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Benefits of tolerance in public goods games
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Leaving the joint enterprise when defection is unveiled is always a viable option to avoid being exploited.
Although loner strategy helps the population not to be trapped into the tragedy of the commons state, it could
offer only a modest income for nonparticipants. In this paper we demonstrate that showing some tolerance toward
defectors could not only save cooperation in harsh environments but in fact results in a surprisingly high average
payoff for group members in public goods games. Phase diagrams and the underlying spatial patterns reveal the
high complexity of evolving states where cyclic dominant strategies or two-strategy alliances can characterize
the final state of evolution. We identify microscopic mechanisms which are responsible for the superiority of
global solutions containing tolerant players. This phenomenon is robust and can be observed both in well-mixed
and in structured populations highlighting the importance of tolerance in our everyday life.
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I. INTRODUCTION

It is difficult to overestimate the importance of cooperation
among players who are motivated to search for maximal
individual income during their interactions with competitors
[1]. Although mutual cooperation would provide the optimal
income for the whole community, a higher payoff can
be reached individually by exploiting others. This conflict,
summarized in several social dilemmas [2], can be identified
as the key problem in a broad range of research fields [3–8].

Staying with a specific example, it is always disappointing
to realize when some of our partners defect in a working
group, which significantly lowers the income of cooperator
members. A natural reaction could be to punish the traitor, but
the institution of punishment raises further questions, which
sometimes just transfers the basic problem to another level
[9–14]. An alternative response from betrayed cooperators
could be to stop further cooperation and not to participate in the
joint venture anymore. Accordingly, cooperators may become
“loners” because the latter strategy can offer a modest, but
at least guaranteed, payoff to them. Previous works revealed
that the option of voluntary participation in common ventures
could be an effective way to avoid being exploited because it
introduces a cyclic dominance between competing strategies of
defectors, cooperators, and loners [15–17]. As a consequence,
the cooperator state can survive even in harsh conditions when
a low synergy factor would result in a full defector state in
a two-strategy system where participation in a public goods
game is compulsory. There is, however, a disappointing feature
of the new three-strategy solution. Namely, the average payoff
is unable to exceed the income of a loner’s strategy, hence
participating in a public goods game does not necessarily
provide an attractive option for competing players [15,18].

This failure suggests that perhaps it is not the best option for
cooperators to leave the group when defectors emerge because
by switching to a loner state they lose all benefits of mutual
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cooperation immediately. In this way the original dilemma
can be transformed into a new form where cooperator players
should decide how many defectors they tolerate in their group
before leaving the group for a modest but guaranteed payoff.

To explore this new dilemma we introduce a four-strategy
model of a public goods game in which besides the uncondi-
tional defector (D), cooperator (C), and loner (L) strategies
there is a so-called tolerant or mixed (M) strategy that behaves
as a cooperator as long as the number of defectors remains
below a threshold value in the group but it switches to a loner
state otherwise. By following this approach we can check the
viability of this mixed strategy and clarify if there is an optimal
level of tolerance which provides the highest income for the
whole population.

Beyond these fundamental questions there is an additional
aspect which makes the proposed model even more interesting.
On one hand, the coexistence of C, D, and L strategies is
based on the previously mentioned cyclic dominance between
competing strategies, which is a well identified general
mechanism to maintain diversity [19–25]. On the other hand,
by considering M players we introduce a strategy which is less
harmful to defectors because they may coexist. Intuitively, one
may expect that such intervention is beneficial to defection,
but, as we demonstrate in this paper, the opposite effect can be
observed.

The organization of this paper is as follows. We present the
definition of the model in the next section. Results obtained by
means of the replicator equation in well-mixed populations are
summarized in Sec. III, which is followed by the presentation
of Monte Carlo results obtained in structured populations.
Finally we conclude with an argument for broader validity
of our observations and a discussion of their implications in
Sec. IV.

II. PUBLIC GOODS GAME WITH TOLERANT PLAYERS

We consider a public goods game where the game is
played in groups of size G. Following the standard model
[15], each player is set as an unconditional cooperator (C),
an unconditional defector (D), or a loner (L). Whereas each
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cooperator contributes an amount c to the common pool,
defectors contribute nothing but exploit others’ efforts. Loners
do not participate in the joint enterprise, instead, they prefer
a moderate, but guaranteed, σ income. Beyond these well-
known strategies we consider an additional so-called mixed
(M) strategy. The latter players are principally cooperators
who contribute to the common pool but permanently monitor
the status of other players in the group at an additional cost of
γ . This extra knowledge allows them to realize if the level of
defection exceeds a certain level in the group. As a reaction,
they become loners and stop contributing to the common pool.
Designating then the number of unconditional cooperators,
defectors, and mixed players among the other G − 1 players in
the group as nC, nD , and nM , the payoff of the four competing
strategies are the following:

�D = r(nC + δnM )

nC + nD + 1 + δnM

, (1)

�C = r(nC + 1 + δnM )

nC + nD + 1 + δnM

− 1, (2)

�L = σ, (3)

�M = δ

[
r(nC + 1 + nM )

nC + nD + 1 + nM

− 1

]
+ (1 − δ)σ − γ. (4)

Here, according to the broadly accepted notation, r depicts
the synergy factor, characterizing the benefit of mutual
cooperation, whereas σ is the loner’s payoff. It should be
emphasized that the r > 1 synergy factor is applied only if
there are more than one contributor to the common pool,
otherwise r = 1 is used. In this way we can avoid an artificial
support of a lonely cooperator against loners and prevent single
individuals from playing a public goods game with themselves
[26]. Furthermore, without loss of generality, cooperators’
contribution to the common pool is considered to be c = 1
as Eqs. (2) and (4) indicate. Lastly, in close agreement with
previous works [15,18], the payoff of loners is chosen as
σ = 1, but we stress that using other values would not change
our main findings.

As we already noted, it is a fundamental point that an
M player uses a more sophisticated strategy by checking the
status of other players in the group. Accordingly, such a player
behaves as a loner and refuses participating in the public goods
game if the number of defectors reaches a critical H threshold
in the group. Otherwise, when the total number of defectors
is below the H threshold, M cooperates and contributes to
the common pool similar to unconditional cooperators. The
possible switch of a player’s status, or saying differently, the
adoption to change a neighborhood, can be handled technically
via a δ factor, which is δ = 0 if nD � H or δ = 1 if nD < H .

Formally, strategy L can be considered as a cost-free very
special mixed player who applies zero threshold, hence he
always avoids participating in a joint venture independent of
the strategies of other group members. In general, the value of
H characterizes the level of tolerance of M players. Namely,
the higher H is applied, the more defectors are accepted in
the group without refusing cooperation from M players. As an
extreme case, formally H = G denotes the situation when M

players remain in an unconditional cooperator state. Hence we
may say that the concept of tolerance builds a bridge between

loner and unconditionally cooperator behaviors. Close to
the latter end, H = G − 1 represents the case when an M

player seems to be almost “endlessly tolerant” and becomes
a loner only if all the others in the group are defectors, hence
cooperation becomes unambiguously pointless to him.

Evidently, the extra knowledge of M players needs addi-
tional effort from their side, which can be implemented via
an additional cost γ . This cost should always be considered,
no matter whether M plays a C or L strategy, as indicated in
Eq. (4). The presence of this permanent cost also means that
M players have no obvious advantage either over C or over L

strategies.
In the following we consider both well-mixed and struc-

tured populations.

III. RESULTS

A. Well-mixed populations

In a well-mixed system the fraction of C, D, L, and
M players can be denoted by x, y, z, and w, respectively.
Evidently, they are not independent but are normalized and
always fulfill the equation x + y + z + w = 1. Consequently,
the strategy evolution can be studied by using replicator
dynamics [27],

ẋ = x(PC − P ),

ẏ = y(PD − P ), (5)

ż = z(PL − P ),

where dots denote the derivatives with respect to time t . Here
the average payoff P for the whole population is given by

P = xPC + yPD + zPL + wPM, (6)

where Pi (i = C,D,L,M) designates the average payoff for
each strategy,

Pi =
∑

nC,nD,nL,nM

(G − 1)!

nC!nD!nL!nM !
xnC ynDznLwnM �i, (7)

where 0 � ni � G − 1 and
∑

ni = G − 1 are always ful-
filled.

For the sake of comparison with the case of a structured
population we suppose that players form groups of size
G = 5 randomly and consider the impact of different H =
1, . . . ,G − 1 threshold values of tolerance.

Our principal goal is to compare the results of a well-
mixed and spatially structured population, therefore we will
launch the evolution from a random initial state where all
competing strategies are present with equal weight. The
replicator dynamics, however, may depend sensitively on the
initial frequencies of strategies. This behavior is illustrated in
Fig. 1 where we have plotted two representative flow diagrams
in the unit simplex S4 at two branches of parameter values.

The top panel illustrates the case when the H = 2 threshold
value is applied at a significantly high γ cost of inspection
when the synergy factor is moderate. Here, as is already known
from a previous work [15], the w = 0 face contains a fix point
which is surrounded by periodic orbits. On the z = 0 face,
however, there is a stable limit circle which is the composition
of (D,C,M) strategies. Furthermore, a stable two-strategy fix
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FIG. 1. (Color online) Replicator dynamics on the boundary
faces of the simplex S4 using the G = 5 group size. Filled circles
represent stable fixed points whereas open circles represent unstable
fixed points. Parameter values are H = 2, r = 3.5, and γ = 0.6 for
panel (a), whereas H = 4, r = 3.8, and γ = 0.04 for panel (b). Flow
diagrams suggest that both (D,C,L) and (D,C,M) strategies can
form a rock-paper-scissors cycle, but the stable two-strategy (D,M)
phase also emerges in dependence on the initial fraction of strategies.

point can also be detected on the x = 0 face. In the bottom
panel, which was taken at the H = 4 threshold level, we
can observe that the (D,M) solution remains stable whereas
the rock-scissors-paper-type (D,C,M) solution disappears.
Naturally, the portrayal of replicator dynamics can also depend
on the applied r and γ parameters, but the presented plots are
representative in a broad interval of parameters.

In the following we focus on the evolution from a random
initial state where all strategies are present with equal weight,
but we scan the whole r-γ parameter plane. Interestingly,
when H = 1 then strategy M cannot survive at any finite
value of γ . Here, (D,C,L) strategies form the well-known
rock-scissors-paper-type solution in the 2 < r < 5 region [15].
At low γ values, however, M players may crowd out loners
first from a random state, which is followed by the extinction of
defectors. Finally, when M remains alone with unconditional
C players, M is defeated by the latter strategy. This time
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FIG. 2. (Color online) Full r-γ phase diagrams for the well-
mixed system in the case of the G = 5 group size. In panel (a)
H = 2 whereas in panel (b) the H = 4 threshold values are applied.
Solid lines represent continuous, whereas dashed lines indicate
discontinuous transitions between stable solutions. At moderate γ

values M players replace loners by forming a cyclic dominant
coexistence with C and D players. M players are more viable at
an intermediate threshold value. Interestingly, strategy M can form
a two-strategy alliance with D which can dominate the evolution at
specific parameter values.

evolution is similar to the “The Moor has done his duty, the
Moor may go” effect previously observed in a related model
where punishing strategies were studied [28]. Nevertheless, we
should emphasize that the only stable solution is the mentioned
three-strategy (D,C,L) state at H = 1.

By increasing the tolerance level, however, we can observe
new types of solutions. Namely, strategy M can replace L

players and forms another solution where D, C, and M players
dominate each other cyclically. As the top panel of Fig. 2
illustrates, this (D,C,M) state can be dominant even at a
significantly high γ cost if synergy factor r is high enough.
The latter condition, when mutual cooperation pays more, is
essential, otherwise the benefit of mutual cooperation could
not compensate the additional cost of strategy M .

The previously mentioned two-strategy solution can evolve
starting from a complete four-strategy initial state. Here D

and M players form a two-strategy alliance against other com-
peting strategies [29,30]. Note that unconditional cooperators
would beat strategy M in the absence of defectors, but the
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presence of latter players manifests the advantage of a mixed
strategy. This solution, as we emphasize in the subsequent
section, is of prime importance to understand why tolerance
emerges during an evolutionary process. Lastly, we briefly note
that there is a specific combination of D, L, and M players
which could prevail in the whole system, albeit at a very limited
parameter region.

Qualitatively similar behavior can be observed for other
H > 1 threshold values, too, but solutions containing mixed
players become less vital as we increase H . The bottom panel
of Fig. 2, obtained at H = 4, illustrates that the benefit of
mixed strategy is less likely at such a high tolerance level and
the area where strategy M survives on the γ -r parameter plane
shrinks significantly.

It is an important consequence that the introduction of
tolerance does not only result in the individual success of
strategy M , but also has a favorable impact on the general well
being of the whole population. This effect can be illustrated
nicely if we compare the average payoff values obtained at
different threshold levels. Figure 3 highlights that adopting
a nonzero but moderate tolerance towards defection could
elevate significantly the global income of players. As we
already noted, the usage of the minimal H = 1 tolerance level
does not allow M players to survive, hence the system becomes
equivalent to the well-known three-strategy model [15]. Here
the presence of L players can help to avoid the tragedy of
the common state [31], but the average payoff cannot exceed
the loners’ income that is σ = 1 in the present case. At a
higher tolerance threshold, the average income in the whole
population can increase significantly due to the presence of
tolerant players. This enhancement is particularly conspicuous
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FIG. 3. (Color online) Average payoffs in stable stationary states
in dependence of synergy factor r as obtained for different threshold
values of tolerance at γ = 0.04. Players are in a well-mixed
population where they form groups of size G = 5 randomly. For
comparison, we also show the maximum reachable average payoff
that can be obtained in the state, marked by a dashed gray line, where
all players are in unconditional cooperator states. Note that in the
case of H = 1 the stable solution is the traditional three-strategy state
when D, C, and L players form a cyclic dominant solution [15]. Here
the average payoff cannot exceed the loner’s σ = 1 income. By using
a bit higher tolerance level, however, a significant improvement can
be reached, which is comparable to the value obtained in an idealistic
(all C) state.

for H = 2. For comparison, the dashed gray line shows the
average income in the idealistic state when all players are in
an unconditional cooperator state. It suggests that the usage of
tolerant players could be especially efficient at low-r values
when cooperators would face a harsh environment otherwise.

B. Structured populations

Considering a structured population where players have
fixed neighborhood offers not just a more appropriate ap-
proach to some real-life situations, it often provides novel
and sometimes unexpected behaviors which are absent in
a well-mixed system [32–34]. To explore and clarify the
possible differences between emerging solutions we consider
a structured population where players are distributed on a
square graph and form groups with their nearest neighbors
(G = 5). It also means that a player is involved not only in the
game where it is a focal player, but also in the games of his
neighbors. Therefore a player may participate in G = 5 public
goods games, and the total payoff should be accumulated
accordingly.

During the strategy update protocol, we apply strategy
imitation based on pairwise comparison of competing strate-
gies [34]. Namely, a player x will adopt the strategy of a
neighboring player y with a probability,

�(�x − �y) = 1

1 + exp[(�x − �y)/K]
, (8)

where K is the noise parameter. Without loss of generality
we will use a representative K = 0.5 value, which ensures
that strategies of better-performing players are adopted almost
always by their neighbors, although adopting the strategy of a
player that performs worse is not impossible.

In an elementary step, we choose a player and his neighbor
randomly. If their strategies are different, then the strategy
imitation is executed with the probability defined by Eq. (8).
In a complete Monte Carlo step (MCS) every player has one
chance on average to update his strategy. To get reliable phase
diagrams, which are valid in the large system size limit, the
system size was chosen from 400 × 400 to 6400 × 6400, and
the relaxation time was between 20 000 and 100 000 MCS.
To further improve accuracy, the results of the stationary state
were averaged over ten independent realizations for each set
of parameter values.

We should stress that the evolution of strategies in a
structured population is highly independent of the initial state if
all competing strategies are present. The only critical condition
is the sufficiently large system size which prevents finite-size
effects and allows a stable solution to emerge somewhere in
a space from a random initial distribution. Later this solution
can invade the whole space and remains stable.

In our model there are three key parameters, namely, the
r, γ , and H threshold levels. To demonstrate their impacts
on the stable solutions we have presented the resulting phase
diagrams for the four possible threshold values in Fig. 4.

In general, as expected, strategy M always dies out if the
inspection cost is too large, and we get back the well-known
three-strategy (D,C,L) model. In this case unconditional co-
operators can survive above r � 2.19 due to cyclic dominance
and form a three-strategy (D,C,L) phase. If the synergy factor
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FIG. 4. (Color online) Full r-γ phase diagrams for the spatial public goods game where players are distributed on a square lattice forming a
G = 5 size of groups. Different H threshold values are indicated. Solid lines represent continuous, whereas dashed lines indicate discontinuous
transitions between stable solutions. The comparison of diagrams shows that a moderate tolerance, an intermediate threshold value of H , allows
M players to prevail even at a significantly high cost value.

is high enough and strategy C is capable to coexist with D due
to network reciprocity, then the previously mentioned cyclic
dominance is broken, which will result in the extinction of
strategy L. Consequently, a two-strategy (D,C) phase remains
where the fraction of defectors decreases gradually as we
increase r .

Significantly different behavior can be obtained if the extra
γ cost of M players is reasonably moderate. As a general
observation, which is partly against mean-field results, strategy
M becomes viable, but the composition of the stable solution
depends sensitively on the threshold value of tolerance. The
lowest nonzero H = 1 value represents a special case because
here M can only survive with D in the presence of C players.
Due to this low threshold an M player changes from the C

to the L state immediately when it recognizes the presence of
a defector in the group, hence the previous mentioned cyclic
dominance is established, but instead of the (D,C,L) cycle
the strategies M → D → C → M will form the stable three-
strategy solution. In other words, L is simply replaced by
M who takes the role of the former strategy. The advantage
of a three-strategy solution over the other state depends on
the average rotation speed between cyclic members: If the
invasion rate is faster, then it can stabilize a solution [30]. By
increasing r we may observe a reentrant transition between
(D,C,L) → (D,C,M) → (D,C,L) phases, which is again a
general behavior when the average invasion rates within a cycle
can be adjusted by varying a control parameter [35].

If we increase H and allow M players to tolerate the
presence of defectors further, then a new kind of solution
emerges, which was already observed in the well-mixed
system. In this case M can coexist with D without the presence
of a third party. As we will show later, this (D,M) solution
can be specially efficient to reach a state when a high average
payoff can be reached for the whole population. Besides the
mentioned two-strategy solution, there are parameter values
where all four competing strategies coexist, and there are some
specific cases when M crowds out unconditional C but stays
together with L in the presence of D. Here D and M players are
still capable of forming a two-strategy solution, but L players
can invade defectors. As a result, small L patches emerge
temporarily, but they are vulnerable against the invasion of
M players, who are capable of utilizing network reciprocity,
which closes the cycle.

Figure 4 highlights that the new kind of solution can also
emerge in a structured population. In particular, we can observe
a stable coexistence of four strategies (marked by DCML in
phase diagrams) which is absent in a well-mixed system. Such
a kind of coexistence of competing strategies is a general
feature of structured populations, which is a straightforward
consequence of the limited interactions of players [32].

The comparison of phase diagrams obtained for different
tolerance thresholds highlights that there is an optimal in-
termediate tolerance level which provides the best condition
for M players. In this case strategy M can survive even at a
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significantly high inspection cost. Note that an M player should
always bear this cost but has to invest also in the common pool
when it cooperates. At H = 2, for instance, M should pay
nearly double the cost of the unconditional C strategy, still, it
can crowd out both C and L strategies. On the other hand, such
a high “peak” is missing both at H = 1 and at H = 4, which
can be considered as extreme (too high or too low) threshold
values.

Based on the comparison of phase diagrams we can
conclude that neither too small nor too high tolerance will
help M players survive and they become extinct at relatively
small γ values. This observation agrees with our previous
experiences obtained for a well-mixed population. It is worth
stressing, however, that a tolerant strategy prevails more easily
in a structured population and M players can survive even at
extremely high additional cost γ .

In the following we provide an intuitive explanation why
tolerance can offer a viable way to handle defection. It
should be emphasized that the three-strategy (D,C,L) phase
is always a solution in the low-r region [15]. To understand
the superiority of the (D,M) phase we will start the evolution
from a special prepared initial state where both the cyclically
dominated phase and the stable coexistence of D and M

players could evolve calmly in a restricted area first. Panel (a)
of Fig. 5 illustrates the final result of these isolated evolutions.
After, we let the borders open, and the battle of solutions
starts. The elementary steps of this competition are identified
in panel (b), which is zoomed out for clarity. In this snapshot we
can distinguish three different cases of how the three-strategy
solution meets with the external two-strategy (D,M) phase.
If a C domain, marked by dark blue, is at the frontier, then
unconditional cooperators start spreading in the sea of M .
[These invasions are marked by “I” in panel (b).] The success
of C, however, is temporary because defectors, marked by
red, will follow them and gradually invade the invaders. [This
stage is marked by “II” in panel (b).] After, when D players
remain alone with M players then the latter (marked by light
blue) will regulate defectors and lower their concentration
to a minimal level. The second option of how competing
solutions meet is when a D spot from the (D,C,L) phase
meets with the external (D,M) phase. [This is marked by “III”
in panel (b).] In this case the previously described “regulation”
process starts immediately, which will decrease the area of the
(D,C,L) phase. Finally, when an L domain (marked by green)
is at the interface then it will shrink immediately because M

is able to utilize the positive impact of network reciprocity.
(This process is marked by “IV” in the panel.) Altogether, the
three elementary processes will reduce the area of the middle
zone. As the total area of the three-strategy phase shrinks, it
becomes more vulnerable against an external invasion because
the local oscillations of (D,C,L) strategies are significant in
small patches. (Note that in the middle zone L’s would only
survive if defectors feed them due to the cyclic dominance.)
Consequently, when the width of the middle zone becomes
comparable to the typical size of patches then the three-strategy
phase can be easily trapped into a homogeneous state. This
stage is illustrated in panel (c) in Fig. 5. After, independent
of which strategy is present at the frontier, the phase becomes
an easy prey for the two-strategy (D,M) phase. Finally this
solution will invade the whole system (not shown). We stress

FIG. 5. (Color online) The competition of two possible solutions
at r = 2.7, γ = 0.15 using H = 2 on a 200 × 200 square lattice. De-
fectors are denoted by red (middle gray), unconditional cooperators
are denoted by dark blue (dark gray), tolerant players are denoted
by light blue (light gray), whereas loners are denoted by a green
color (dotted lighted gray) as indicated by the legend on the top. At
the specific parameter values both the cyclic dominant (D,C,L) and
two-strategy (D,M) phases could be possible solutions. Panel (a)
illustrates a prepared initial state where a cyclic dominant solution
is embraced by the other stable solution. In panel (b) we opened the
borders and allowed solutions to compete for space. Eventually the
(D,M) solution crowds out the other phase as is illustrated in panel
(c), and finally the two-strategy phase prevails (not shown). Panel
(d) shows the enlarged part of panel (b) to illustrate the microscopic
mechanisms that are responsible for the successful invasion of the
(D,M) solution. Further details are given in the main text. Snapshots
were taken at 0, 70, 210 MCSs.

again that the system will terminate into the same state if we
start the evolution from a random state independent of the
initial fractions of strategies.

In agreement with the well-mixed case, the application of
a moderate tolerance level does not only help strategy M to
survive, but it also has a useful impact on the average payoff of
the whole population. This observation is specially important
because a previous work highlighted that the introduction of
loner strategy is unable to solve the original problem of the
public goods game and the average payoff cannot exceed the
income of the loner’s strategy [15]. Therefore, to participate
in the joint venture is not an attractive option for loners.
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FIG. 6. (Color online) Average payoff in dependence of a syn-
ergy factor using different thresholds of tolerance when G = 5. The
cost of inspection is γ = 0.04 for all cases. For comparison, the result
of the traditional three-strategy model is also plotted where only pure
D, C, and L players are present. The highest collective payoff is
marked by the dashed gray line which can only be reached in the
idealistic case if all players cooperate unconditionally in the group.

The concept of tolerance, however, can resolve this
dilemma. Figure 6 illustrates the average payoff in dependence
of a synergy factor for different threshold values of tolerance
at a reasonable cost of inspection. (Note that qualitatively
similar behavior can be obtained for higher cost values.) For
comparison, the average payoff is also plotted in the traditional
model where only the pure (D,C,L) strategies are present.
In the latter case the growth of the general payoff is being
hindered by the presence of strategy L no matter how we apply
higher r . The average income of players can only increase
significantly when loners die out. In the latter case, when r is
high enough, the network reciprocity can lower the fraction
of defectors efficiently which will be followed by the general
rise in payoff. To evaluate properly the payoff values due to
tolerance we have also plotted the highest collective payoff
value (marked by the dashed gray line) which can be obtained
only if all players cooperate unconditionally in the group.
Figure 6 shows that the system can be very close to this
idealistic state even if M players have to bear an extra cost.
In agreement with our previous observation in well-mixed
systems, this effect is the strongest at low-r values where
cooperation would be unlikely otherwise. This feature suggests
that the application of tolerance becomes extremely useful
when the other cooperator supporting mechanism, based on
network reciprocity, becomes fragile.

Rather counterintuitively, the concept of tolerance of
defection is capable of minimizing the occurrence of defectors.
This effect is illustrated in Fig. 7 where we have plotted the
fraction of defectors for the cases when the appropriately
chosen tolerance level can result in a notably high average
payoff. For comparison, we have also plotted the level of
defection in the reference three-strategy (C,D,L) model. As
the plot shows, we can reach only limited impact on reducing
defection by applying unconditional loners. The latter strategy
gives a too “drastic” response to defection and cannot utilize
the positive effect of network reciprocity. Tolerant players,
however, use both sides of the coin: Punish defectors by
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FIG. 7. (Color online) The fraction of defector players in de-
pendence of a synergy factor for those threshold values where the
application of tolerance is capable of suppressing the vitality of
defectors. For both cases γ = 0.04 was applied as for Fig. 6. For
comparison, the fraction of defectors is also plotted when only
unconditional L and C strategies fight against defection. Note that
defectors could only grow notably when strategy M dies out.

switching to the loner state if it is inevitable, but remain a
cooperator until the last chance. Consequently, they can reach
a competitive payoff, which could also be attractive for other
players that will reduce the defection level implicitly.

The clear advantage of an intermediate tolerance level
can be illustrated nicely if we apply larger groups where
even more different H threshold values are available. Larger
groups can be easily formed if we extend the interaction
range from the von Neumann to the Moore neighborhood
where players are arranged into G = 9 group sizes with
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FIG. 8. (Color online) Average payoff in dependence of the
threshold value of tolerance for different synergy factors when a
Moore neighborhood is applied. The inset shows the payoff values
for a well-mixed case where the same G = 9 group size is considered.
For both topologies we used the fixed γ = 0.1 inspection cost. The
applied synergy factors are r = 2.5,3,3.5,4,4.5, and 5 from bottom
to top. Note that H = 0 corresponds to the three-strategy (D,C,L)
model where M players are unable to survive. Because of discrete
values of H , the dashed lines are just guides to the eye. (The error
bars are smaller than the symbol sizes.)
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their nearest and next-nearest neighbors. For comparison, in
Fig. 8 we have also plotted the related payoff values for a
well-mixed system where the same group size was applied.
These plots demonstrate clearly that having tolerant players in
the population is beneficial to the whole society. Furthermore,
in a spatial system where bonds are limited and are maintained
for a long time, even a higher tolerance threshold could be the
best compromise which provides the highest average payoff
for players at some parameter values. Naturally, this effect can
be even more pronounced for larger group sizes which are
typical for human systems [36–38].

IV. SUMMARY AND CONCLUSION

It is our everyday experience that tolerance embraces
us whereas the absence of it has serious consequences on
the whole community. Our simple model can provide an
intuitive explanation for its evolutionary origin: Albeit it
might be costly, but it pays to monitor our neighborhood
and react on how the cooperation level changes around us.
Even if we recognize some defection in our group we should
show tolerance towards it because by quitting out from the
joint venture we would lose the possible benefit of mutual
cooperation. But, of course, we should not be tolerant endlessly
because such an attitude takes the system back to the original
version of the dilemma where uncontrolled defectors can
exploit unconditional cooperators easily. Instead, a delicately
adjusted threshold of tolerance can utilize the advantage of
both the unconditional cooperator and the loner strategies.
Namely, a moderate tolerance threshold helps to utilize the
synergy impact of mutual cooperation, but it can also keep
defection at a bearable level, which altogether can provide a
reasonable welfare for the whole community.

It is worth stressing that unconditional cooperator strategy
does not necessarily represent a “naive” approach from
players. There can be those who are generally generous
towards others but do not want to invest extra effort to inspect
others’ acts continuously. Being tolerant, however, involves
not only just a forgiving approach towards others, but also
assumes a permanent monitoring of the neighborhood.

It has been studied intensively how players can avoid being
exploited in social dilemmas. One option could be to break
adverse ties or leaving an unsatisfactory neighborhood and
build new connections on social networks [39–46]. These
works focused on the evolving interaction graph and concluded
that emerging local homogeneities have a decisive importance
on the evolution of cooperation. Indeed, focusing on the simi-
larity of partners or tag-based support is a well-known mech-
anism, which could provide a clear advantage for cooperation

[47–50]. But some tolerance, according to the present study,
might be beneficial, which has crucial importance especially
when the average group size in a community is considerably
large.

Our paper underlines that the positive impact of tolerance
is robust and can be observed both in well-mixed and in struc-
tured populations. The effect, however, is more pronounced
in a spatial system because network reciprocity augments the
basic mechanism. The supporting influence of spatiality could
explain the widespread emergence of tolerant behavior [51].

One may claim that strategy M is conceptually similar
to a tit-for-tat strategy [12,52–54]. Indeed, there is some
similarity because M players can behave differently in dif-
ferent situations, but the concept of tolerance offers a more
sophisticated reaction that is more beneficial to the whole
community. Our last figure illustrates that the best response
to varying conditions could be different, and sometimes more,
sometimes less tolerance provides higher average income,
hence a simple reactive strategy would be too rude to
respond adequately, especially in the case when multipoint
or group interaction is considered [55]. A logically similar
approach could be the possibility of conditional cooperation
or conditional participation in joint efforts [56–59], but the
present paper reveals the significant role of additional cost,
which was partly ignored in previous works.

Being tolerant to a certain point can also be considered
as a threshold game where there is a nonlinear relation
between the benefit of the whole group and the proportion
of cooperators [60–63]. Our model, however, is conceptually
closer to conditional strategies where the decision is made on
a personal level which provides an optimal choice not only for
an individual, but also for the whole community.

Lastly, we note that several pioneering works demonstrated
the utility of punishment but also highlighted its side effects
[64,65]. Namely, it could be effective to control defection, but
simultaneously, the usage of punishment may lower the income
of both punisher players and those who are punished. On the
other hand, reward has a cooperation supporting impact, but
it also requires an additional source (of reward) to apply it
[66–71]. The presently discussed mechanism, however, offers
a simple, but still effective, way on how we can tame defection
without losing well being.
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