
interference between them and some phase information is also registered [23]. This is achieved
by scanning the grating by means of a tightly focused beam, which allows resolvingthe phase
information in practice. The number of scanning positions needed to resolve thephase depends
upon the number of overlapping orders in the pupil of the focusing lens. Since the technique
relies on the acquisition of the diffracted farfield, methods to model the interaction between
incident focused spot and the grating, which gives rise to such farfield, must be implemented.
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This task, called forward problem, is typically performed by means of a rigorous electromag-
netic solver for a set of geometrical and physical parameters of the grating (Fig. 1.) under the
predefined illumination conditions. In this way, the overall expected sensitivities of IOS and
CFS have been computed and compared [24,25].

2.2. Grating model and the illumination scheme

Let us consider an infinitely long one-dimensional grating with periodΛ, which is invariant
along they-axis as shown in Fig. 1. The geometrical shape of the grating is defined by the pa-
rameters midCD (width of the grating lines at half of the total height), heightand side wall angle
(SWA). An additional metrology parameter, which we call bias, is alsodefined here. Bias is the
measure of the grating displacement from its nominal position with respectto the illumination
spot. Defined in this way, such parameter directly provides information on the alignment of the
wafer which the grating has been printed on. The zero bias position can be chosenarbitrarily,
and in our case, we choose it at the position where the optical axis of the microscope objective
bisects the midCD (assuming a symmetrical grating profile). These parameters and the basic
principle of data acquisition in CFS are shown in Fig. 1.

Period

MidCD

Height

SWA

Bias=0

Bias=0

Incident  
field

Scattered 
fieldCCD Beam 

Splitter

Focusing 
lens

Translation of the grating

x

z
y

Fig. 1. Scheme of the CFS illumination, data acquisition system and the grating parameters.

A collimated light beam with a well-defined polarization state in the pupil of the lens is
focussed on the grating and the scattered light is collected and collimated by the same lens, and
detected by the CCD as illustrated in Fig. 1. Any change in the grating parameters results in a
nonlinear change of the reflected farfield. The total number of detected propagating diffracted
orders depends on the wavelength (λ ) of the incident light, the numerical aperture (NA) of the
lens and the period (Λ) of the grating. The amount of overlap between the diffracted orders in
the lens pupil is given by the overlap parameterF, defined as:

F =
λ

NA∗Λ
. (1)
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F<1 1<F<2 F>2
+1 +2-1-2 0 -1 +10 -1 +10

Fig. 2. Overlap between the diffracted orders depending upon the value of the overlap
parameterF. TheNA of the lens is marked with black circles.

As shown in Fig. 2, at the lens pupil, for 1< F < 2, there is an overlap between the 0th and
±1st orders of the grating but no overlap between the−1st and+1st order. ForF < 1, however,
there is an overlap between the higher diffracted orders, and forF > 2, there is no overlap
between the orders.

2.3. Grating fabrication

The periodic structure used in the experiment is an etched silicon grating. To fabricate the grat-
ing, a cleaned silicon wafer was spin-coated with e-beam sensitive resist polymethyl methacry-
late (PMMA). The grating pattern was written into the resist using electron beam lithography.
After development of the resist, the grating pattern was etched into the silicon wafer using a
reactive ion etching system (F1 Leybold Fluor ethna), with SF6 gas as the etchant. The remain-
ing resist layer was removed using dry oxygen plasma etch. The target parameters of grating
fabrication are pitch=1300 nm, midCD=560 nm, height=115 nm, and SWA=90 degrees.

2.4. Experimental setup
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P1

BS1
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(b)
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LED
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FIBER 
COUPLER

Computer

(a)

Fig. 3. Schematics of the experimental setup. (a) Ray diagram of the experimental scheme
(S1: He-Ne laser, FC: Fiber coupler, SMF: Single modefiber, LED: Light emitting diode,
BS: Beam splitter, P: Polarizer, L: lens, DP: Detector plane, BFP:Back focal plane, OP:
Object plane (grating), MO: Microscope objective, TS: Piezo-controlled translation stage).
(b) 3D illustration of the laboratory setup.

Figure 3 represents the schematics of the coherent Fourier scatterometer. Light from a He-
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Ne laser (λ = 633 nm) is coupled into afiber which is then divided into two arms by afiber
coupler (FC). SMF1 and SMF2 are the illumination and the alignment arm, respectively. Light
from SMF1 is collimated and polarized to provide a well-defined illumination of the sample
through the microscope objective (MO). The incident light is selected to be either in TE or TM
polarization configuration in the entrance pupil of the lens. The denomination TE(TM) here
refers to the incident electric (magnetic)field in the pupil being oriented parallel to the grooves
of the grating. The incident focused spot can be decomposed into plane waves withvarying
incident angles. The maximum angle of incidence is limited by the numerical apertureNA of
the microscope objective MO. In the actual experiment, we used an objectivewith NA= 0.4.
Each allowed incident angle contributes to the reflected diffraction orders which propagate
back through the MO to the CCD. The diameter of the collimated reflected beam is reduced by
a telescopic system, which images the back focal plane (BFP) of the MO ontothe CCD with
a demagnification of 2.5X tofit into the CCD area (1600× 1200 pixels, size of 3.75µm ×

3.75 µm per pixel). In the Fourier or back focal plane (BFP) there is an interference between
the reflected orders for the chosenF number (1< F < 2, see Fig. 2). The polarizer P2 in the
experimental setup can be used to detect a selected polarization at theCCD. SMF2 is used to
align the telescopic system. The red LED light source is only used to imagethe grating on the
CCD camera for alignment purposes during the preparation of the experiment. Components
BS2 and L6 are removed during data acquisition. The solid red line in the ray diagram of Fig.
3(a) is the data acquisition path and the black dotted paths are used only for alignment and
imaging. In the setup, the telescopic lenses L4 and L5 are used for data acquisition; and lens
L6, beam splitter BS2, and lenses L4 and L5 are used for alignment and imaging.

3. Results and discussion

3.1. Diffracted farfield intensity maps

Along with the acquisition of experimental data, scatterometry also requires an accurate mod-
elling of the interaction betweenfield and sample. We used the rigorous coupled wave analysis
(RCWA) as the rigorous solver to compute thefield diffracted by the grating [26–28]. In order
to make the simulations as faithful as possible, the measured amplitude and phase distribution
of the incidentfield is included in the RCWA simulations as well. The amplitude for the in-
coming beam is practically uniform (measured by CCD and SHS) and the phase in the entrance
pupil of the lens is measured with a Shack-Hartmann wavefront sensor (SHS)[29]. In Figs.
4(a) and (a′) the measured wavefronts for TE and TM polarizations on the lens pupil expressed
in units of wavelength of the incident light are shown. The farfield intensity maps for afixed
bias shown in Fig. 4 are the simulated and measured data obtained for a silicon etched grating
having an overlap parameterF = 1.2 (see Fig. 2) forNA= 0.4 at the wavelength of 633 nm.
Farfield intensity maps b, c and d (b′, c′ and d′) represent respectively the simulation, exper-
iment and the difference between them for best matchedfit for TE (TM) incident light on the
lens pupil and mixed output polarization (i.e., no polarizer is used in the detection path). In the
simulations, the measured wavefront with a Shack-Hartmann sensor (SHS) is used to compute
the diffracted farfield intensity maps. The camera has been tested for noise by measurements,
where each farfield intensity map is averaged over 10 frames. Also, we consider the measured
noise of the CCD camera as normally distributed with standard deviation given by measured
uncertainties ofσ = 1×10−3. While the energy in the diffracted order depends upon the grat-
ing parameters, the extent of overlap between the diffracted orders in the farfield is given by
the overlap parameterF.

It is to be noted that the sensitivity of grating parameters (change of the farfield maps) is dif-
ferent for TE and TM incident polarized light. In CFS,in the overlap region there is interference
between the grating orders and the phase change due to the shift of the grating canbe related to
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Fig. 4. Simulated and experimental farfield intensity maps for afixed bias value and the
difference between the simulation and experiments. Wavefront for TE (a) and TM (a′)
incident polarizations on the lens pupil. Farfield intensity maps b, c and d (b′, c′ and d′)
represent the simulation, experiment and the difference between them for bestmatchedfit
for TE (TM) incident light on the lens pupil and mixed output polarization. The diameter
of the pupil in a and a′ is 8 mm.

the change in farfield intensity maps for different bias values. The amount of phase shift in the
non-zero order due to translation distanceδx is given by

δφ =
2πmδx

Λ
, (2)

wherem is the order number of the reflected order.

3.2. Bias correlation

Wafer positioning is an important issue in the industrial manufacturing process. Being a phase
sensitive technique CFS introduces a change in the farfields with scanning position on the
grating. In the experiments, farfield intensity maps for consecutive scan positions (bias) of
20 nm difference were recorded over the length of several periods of the grating.The ability to
distinguish between the intensity maps defines the sensitivity to bias of the present experimental
setup. The degree of correlation ’r’ (correlation coefficient) is used as a measure to distinguish
experimental images:

r =
∑x ∑y

�
I re f
xy − Ī re f

�
(Ixy− Ī)

� �

∑x ∑y

�
I re f
xy − Ī re f

�2
��

∑x ∑y (Ixy− Ī)2
�
. (3)

Here,I re f andI (x andy are pixels) are the farfield intensities corresponding to the starting
bias position called reference and the other scanning positions.Ī re f andĪ are the corresponding
mean values forI re f and I . The correlation coefficient ′r ′ has values between−1 to 1. When
the intensity maps are completely correlated,r=1, while r=0 implies no correlation and there
is complete anti correlation between the intensity maps forr=-1. In Fig. 5, value of correlation
coefficient derived from the experimental farfield intensity maps is shown for bias values rang-
ing from 0 to 1.3µm (one period of the grating). Figure. 5(a) plots the correlation coefficients
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for scanning positions within one period of the grating. Figure 5(b) is the color labeladjusted
plot to highlight the sensitivity of bias.
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Fig. 5. Degree of correlation between experimental farfield intensity maps. (a) Correlation
coefficients for positions separated by 20 nm for bias values within one period of the grating
(b) The same as a), but only showing the range points where 0.9< r < 1.

From the above analysis of the experimental data, it is evident that CFSis highly sensitive to
grating position. However, for a symmetric grating, absolute positions may also be determined
regarding the symmetric position within a period of the grating (like the middleof the midCD,
for which the farfields are also symmetric). In CFS, nm and sub-nm positioning within a single
period of the grating can be reached in wafer alignment in semiconductor industry, also shown
in the reconstructed values (see Table 1 further in the text). This feature can also be used in
other application as in imprint technology.

3.3. Model based optimization

Solving the inverse problem of grating reconstruction with CFS amounts to the determination
of the values of the grating parameters for which the computed scattered farfield mapsfit best
the experimentally measured images. The grating parameters defined in Fig. 1 lie in certain
intervals obtained froma priori information and from the design specification of the grating.
Starting from the nominal values of the grating parameters, the deviation between the experi-
mental and simulated images are minimized, using a least square function(merit function) by
varying the grating parameters. The diffracted farfield of the grating depends on the known
experimental conditions and the unknown grating parameters. Leta denote the grating param-

eters andI (m)
i, j andI (s)i, j the measured and simulated farfield intensities at theith CCD pixel and

j th scan position. The merit function to be minimized is the difference between the simulated
and experimental farfield intensities summed over all the incident angles in the entrance pupil
and pixels over the detector. The merit function is thus given by

f (a) =
S

∑
j=1

1
N

N

∑
i=1

�
I (m)
i, j (a)− I (s)i, j (a)

�2
, (4)

whereS is the total number of scan positions andN is the total number of pixels at the detector
for a single farfield intensity map. We use a gradient-based non-linear optimization method to
minimize the merit function defined in Eqn. 4 [30]. It can be minimized using library search or
real time optimization methods [31]. In library search, several setsof far fields for approximate
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grating parameters lying in the defined intervals are computed. Subsequently, the set of grating
parameters for the minimal value of the merit function (Eqn. 4) is selected as the desired value
of the grating parameters. It is to be noted that the optimization algorithmfinds only the local
minima. Here we use a gradient based non-linear least squares real time optimization method
implemented in MATLAB. Asa priori information in optimization, the target parameters of
grating fabrication (listed in the text in section 2.3) are used. Figure 6 shows a set of simulated
and experimental farfields for bias values lying within a single period of the grating obtained
with TE incident light on the lens pupil and no polarizer at the detector for the grating parame-
ters corresponding to the minimized merit function. Consecutive farfields (numbered 1 to 12)
correspond to consecutive grating positions for a bias difference of 100 nm.

Simulations

1
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5

6

7

8

9
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11

12

Experiment

1

2

4

5
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7

8
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Fig. 6. Simulated and experimental farfield for TE incident polarization on the lens pupil
and no polarizer at the detector for the grating parameters corresponding to theminimized
merit function. The bias position is changed by 100 nm between consecutive farfields
(numbered 1 to 12).

3.4. Parameters reconstruction and discussion

The reconstructed grating parameters are listed in Table 1 (for all the grating parameters includ-
ing bias arefitted together in the optimization). The farfield intensities used for the reconstruc-
tion algorithm is a set of data such as shown in Fig. 6 but the incidentfields are TE and TM
polarized and no polarizer at the detector side. To verify the results, the grating was also meas-
ured by SEM and AFM. The SEM measurement was performed with a Hitachi S 400scanning
electron microscope at 4 kV with a magnification of 35000. The uncertainties of the CFS and
SEM were determined from repeated evaluations. In the case of the SEM, theuncertainty of
the measured midCD was determined from measurements at different parts ofthe image (so the
uncertainties are partly caused by line edge roughness). The bright edges of the grating lines
were the main cause of the uncertainties. This edge is clearly seen in Fig. 7(a). The uncertainty
of the height measurement with the AFM can be estimated using the histogram of Fig. 7(c). The
uncertainties are in the “few nanometers” range for all techniques. A low-uncertainty measure-
ment with AFM (without the 3D option) and SEM (without cutting the sample) is only possible
for height and CD, respectively. The 3−σ uncertainty in the grating parameters reconstruction
by means of CFS is lower compared to that obtained through SEM and AFM measurements. We
notice higher relative uncertainties in SWA reconstruction as compared to height and midCD
uncertainties, which are also reported by others [13].
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Fig. 7. (a) Top view of the SEM image. (b) AFM cross section in the directionperpendicular
to the grating lines. (c) Histogram of heights for each pixel of the AFM measurement.

Table 1. Comparative measurements of the grating parameters using different techniques.

Parameters CFS SEM AFM
MidCD (nm) 563±2 562±4 –
Height (nm) 116±1 – 116±3
SWA(◦) 89±3 – –
Bias (nm) 1190±1 – –

The results are compiled in table 1 forNA= 0.4 and atλ = 633 nm. Interestingly, the lateral
position of the grating can be retrieved with an accuracy at 1 nm level,which is an impressive
accuracy, considered the numerical aperture of the system and the wavelength used. Actually,
an accurate retrieval of the alignment parameter bias is a fundamental pre-requisite for CFS to
work. In fact, no reconstruction of the grating parameters would be possible withoutfirst de-
termining the relative position between incident spot and grating. We have also performed sim-
ulations studies, in order investigate to which level of accuracy the alignment can be obtained
through CFS measurements. We have found that, by using an incidentfield with λ = 250 nm,
NA= 0.95 and a grating with pitch 200 nm (all these values are very well representative of a
current state-of-the art industrial IOS) positioning accuracy at 10 pm level is attainable. Simula-
tion studies show that at such highNAand shorter wavelength the uncertainty in reconstruction
of the grating parameters can be further decreased as well. All these benefits can be attributed
to the phase sensitive signal, as forF < 2 CFS can be seen as a common path interferometer.

4. Conclusions

Grating reconstruction with coherent Fourier scatterometry (CFS) has been demonstrated. The
tool is capable of illuminating and measuring the response of the sample simultaneously over
a broad range of incident and reflected angles. The measurement for all radial and azimuthal
angles can be performed within one second. Due to the coherent illumination, the measuring
spot can be focused to a size smaller than one micron. Compared to incoherent scatterometry
the advantage of coherent Fourier scatterometry is that the measured response in the pupil plane
includes interference patterns caused by overlapping orders. The interference changes when the
spot is scanned perpendicularly to the grooves of the grating, and consequently the phase in-
formation contained in the overlapping orders can be determined accurately. The capabilities
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of the tool were demonstrated by reconstructing the parameters of grating with 1300 nm pitch
using a wavelength ofλ= 633 nm and an objective lens ofNA= 0.4. The reconstruction was
performed by non-linear least squares gradientfit of the grating parameters to minimize the dif-
ference between the measured and rigorously computed pupil images. The sensitivity of coher-
ent Fourier scatterometry was found to be comparable with the applied reference metrologies
(SEM and AFM). In addition, simulation studies show that positioning accuracy of the order of
10 picometer withNA= 0.95 andλ in the UV can be achieved. Finally, it is worth mentioning
that accurate nano-positioning in combination with the reconstruction shape parameters of the
grating can be done in a single tool which is not possible in conventional optical scatterometry.
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