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 2 

AbstractAbstractAbstractAbstract    

In drug targeting NGR-peptides recognized by CD13 receptors on tumor neovasculature have 

got improved interest. Here we present the synthesis and structure analysis of novel thioether 

linked cyclic NGR-peptides. We found that chemo-stability (resistance against spontaneous 

decomposition forming isoAsp and Asp derivatives) strongly depends both on sample 

handling conditions and structural properties. Significant correlation was found between 

chemo-stability and structural measures: e.g. NHGly…COAsn-sc distances. Side chain 

orientation of Asn is the key determining factor, if turned away from HNGly chemo-stability 

increases. Structure stabilizing factors (e.g. H-bond(s)) lower their internal dynamics and thus 

macromolecules become even more resistant against spontaneous decomposition. Effect of 

cyclic NGR-peptides on cell adhesion was examined on A2058 melanoma cell lines. It was 

found that some of them gradually increased the cell adhesion with long term characteristics 

indicating the time-dependent formation of integrin binding isoAsp derivatives, responsible 

for the adhesion inducing effect. 
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 3 

INTRODUCTION 

Attention turned to NGR (Asn-Gly-Arg) peptides when non-RGD (Arg-Gly-Asp) integrin 

binding motifs were searched via phage display libraries.1,2 NGR motif was the most frequent 

one among them that shows integrin binding propensities. NGR sequence containing peptides 

were also selected as tumor vasculature homing peptides from in vivo phage-display screening 

assay on human breast carcinoma xenografts bearing nude mice.3 However, this study also 

indicated that the cyclic ACDCRGDCFC peptide (RGD-4C containing 1-4 and 2-3 disulfide 

bridge isomer) did not compete with the CNGRC (NGR-2C) cyclic peptide in tumor-homing 

properties and vice versa. Later, aminopeptidase-N (APN or CD13) was recognized as the 

receptor that binds NGR-peptides.4 CD13, a membrane-bound metallopeptidase, is not (or 

barely) expressed on endothelium of normal blood vessels but it is up-regulated in angiogenic 

blood vessels and has multiple functions (e.g. protein degradation, cell proliferation, cell 

migration, angiogenesis).4–6 Furthermore, CD13 is also expressed by various cell types (e.g. 

liver, prostate, kidney) in healthy individuals. However, it was indicated by the aid of 

different anti-CD13 monoclonal antibodies that the immunoreactivity of CD13 containing 

tumor and normal endothelia cell lines are markedly different.5,7 This might originate from 

different glycosylation pattern and/or receptor isoform conformations. This observation 

makes CD13 a suitable target molecule for specific targeted delivery of drugs and 

nanoparticles to tumor neovasculature, using NGR-peptides as a homing motif.8,9 

It is well known, that Asn deamidation through succinimide ring formation can easily 

occur, especially if Asn is followed by Gly on its C-terminus.10,11 This non-enzymatic intra-

molecular reaction finally leads to the formation of isoaspartyl (isoAsp) and aspartyl (Asp) 

containing peptides of about 3:1 ratio, and depends on pH, temperature, solvent dielectric 

constant, primary sequence and secondary structural motives. This modification causes 

difficulties on in vitro and in vivo biological data interpretation as well as on NGR-peptide 

Page 3 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4 

formulation.12 Furthermore, this non-enzymatic post-translational modification could be 

responsible for the integrin binding properties of NGR sequence containing peptides and 

proteins. It was shown that cyclic and linear peptides with isoAsp-Gly-Arg sequence can bind 

to αvβ3, αvβ5, αvβ6, αvβ8 and α5β1 integrins while peptides with Asp-Gly-Arg sequence not.13 

Therefore, stability studies of linear and cyclic NGR-peptides used as tumor-homing motives 

are crucial before developing such drug delivery systems.  

There are several publications that present the deamidation of NGR-peptides under 

different circumstances. The main results are summarized as follows. i) Deamidation proceeds 

via deprotonation of the peptide bond (at pH > 5.0) located at the C-terminal side of Asn. ii) 

The subsequent nucleophilic attack on the CO of Asn side chain leads to a succinimid ring 

formation (Asu), stabilized afterwards by the elimination of NH3. iii) The relatively unstable 

Asu-peptide can hydrolyze resulting in an ensemble of isoAsp and Asp containing peptides, 

easy to characterize by MS (+1 Da compared to that of the Asn derivative). iv) As the initial 

step of ring closure is a deprotonation, pH increase elevates deamidation rate.14 Interestingly, 

deamidation is more pronounced in buffer solutions even at around neutral pH than it is in 

water.12,13,15 In a liophylized form or in pure water at low temperature deamidation rate is 

insignificantly low.13 However, at elevated temperature or in buffer rate increases 

considerably.10,12 This rearrangement is lower in proteins if NGR is located in a buried and 

highly structured part (α-helical or β-turn) of the polypeptide chain.16,17 However, the very 

same reaction is faster (~30-fold) if Asn of NGR is located at the (i+1) but not in the (i+2) 

position of a β-turn.18 Capasso et al. demonstrated that if Lys residue is preceding NG, then it 

further increases deamidation rate, especially in cyclic peptides e.g. Ac-c[CKNGQTNC]-NH2 

independent whether the side chain of Lys is acetylated or not.19 Plesniak et al. investigated 

the Pro containing c[CPNGRC] hexapepide20 and found that at higher pH and temperature 
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 5 

(pH 8.5, 37°C) within 2 h a significant deamidation is observed. Interestingly, the latter cyclic 

hexapeptide have 30 times higher binding affinity to CD13 with respect to c[CNGRC].  

A few of the linear and cyclic NGR-peptides were used for ligand-directed delivery of 

various drugs and particles to tumor vessels, an attempt to increase their antitumor activity.7 

Cyclic and/or linear peptides containing either the c[CNGRC] or the GNGRG motives were 

described as appropriate target ligands in delivery of tumor necrosis factor alpha (TNF-

α),5,21,22 interferon gamma (IFNγ),23-25 liposomal doxorubicin26,27 and Pt-complex28,29 as well 

as radio metal isotope labeled derivatives for PET and SPECT.30,31 By comparing c[CNGRC] 

and GNGRG, a cyclic and a linear peptide, not only the higher CD13 binding affinity of 

cyclic variant was detected but also its increased stability in PBS solution (half-lives were 6-8 

h and 3-4 h, respectively at pH 7.3, 37°C) and in serum (5 h and 3 h, respectively) was 

measured.13 However, chemo-stability of NGR-peptides under relevant biological conditions 

is not studied.  

Efficient development of disulfide bridge containing cyclic NGR (e.g. c[CNGRC]) 

peptides on the surfaces of liposomes or other nanoparticles used for drug targeting is not an 

easy task. Therefore, to date mainly less chemo-stable linear NGR-peptides were used for 

active targeting of anticancer drugs encapsulated by nanoparticles.32 Negussie et al. 

successfully developed a head-to-side chain cyclic NGR-peptide.33 In the c[KNGRE]-NH2 

peptide the α-amino group of the N-terminus and the side chain carboxyl group of Glu were 

attached by using on resin cyclization. The resulted ring size of the 17-atom-containing 

macrocycle is identical to that of c[CNGRC] with disulfide bond. Their goal was to 

investigate an NGR homing motif with increased stability for delivery of free or liposome 

encapsulated drugs. In this way, the formation of disulfide bonds between the adjacent 

peptides on the liposome surface rendering the ligand ineffective could be avoided.34 The free 

ε-amino group of Lys was used for the attachment of Oregon Green fluorescent label or the 
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 6 

liposome that did not influence the binding to CD13. The c[KNGRE]-NH2 ligand displayed 

3.6-fold higher affinity for CD13 positive cancer cells than the linear KNGRG did. However, 

the deamidation of these analogs were not studied in this experiment.  

Since the intact cyclic NGR-peptides could bind to CD13, deamidation resulting in 

isoaspartyl (isoAsp) metabolite might restrict the application of the cyclic NGR-peptides as 

successful tumor-homing moieties. Nevertheless, the formed isoAsp derivatives could be 

responsible for integrin binding, which integrins are also over-expressed in several types of 

tumors.35 Therefore, appropriate cyclic NGR-peptide conjugates might be dual acting 

derivatives through both CD13 and integrin receptors.36 

In our previous study, it was indicated that the enzymatic stability of cyclic epitope 

peptide could be increased when thioether linkage was used instead of amide- or disulfide 

bond.37 Furthermore chloroacetylated peptides with orthogonal protecting groups on two 

cysteines are suitable for cyclization and conjugation to a carrier via thioether bond formation 

in both cases.38 

In accordance with the observations described above, in this study our aim was a) to 

develop novel thioether linked cyclic NGR-peptides of different ring size (15-18 atoms of the 

cycle); b) to study the structure – stability (rate of deamidation) relationship of these 

compounds; c) to verify the rearrangement of NGR to isoDGR by measurement of the time 

dependent effect on cell adhesion of A2058 melanoma cell line as an essential functional 

index of integrin receptor mediated tumor targeting; and d) to compare the data with the 

results of cyclic Ac-c[CNGRC]-NH2 and c[KNGRE]-NH2 derivatives known from the 

literature.  
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 7 

RESULTS 

Synthesis of the cyclic NGR-peptides 

Cyclic NGR-peptides with amide-, disulfide- and thioether bond were synthesized by 

development of the precursor linear peptides on Rink-Amide MBHA resin with standard 

Fmoc/tBu strategy. Cyclization was carried out in solution. i) Preparation of cyclic peptide 

comprising an amide bond a Glu derivative was introduced to the C-terminus of the NGR 

sequence and a Boc-Lys(ClZ)-OH amino acid derivative was attached to its N-terminus. The 

standard TFA cleavage resulted in semi-protected H-Lys(ClZ)-Asn-Gly-Arg-Glu-NH2, which 

was subsequently cyclized: the amide bond is formed between the N-terminus and the side 

chain of Glu by using BOP/HOBt coupling reagents. Finally, the ClZ protecting group was 

removed using liquid HF before HPLC purification of c[KNGRE]-NH2 (1). ii) The cyclic 

NGR-peptide (Ac-c[CNGRC]-NH2 (2)) bridged with a disulfide bond designed by placing 

two Cys at both ends of -NGR- and subsequently acetylated at its N-terminus. The disulfide 

bridge was formed either by using a Trt SH-protecting group for Cys, residues removed by 

TFA, cyclized at slightly alkaline conditions (0.1 M Tris buffer at pH 8.1 for 24 h or 48 h), or 

by using Acm SH-protection for cysteines, completed with a cyclization in TFA in the 

presence of Tl(tfa)3. Deamidation and isoAsp-containing peptide formation were observed 

under alkaline conditions; the longer reaction time resulted in higher yield of isoAsp 

containing peptide. On the contrary, under acidic condition no deamidation of Asn was 

observed, resulting in the highest yield of compound 2. iii) Cyclic NGR-peptides with 

thioether linkage of cysteine were made by putting a Cys at the C-terminus of the NGR 

sequence, while its N-terminus was modified with α- or β-haloacyl group. Chloroacetylated 

XNGRC peptides (X = Ø, Lys or Pro) were cyclized in 0.1 M Tris buffer (pH 8.1): reaction 

was fast (completed within 3 h) at a good yield. Only a moderate deamidation was detected 

during these reaction conditions yielding compounds 3-5 (c[CH2CO-XNGRC]-NH2: X = Ø 
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 8 

(3), Lys (4) or Pro (5)). Unlike the above two cyclic compounds (1 and 2), both having in total 

17, compound 3 contains 15, while 4 and 5 18 atoms within the macrocycle, respectively. iv) 

A “methylene elongated” derivative of 3 (c[CH2CH2CO-NGRC]-NH2 (6)) was designed to 

contain 16 atoms within the macrocycle, closing the NGR subunit within a ring. The reaction 

of the protected parent NGRC peptide on the solid support with β-halopropionic acid (chloro- 

or bromo-) did not give complete blocking of the N-terminal NH2-group. Since cyclization of 

the chloroacylated derivative was slow, meanwhile a significant ratio of the product converted 

into isoAsp-containing derivative. The latter side reaction was less pronounced for the 

bromoacylated derivative, as cyclization was completed within less than 3 h and thus, 

compound was not exposed to alkaline condition for such a long time. v) Finally, as N-

terminal chloroacetylation of the parent linear peptide was straightforward than the 

attachment of β-halopropionyl group, the thioether bond formation was achieved as follows. 

A homoCys was incorporated to the C-terminus of the NGR parent peptide and its N-terminus 

was chloroacetylated and cyclization was completed in 3 h (0.1 M Tris buffer, pH 8.1). The 

c[CH2CO-NGRhC]-NH2 (7) containing 16-atom-cycle was synthesized with a much better 

yield (37.9 %) than by using the previous strategy via the bromopropionylated precursor for 

preparation of compound 6 (17.1 %). (Note that the application of γ-bromobutiric acid for the 

formation of the 17-membered ring closed by a thioether bond was unsuccessful.) The 

characteristics of the cyclic peptides are summarized in Table 1 and the HPLC 

chromatograms and mass spectra of the purified cyclic peptides are presented in the 

Supporting Information (Figure S1). 
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 9 

Table 1. Characteristic analytical information of the cyclic NGR-peptidesa 

Compounds Yield (%) Rt (min)b Mwcalc
c Mwfound

d 

c[KNGRE]-NH2 (1) 46.2 12.0 583.3 583.4 

Ac-c[CNGRC]-NH2 (2) 45.3  

(36.1, 19.7)e  

15.8 590.2 590.4 

c[CH2CO-NGRC]-NH2 (3) 59.1 13.2 487.2 487.4 

c[CH2CO-KNGRC]-NH2 (4) 62.3 12.7 615.4 615.8 

c[CH2CO-PNGRC]-NH2 (5) 59.4 15.3 584.2 584.4 

c[CH2CH2CO-NGRC]-NH2 (6) 17.1 (7.0)f 13.0 501.2 501.3 

c[CH2CO-NGRhC]-NH2 (7) 37.9 13.3 501.2 501.3 
aChromatograms and spectra can be found in Supporting Information. bHPLC column: Phenomenex Luna (250 

mm x 4.6 mm) with 5µ silica (100Å pore size); Eluents: 0.1% TFA/water (A), 0.1% TFA/CH3CN-water (80:20, 

v/v) (B); Gradient: 0 min 0% B, 5 min 0% B, 50 min 90% B; Flow rate: 1 mL/min; Detection: 214 nm. 

cMonoisotopic mass. dESI-MS: Bruker Daltonics Esquire 3000+ ion trap mass spectrometer. eTotal yields in 

case of the cyclization with Tl(tfa)3 or by air oxidation for 24 h or 48 h (in brackets). fTotal yields in case of 

cyclization from bromo- or chloro- (in brackets) derivatives of precursor peptide.  

 

Chemo-stability of cyclic NGR-peptides  

Stability of the cyclic NGR-peptides was conducted under three different conditions, namely 

i) their liophylized form was stored at 4°C, ii) dissolved in pure water and in different buffers 

at 25°C (room temperature) and iii) kept in a cell culture medium at 37°C. The stability of the 

compounds was followed by analytical RP-HPLC and the decomposition was calculated from 

AUC (area under the curve). None of these cyclic NGR-peptides, 1-7, decomposed under 

storage for about 6 months. In addition they were found to be stable in distilled or slightly 

acidic water (eluent A used for HPLC) at RT for about 48 h. Prior to summarize the further 

stability studies, it has to be mentioned that in case of the Pro-containing derivative (5) the 

aspartyl cyclic peptide was the main deamidated product instead of isoaspartyl one. The Asp-
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 10 

containing derivative was determined by the aid of synthetic reference peptide as in all cases 

that were prepared similarly as the cyclic NGR-peptides. The exact amount of isoAsp 

derivative formed from compound 5 could not be analyzed properly (especially not in cell 

culture medium) because it appears as a broad shoulder of 5, that cannot be baseline 

separated. The stability of the cyclic peptides was also studied in three different buffers. (Data 

are summarized in Table 2 and chromatograms are presented in Supporting Information 

(Figure S2-S8)).  

 

Table 2. Chemo-stability of the cyclic NGR-peptides measured by HPLC 

Compounds 0.2M NH4OAc 

(pH 5.0) 

Asn/isoAsp/Asp 

PBS solution 

(pH 7.4) 

Asn/isoAsp/Asp 

0.1M Tris 

(pH 8.1) 

Asn/isoAsp/Asp 

DMEM 

medium 

Asn/isoAsp/Asp 

c[KNGRE]-NH2 (1) 100/0/0a 100/0/0 100/0/0 
54/39/7 
(92/7/1) 

Ac-c[CNGRC]-NH2 (2) 100/0/0 
93/5/2 

 (96/3/1) 
 71/21/8 

 (85/11/4) 
0/72/28 

(46/38/16) 

c[CH2CO-NGRC]-NH2 (3) 
67/26/7 

(85/12/3)b 
15/68/17 

(36/51/13) 
13/69/18 

(19/57/24) 
(0/68/32) 

c[CH2CO-KNGRC]-NH2 (4) 
90/8/2 

 (100/0/0) 
43/34/23 

(58/23/19) 
15/52/33 

(36/41/23) 
(0/64/36)  

c[CH2CO-PNGRC]-NH2 (5) 
98/0/2 

(100/0/0)  
75/3/22 

(86/2/12) 
47/5/48  

(67/3/30) 
n.d.c 

c[CH2CH2CO-NGRC]-NH2 (6) 
99/1/0  

(100/0/0) 
89/8/3  

(94/5/1) 
73/19/8 

 (86/10/4) 
(0/70/30) 

c[CH2CO-NGRhC]-NH2 (7) 
96/3/1 

 (100/0/0) 
44/43/13 
(64/28/8) 

43/45/12 
(66/27/7) 

(0/73/27) 

aThe ratio of the Asn, isoAsp and Asp containing cyclic peptides was calculated from the HPLC spectra using the 

AUC values. Data correspond to the 48 h incubation. bData in brackets correspond to the 24 h incubations. cThe 

ratio in case of compound 5 cannot be calculated because of the complexity of the HPLC spectrum (see 

Supporting Information Figure S6) 
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 11 

i) In 0.2 M NH4OAc buffer at pH 5 compounds 1, and 2 did not change at all while a small 

amount of decomposed products (1-4 %) were observed for 4, 5, 6 and 7 after 48 h. In 

contrast to the above compound 3 (HPLC chromatogram of pure compound is presented in 

Figure 1A), the tightest macrocycle composed of 15 atoms within the ring, decomposed even 

under acidic condition detected by HPLC. After 24 h the Asn:isoAsp:Asp ratio was about 

85:12:3 and the ratio of deamidated compounds increased with time (Table 2, Figure 1B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The chemo-stability assay reported for c[CH2CO-NGRC]-NH2 (3): HPLC 

chromatograms after 48 h incubation at 25oC in water (A); in 0.2 M NH4OAc buffer (pH 5.0) 

(B); PBS solution (pH 7.4) (C); and 0.1 M Tris buffer (pH 8.1) (D). Retention times: 13.2 min 

corresponds to the intact 3; 13.1 min to c[CH2CO-isoDGRC]-NH2; and 14.3 min to 

c[CH2CO-DGRC]-NH2. Retention time: 15.1 min in 0.2 M NH4OAc buffer corresponds to the 

Asu-derivative. 

 

0 5 10 15 20 25

0,0

0,2

0,4

0,6

0,8

1,0

1,2

A
21

4

Time (min)

tR = 13.1

tR = 14.3

tR = 13.2

A
2
14

Time (min)

0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 tR = 13.1

5 15 25

tR = 14.3

tR = 13.2

0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

Time (min)

A
2
14

tR = 13.2

tR = 13.1

tR = 14.3

tR = 15.1

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
t

A
21

4

Time (min)

tR=13.2

A B

C D

0 5 10 15 20 25

0,0

0,2

0,4

0,6

0,8

1,0

1,2

A
21

4

Time (min)

tR = 13.1

tR = 14.3

tR = 13.2

A
2
14

Time (min)

0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 tR = 13.1

5 15 25

tR = 14.3

tR = 13.2

0 5 10 15 20 25

0.0

0.5

1.0

1.5

2.0

Time (min)

A
2
14

tR = 13.2

tR = 13.1

tR = 14.3

tR = 15.1

0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
t

A
21

4

Time (min)

tR=13.2

A B

C D

Page 11 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12 

ii) In PBS solution at pH 7.4 compounds 1 and 2 were fairly stable, and 6 a bit less stable. 

Interestingly, 5 with a Pro inside decomposed faster (25% deamidated derivatives of Asn 

were observed after 48 h) while 4 and 7 deamidated even faster (>50% deamidated 

compounds after 48 h). Under this condition compound 3 is the most sensitive: after 24 h 

about 64%, while after 48 h about 85% of the starting material was rearranged (Figure 1C). 

iii) In 0.1 M Tris buffer at pH 8.1 decomposition was more pronounced in general. While 1 is 

still stable, 2 is somewhat less stable than at conditions written before (vide supra) (the parent 

cyclic NGR peptide was ~85% after 24 h and ~71% after 48 h). A similar deamidation rate 

was detected for 6 (~73% unmodified 6 after 48 h) and a definitely higher one for 7 (~57% 

deamidated cyclic peptides after 48 h) only a little bit higher to what was observed in PBS. 

Deamidation of compound 4 in Tris is higher than it is in PBS buffer: ~85% deamidated 

cyclic peptides after 48 h, which was close to the decomposition of compound 3 (~ 87%) 

under this circumstances (Figure 1D). iv) In a cell culture medium (pH 7.3 and 37°C) 1 is 

fairly stable for shorter time but substantially decomposed afterward (54% of the parent cyclic 

peptide at 48 h) in a non-linear manner (Figure 2). More than half of compound 2 was 

deamidated after 24 h, and no intact molecule was found after 48 h. Cyclic peptides with 

thioether linkage are also very sensitive in cell culture medium, 3-7 decomposed completely 

during 24 h incubation time.  

 

 

 

 

 

 

Figure 2. Time-dependent stability of c[KNGRE]-NH2 (1) in a cell culture medium at 37°C 
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 13 

Secondary structure by ECD spectra  

Cyclic pentapeptides often form different type of turns (β- and γ-turn). Considering the amino 

acid sequence, ring size and the presence of disulfide- or thioether bridges, the adoption of 

turns is very probable. The characteristic chiral contributions of different β-turns39 (C-, C’-, B-

type ECD shape) and γ-turn40 to the ECD spectra has been studied in detail and reviewed and 

permit their discrimination by ECD spectroscopy. The unstructured conformation (U-type 

ECD curve) also can be distinguished by ECD.  

ECD spectra were recorded in water and TFE. Spectra of 1 were significantly different from 

all the others (Figure 3). It has a broad positive band over 200 nm with maxima at 206 nm 

(3139.25) and at 218 nm (3062.53) in water and at 220 nm (1153.30) in TFE, respectively and 

a huge negative band below 200 nm (187 nm (-14906.70) in water and 195 nm (-8126.83) in 

TFE). Both ECD spectra are similar in TFE and water (similar characteristics but higher 

intensity in water), which looks like as a mixture of C’- and B-type pure ECD spectra.39  

 

 

 

 

 

 

 

 

Figure 3. ECD spectra of cyclic NGR peptides (1-7) in water (A) and in TFE (B) 
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 14 

mixture of U- and C-type pure ECD curves). In water, the negative bands are more separated, 

their intensities are weaker and the intensity ratio of the longer-wavelength band and short-

wavelength band is changed for both peptides. ECD spectral features of both 3 and 4 show 

elevated backbone flexibility, which is in line with their low chemo-stability. Compounds 2 

and 5 show typical C-type spectra in TFE. In water, the ECD spectrum of 2 is as found in TFE 

suggesting its higher rigidity, while for 5 the solvent induced structural changes are a bit more 

significant: a very broad negative band has appeared in the 205-225 nm region.  

The ECD spectra of compounds 6 and 7 in the structure-promoting solvent TFE show C-type 

features, marked by a positive (~185 nm) and a negative band (~200 nm) associated with a 

negative nπ* shoulder between 220-225 nm. In water the spectrum of both peptides show two 

negative broad bands centered at ~196 nm and 209 nm (6) or 218 nm (7). Although ECD 

spectra cannot reveal high resolution structural information by using H2O and TFE solutions, 

it is obvious that these cyclic NGR-peptides have different internal dynamics: some have 

more rigid backbone fold(s) as seen for 1, 2, 5, while others have perhaps more elevated 

internal dynamics (e.g. 3, 4).  

 

High-resolution 1H-NMR structures 

Distance restraints collected from 1H–1H ROESY spectra (for compounds 1-7 in total 106, 97, 

87, 122, 107, 79 and 108, respectively) are higher than 20/residues, except for 6, although 

most of them are either intra-residual or sequential ones. Medium-range restraints, more 

indicative of the overall backbone fold(s), are less frequent. This signals that most of these 

cyclic peptides have considerable amount of internal dynamics. In principle, they can adopt 

several somewhat different backbone conformers in solution at T= 288 K and 3 < pH < 7. No 

pH induced structural changes were detected neither by ECD nor NMR. However, due to the 

slower exchange rate of the NH resonances final NMR spectra were recorded at lower pH. In 
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 15 

conclusion, we have established the most prominent and characteristic backbone conformer(s) 

for each cyclic NGR-peptide. Additional minor conformers not resolved at the NMR 

timescale of motion could however be present to some extent making the conformational 

ensemble more colorful. The side chains, except those of 1, do not interact with each other or 

with backbone atoms in a specific manner and thus, they are conformationally diverse. 

 

Structural coherence of cyclic peptide 1-7 

Compound 1 (c[KNGRE]-NH2) has a well-defined backbone structure, but not very coherent: 

backbone and heavy atom RMSD values of 1major are around 0.31 +/- 0.23 Å and 1.13 +/- 

0.65 Å, respectively. (For all data for all compounds see Supporting Information Table S1.) 

The minor conformer of 1, 1minor, distinguished during structure calculations is similar to 

1major. Unlike for Arg, both φ and ψ torsion angles show larger fluctuation. In spite of its 

internal dynamics, less coherent structural ensemble, the main conformer, having a γ-turn at 

Gly, describes well the structural properties of 1 over time. Ac-c[CNGRC]-NH2, or 2 for 

short, also contains a γ-turn at Gly, with lower RMSDs (0.16 +/- 0.20 Å and 0.75 +/- 0.59 Å, 

respectively).  

For compound 3, c[CH2CO-NGRC]-NH2, an atypical backbone conformer lacking common 

secondary structural elements was observed, with RMSDs (0.36 +/- 0.23 Å and 1.04 +/- 0.46 

Å, respectively) slightly higher. Nevertheless, the increased internal dynamics (less coherent 

backbone fold) is in line with the lower chemo-stability of 3 (it decomposes during NMR 

measurements 40-50% after a few hours).  

Structural properties of compounds 6 (c[CH2CH2CO-NGRC]-NH2) and 7 (c[CH2CO-

NGRhC]-NH2) are found similar. Although their φ and ψ torsional angles are slightly or for 

Asn even significantly different, their predominant backbone conformers contain γ- and 

inverse γ-turns (at the -GR- subunits). Although 4, (c[CH2CO-KNGRC]-NH2) and 5 
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 16 

(c[CH2CO-PNGRC]-NH2) have a bit larger ring size, closed by a thioether linkage, their 

RMSDs are also small: 0.09 +/- 0.10 Å and 0.05 +/- 0.05 Å, respectively (Table S1), 

indicating coherent structural ensembles. However, their 3D-structures resemble to none of 

the conformers yet assigned. The latter cyclic NGR-peptides tend to form type-I β-turn 

instead of γ- or inverse γ-turns assigned in 1-3, 6 and 7. In 5, two type-I β-turns were assigned 

at the positions Pro-Asn as well as Arg-Cys. In contrast, although 4 has almost the same 

amino acid sequence, it shows an atypical conformer in which only one distorted type-I β-turn 

was found for Lys-Asn. Even these side chains do not interact in any specific manner hence 

keeping their typical flexibility, these are a bit better defined in space: RMSD values ~0.5 Å.  

 

A critical distance and angle enable succinimide ring formation for the -Asn-Gly- 

subunit 

For the least chemo-stable cyclic peptides, prone to form succinimide ring, both a specific 

Asn side chain conformation and a sterically preferred NHGly orientation is needed. The 

distance between NGly and C(OAsn-sc), or d(N-C) for short(Figure 4), could be a characteristic 

marker of the latter reaction in line with the most common mechanism described in the 

literature.10  

Macrocycle 3, c[CH2CO-NGRC]-NH2, of the smallest ring size (15 atoms) shows the highest 

ability to form succinimide ring via spontaneous deamidation. A short d(N-C), ~2.84 Å, with 

an NGly-Cγ
Asn-Oδ

Asn as Bürgi-Dunitz angle41 ~128°, facilities the succinimide ring formation 

and thus, 3 is the least chemo-stable cyclic NGR-peptide here (Table 3 and Figure 4). The 

rapid decomposition of 3 is enhanced as its NHGly is oriented toward the side chain amid bond 

of Asn, but not H-bonded to the CO of Asn side chain (Figure 5B and 6A). Thus, due to a 

short d(N-C) (less than the sum of van der Waals radii of the heavy atoms) and the obtuse 
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 17 

Bürgi-Dunitz angle 3 forms isopeptide bond almost quantitatively (~90 %) within 48 h, in 0.1 

M Tris buffer. (Note that in 3 no typical NH...CO type H-bond was assigned.)  

 

 

 

 

 

 

 

 

Figure 4. Correlation between the distance of NGly and C(OAsn-sc) and deamidation rate 

100x[(isoDGR+DGR peptides/NGR+isoDGR+DGR peptides)] of cyclic NGR-peptides 1-7 in 

Tris buffer (pH 8.1) after 48 h.  

 

Compound 4, c[CH2CO-KNGRC]-NH2, has similar backbone and side chain orientations as 

found in 3, especially in its -Asn-Gly-Arg- subunit: -δD-δL-δL- (Table 3).42 The less optimal 

Bürgi-Dunitz angle (~90°) but the relatively short d(N-C) (2.87 Å) predicts an easy 

succinimide ring formation for 4. Once again, no characteristic H-bond stabilizes macrocycle 

4. In line with the HPLC isoAsp and Asp formation (Table 2) 4 self-decomposes within 48 h 

in Tris buffer (Figure 4).  

On the contrary, Asn side chain of 2 (Ac-c[CNGRC]-NH2) turns away from the N-H bond of 

Gly (Figure 6B) and disables NGly to form easily a succinimide ring: d(N-C) is large (4.96 Å), 

while Bürgi-Dunitz angle is ~117°. In addition, by adopting an inverse γ-turn (γL) (Table 3) 

centered by Asn forms a strong backbone H-bond between the NH group of Gly and the 

carbonyl oxygen of cysteine in position 1 (1.86 Å), reducing the chance of Asn isomerization. 
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In conclusion, based on its structural properties revealed by CD and NMR 2 could be highly 

resistant against succinimide ring formation and thus, against decomposition. Indeed, 2 is a 

very chemo-stable peptide (Table 2 and Figure 4): even after 48 h in Tris buffer the ratio of 

deamidation is lower than 30%. The -Asn-Gly- moiety of 6 forms two γ-turn structures: -γL-

γD- (Table 3) with two robust intramolecular H-bonds (R(NH)···N(CO) 1.63 Å and 

G(NH)···Prop(CO) 1.82 Å) fixing the backbone of the -NGR- subunit (Figure 5C). Once 

again the side chain of Asn is turned away, resulting in larger d(N-C) (4.74 Å) and Bürgi-

Dunitz angle ~145°, forecasting higher chemical stability. Compound 6 was found both by 

HPLC and NMR measurements reluctant to isomerize: conversion is ~27% after 48 h in Tris 

buffer.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Structures of cyclic NGR peptides 1major (A), 3 (B), 6 (C) and 7 (D) presenting the 

d(N-C) and Bürgi-Dunitz angle between NGly (blue sphere) and COAsn-sc (C is green sphere 

and O is red sphere)as well as the H-bonds (dashed lines) 
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Compound 7 (c[CH2CO-NGRhC]-NH2) has identical ring size as 6 (16 atoms) with -S- at a 

shifted position. Although the -Gly-Arg- subunit adopts two distorted γ-turns, -γD-γL- (Table 

3) no H-bond stabilizes the backbone of this macrocycle, providing an elevated internal 

dynamics to it (Figure 5D). The side chain of Asn is still turned away (d(N-C) = 4.17 Å and 

Bürgi-Dunitz angle ~106°), but the larger backbone flexibility of 7 makes it more ready for 

isopeptide formation (conversion close to 60% after 48 h in Tris buffer).  

Similarly in 5 (c[CH2CO-PNGRC]-NH2) no H-bond(s) stabilizes the backbone structure of 

the macrocycle, although it encompasses a distorted β-II’-turn structure: -δL-αD- (Table 3). 

Not only d(N-C) (4.42 Å) is longer and Bürgi-Dunitz angle ~155° is too large, but also it has 

an H-bond between the NHAsn-sc and the COAsn-bb: d(H…O) ~1.8 Å. These structural features 

make 5 a rather stable macromolecule of lower flexibility and thus, it decomposes slower than 

3, 4 and 7, but faster than 2 and 6 (Figure 4).  

 

Table 3. Backbone conformers of the X-NGR-Y-peptides 

Compounds X N G R Y d(N-C) „BD angle” 

c[KNGRE]-NH2 (1) major conf. βL αD γD γL δD 3.79 Å 65.02° 

c[KNGRE]-NH2 (1) minor conf. εL αD γD αL αL 3.94 Å 78.65° 

Ac-c[CNGRC]-NH2 (2) εL γL γD δL γL 4.96 Å 117.21° 

c[CH2CO-NGRC]-NH2 (3) - δD δL δL αL 2.84 Å 127.91° 

c[CH2CO-KNGRC]-NH2 (4) αL δD δL δL δL 2.87 Å 89.31° 

c[CH2CO-PNGRC]-NH2 (5) αL δL αD αL αL 4.42 Å 155.22° 

c[CH2CH2CO-NGRC]-NH2 (6) - γL γD αL αD 4.74 Å 145.09° 

c[CH2CO-NGRhC]-NH2 (7) - δL γD γL δD 4.17 Å 106.33° 
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Representative 3D- local folds of the cyclic NGR-peptides depicted by one of the 9 typical backbone conformers / 

amino acid residue, namely αL, βL, γL, δL, εL, αD, γD, δD, and εD as introduced earlier.42 “BD-angle” angle 

of (NGly-CγAsn-OγAsn) 

Compound 1 (c[KNGRE]-NH2) seems to be the only outlier, as  

i) 1 presents two somewhat different conformers, called as 1major and 1minor
 and  

ii) both forms of 1 (major and minor) have d(N-C) of intermediate length: 3.79 Å and 

3.94 Å, with a smaller value of Bürgi-Dunitz angles ~65° and ~79°, respectively.  

Therefore, one would expect 1 to be as chemo-stable as 7. By interpolating the recent 

chemical stability data as function of d(N-C) (Figure 4) the isopeptide bond formation of 1 

is forecasted to be ~65% (in Tris buffer after 48 h). However, 1 was found by far the most 

chemo-stable macrocycle: no decomposition is observed (conversion <1% after 48 h in 

Tris buffer). One may wonder what structural feature stabilizes 1 and prevents its form 

decomposition. A thorough structural analysis reveals and explains the extreme chemo-

stability of 1, as follows:  

i) both forms of 1 (minor and major) incorporates a type-I’ β-turn (-αD-γD-) at its -Asn-

Gly- subunit (Table 3), having Gly in it as a γ-turn.  

ii) In 1major a strong backbone interaction d(NHArg…COLys) ~1.6 Å and a robust 

backbone-side chain H-bond, d(NHArg-sc…COArg) ~1.9 Å, lock the fold in such a 

way, that the NGly cannot attack as a nucleophile from the back-side of the 

molecule (Figure 5A).  

iii) In 1minor three backbone - side chain H-bonds (d(NH2
Glu…COGlu-sc) ~1.9 Å, 

d(NHArg…COAsn-sc) ~2.5 Å and d(NHGly…COGlu-sc) ~2.4 Å as well as a robust 

backbone-backbone H-bond, d(NHGlu-sc…COLys) ~2.6 Å lock the fold and disables 

NGly to attack as a nucleophile.  

Thus, in both forms of 1 complex H-bond networks stabilize the 3D-fold in which the Asn 

is turned away from NGly and thus, disfavors the succinimide ring formation. In 

Page 20 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 21 

conclusion, in a flexible backbone fold, if d(N-C) is short and Bürgi-Dunitz is slightly 

obtuse (~107°), then isomerization will take place easily. However, the latter thumb rule 

holds only, if an H-bond(s) do not lock the macrocycle in such a fold where either NGly 

cannot be a nucleophile and/or in the vicinity of COAsn-sc.  

 

 

 

 

 

 

Figure 6. A) Rapidly decomposing molecules (3 and 4), both of low chemo-stability, have 

Asn side chain oriented toward NHGly faciliting succinimide ring formation. B) Chemo-stable 

compounds (e.g. 2, 6) have Asn side chains oppositely oriented away from NHGly making 

succinimide ring formation difficult. If B-type structures are further stabilized by H-bonds, 

cyclopeptides get more rigid and succinimide ring formation becomes impossible as seen for 

1major and 1minor.  

 

Cyclic NGR-peptides effect on cell adhesion  

Formation of isoAsp derivatives from -Asn-Gly- containing fragments is expected to be 

frequent both in vitro and in vivo systems. According to the literature data, many of the 

studied cyclic isoDGR peptide (e.g. c[CisoDGRC]GVRY (isoDGR-2C)) show high affinity to 

αvβ3 RGD binding integrin receptor in nanomolar concentration.43 However, the receptor 

recognition of isoDGR peptides highly depends on their structure.13,44 Our objective was to 

evaluate the 3D structure, the chemo-stability as well as the in vitro interaction of these 

peptide models. For such study, cell adhesion was monitored as one of the most 
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characteristics integrin dependent property of metastatic tumorigenesis. The potential effect 

on cell adhesion was measured on A2058 melanoma cell line in impedance-based functional 

assay for the cyclic NGR-peptide coated surfaces. A2058 cells were selected for this study 

because it was indicated previously that the chemotaxis, haptotaxis, motility and migration of 

A2058 cells are mediated mainly by the highly expressed αvβ3 receptor on it.45 

Rearrangement of the studied cyclic NGR-peptides to isoAsp derivatives takes time, as shown 

above. This time-dependent formation of isoAsp derivatives having integrin receptor binding 

propensities may result in development of effect on cell adhesion in time. In contrast to NGR-

peptides, RGD and isoDGR peptides that recognize RGD binding integrin receptors can 

influence the cell adhesion in a short time period. Therefore, c[RGDfV] peptide that have 

efficient αvβ3  integrin binding property was considered as a positive control. To prove our 

hypothesis that the isoAsp derivatives have integrin binding activity and therefore resulting in 

increased adhesion effect, the most rapidly forming isoAsp derivative (c[CH2CO-isoDGRC]-

NH2; derived from compound 3) was also screened. The xCELLigence SP system (Roche 

Applied Science, Indianapolis, IN, USA) used for cell adhesion measurements allowed us to 

monitor A2058 cell line in a real time manner (sampling of data in every 20 sec) for 25 hours.  

The c[RGDfV] peptide developed a rapid (in less than 5 h) concentration dependent adhesion 

inducing effect at 10-7 - 10-6 M concentrations while its effect decreased in long term (after 10 

h). In case of c[CH2CO-isoDGRC]-NH2, a similar concentration and time-dependent adhesion 

inducer effect was shown to the c[RGDfV] in the 10-7 - 10-6 M range (Figure 7). The adhesion 

of A2058 cells incubated with 10-6 M c[CH2CO-isoDGRC]-NH2 reached the maximum level 

within 5 h and a slight, gradual decline could be detected after 10 h (Figure 7). In contrast, 

c[CH2CO-NGRC]-NH2 (3) enhanced continuously the cell adhesion after 5 h incubation time. 

In 10-7 M of compound 3, a significant gradual increase in the cell adhesion was elicited with 

long-term characteristics (Figure 7). The comparison of the two cyclic peptides 1 and 2 
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derived from the literature, and having amide or disulfide bond in the 17-membered cycle, 

resulted in correlation between their chemical stability and effect on cell adhesion (Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Time-dependent cell adhesion of A2058 melanoma cell line induced by c[RGDfV], 

c[CH2CO-isoDGRC]-NH2 and cyclic NGR-peptides (compound 3, 1, 2 and 6). The Norm. 

Delta CI (Normalized Delta Cell index) values were calculated at individual time points (5, 10 

and 25 h), and were normalized to the control (control=100%). The level of significance is 

shown as follows: x – p<0.05; y – p<0.01; z – p<0.001. 

 

Compound 2 (Ac-c[CNGRC]-NH2) with lower chemo-stability enhanced continuously the 

cell adhesion during the incubation time (5-25 h), especially in the 10-8 - 10-7 M concentration 

range while in case of compound 1 (c[KNGRE]-NH2) that was fairly stable even in cell 

culture medium at 37oC, such type of effect was moderate (10-8 - 10-7 M) or insignificant (10-6 

M). An adhesion inducer effect could also be detected for compound 6 (c[CH2CH2CO-

NGRC]-NH2 at 10-7 - 10-6 M and this character became more pronounced by the later time 
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points (Figure 7). However, the volume of its positive character was less than that of 

compound 3. The other cyclic NGR-peptides containing thioether linkage (compound 4, 5 and 

7) proved to be neutral during the whole period of measurement in the entire concentration 

range (data not shown). 

 

DISCUSSION  

The application of the parent NGR-peptides or their drug conjugates might have importance 

in tumor therapy. However, the easy deamidation of the NGR-peptides, resulting in both 

isoAsp- and Asp-derivatives, indicates the difficulties in their synthesis and biological 

experiments. Therefore, their stability studies under appropriate circumstances are necessary. 

We demonstrated previously that cyclic peptides with thioether linkage in the ring are more 

stable under both chemical and biological conditions than those containing either amide-or 

disulfide-bonds.37 Therefore, five new cyclic NGR-peptides, all ringed with a thioether bond 

were prepared to select appropriate constructs for tumor drug targeting studies. Cyclic 

peptides of different ring sizes (15 < n < 18 atoms) were designed based on previous 

studies.13,19,20 The smallest ring size (n=15) is that of 3, c[CH2CO-NGRC]-NH2, while its 

elongated derivatives 4, c[CH2CO-KNGRC]-NH2 and 5, c[CH2CO-PNGRC]-NH2 have the 

largest ring size (n=18). The synthesis of both 6, c[CH2CH2CO-NGRC]-NH2 and 7, 

c[CH2CO-NGRhC]-NH2 (n=16) is justified by their easy synthetic routes. (Up to now, no 

cyclic NGR-peptides of 17-membered ring size with thioether linkage have yet been 

prepared.) In addition, two reference cyclic NGR-peptides with amide or disulfide bonds of 

17-atoms in the ring (c[KNGRE]-NH2 (1) and Ac-c[CNGRC]-NH2 (2)) were prepared that 

were successfully applied previously for drug targeting.33,34 An alternative synthetic route for 

1 is proposed here.33 Synthetic conditions used for disulfide bond formation as well as their 
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yield were studied for 2 and found that alkaline conditions for disulfide bond formation 

should be avoided. 

As deamidation of NGR-peptides via succinimide ring closure, followed by hydrolysis to 

make both Asp and isoAsp derivatives is well known, the chemo-stability of selected cyclic 

NGR-peptides is studied here. Conditions were selected based on the applied synthetic routes 

for cyclization, for drug conjugation, or in in vitro biological experiments. Chemo-stability of 

these cyclic-peptides with thioether linkage was compared to the two reference compounds. 

As found in the literature, the elevation of the pH and/or temperature, as well as the use of 

buffers increases decomposition of any cyclic NGR-peptides. However, significant 

differences were found in succinimide ring formation rate for the present compounds, namely 

1 >> 6 ~ 2 > 5 > 7 > 4 > 3 order was established. It is worth mentioning, that after 

isomerization the ratio of Asp/isoAsp depends on compounds. For c[CH2CO-PNGRC]-NH2 

the Asp derivative dominates the mixture.  

We supposed that differences in chemo-stability have a structural and internal mobility 

“background”. Verification of the latter concept was done both by ECD and NMR 

measurements. While ECD gives information on the overall folds of these NGR-peptides, 

NMR provides the same but at atomic details. The present conclusions are as follows: i) the 

spatial proximity of Asn side chain to NGly facilitates succinimide ring formation. ii) In 

contrast to it, if NGly takes part of an H-bond, decomposition via succinimide ring formation is 

difficult or impossible. From the NMR data analysis, we conclude that d(N-C), the distance of 

NGly and Cγ
Asn-sc atoms is a relevant measures of reactivity rate, significant correlation was 

established (Figure 4). iii) However, if Asn side chain is pointing away from NGly, and the 

molecular fold is locked by H-bonds in the latter conformation, chemo-stability will be high, 

NGR will hardly decompose as seen for 1 c[KNGRE]-NH2. In PBS, the latter correlation is 

less pronounced but still significant.  
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The tumor selectivity and consequently the drug delivery ability of cyclic NGR peptides arise 

from two factors: as found in the literature, (i) NGR-peptides bind to CD13 receptor over-

expressing on angiogenic endothelium, while (ii) the deamidated isoDGR derivatives - 

similarly to RGD peptides – bind to the RGD-specific integrin receptors (Figure 8). The 

binding efficacy to receptors cannot be characterized properly in the absence of radio- or 

fluorescent-labeled derivatives. Furthermore, there are only few cell types (HUVEC and HT-

1080 fibrosarcoma) that are available for determining CD13 binding of peptides.46 Therefore, 

in a preliminary study the possible binding of deamidated compounds to integrin receptors 

was performed by using an indirect method. As integrin receptors influence cell adhesion, the 

binding of isoDGR peptides to these receptors might change their adhesive propensity. The 

results showed that in case of the control cyclic peptides such as (c[RGDfV] and the integrin 

binding compound 3 derived c[CH2CO-isoDGRC]-NH2 reached the maximum effect on cell 

adhesion in a short time while some of the cyclic NGR-peptides (compounds 1, 2, 3, and 6) 

the cell adhesion was increased during the period of experiments (up to 25 h). The increase of 

time-dependent cell adhesion can be explained by deamidation progress of cyclic NGR-

peptides resulting in isoAsp derivatives. In case of compounds 4 and 7, the absence of the 

effect on cell adhesion might derive from the lack of binding to integrin receptors. 

Deamidation of Pro-containing compound 5 results in rather Asp and not isoAsp derivative 

that does not bind to integrin receptors according to the literature.  
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Figure 8. Schematic mode of action of a cyclic NGR-peptide in targeted drug delivery of 

tumors 

In conclusion, while chemo-stable cyclic NGR-peptides could be used for drug targeting via 

CD13 receptors, compounds easily decomposing to form isoAsp derivatives might be applied 

for a dual targeting strategy. Both CD13 and RGD type integrin receptors could be reached by 

these molecules during targeted tumor therapy (Figure 8). To decide whether this dual 

targeting has any advantages over the application of NGR or RGD peptides alone or in a 

mixture needs further studies. For this purpose, the present cyclic NGR-peptides with 

thioether linkage are promising candidates to develop drug conjugates for targeted tumor 

therapy.  

 

MATERIALS AND METHODS 

All amino acid derivatives and Rink-Amide MBHA resin were purchased from Iris Biotech 

GmBH (Marktredwitz, Germany). Chemicals for the syntheses, purification and analyses 

(acetic anhydride (Ac2O), p-cresol, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), N,N’-

diisopropylcarbodiimide (DIC), N-diisopropylethylamine (DIEA), hydrogen fluoride (HF), 1-

hydroxybenzotriazole (HOBt), piperidine, trifluoroacetic acid (TFA), 2,2,2-trifluoroetanol 

(TFE), triisopropylsilane (TIS), and tallium trifluoroacetate (Tl(tfa)3) were obtained from 

Sigma-Aldrich Kft. (Budapest, Hungary), while the solvents (dichloromethane (DCM), N,N-

dimethylformamide (DMF), acetonitrile (MeCN), ethanol and diethyl ether) were purchased 

from Molar Chemicals (Budapest, Hungary). All reagents and solvents were of analytical 

grade or highest available purity. 

 

Synthesis of c[KNGRE]-NH2 cyclic peptid (1) with amide bond  
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Linear semi-protected H-Lys(ClZ)-Asn-Gly-Arg-Glu-NH2 was prepared by Fmoc/tBu 

strategy on Rink-Amide MBHA resin (0.5 g, 0.64 mmol/g capacity) according to the protocol 

described in the Supporting Information. Standard Fmoc-amino acid derivatives were used for 

the synthesis expect Boc-Lys(ClZ)-OH that was attached to the N-terminus of the peptide. 

The semi-protected peptide was cleaved from the resin using a mixture of 95% TFA, 2.5% 

TIS and 2.5% water (v/v/v) for 2.5 h at room temperature and then precipitated with ice-cold 

diethyl ether, washed three times with diethyl ether and dissolved in 100% acetic acid prior to 

freeze drying. The crude product was purified by semi-preparative RP-HPLC followed by 

counter ion exchange of tfa to chloride using pyridinium hydrochloride prior cyclization. The 

semi-protected linear peptide was cyclized in DMF at 0.2 mg/mL peptide concentration in the 

presence of BOP/HOBt/DIEA (6:6:12 equiv to the peptide) reagents for 24 h. The solvent was 

evaporated and the remaining oily product was dissolved in eluent A and purified by RP-

HPLC. After liophylization the purified product was dried further in dessicator over P2O5 and 

then the ClZ group from the side chain of Lys residue was removed by HF cleavage (HF – p-

cresol = 10 mL : 1 g). The crude product was purified by semi-preparative RP-HPLC and 

analyzed by analytical HPLC and mass spectrometry (Table 1. and Supporting Information).  

 

Synthesis of Ac-c[CNGRC]-NH2 cyclic peptide (2) with disulfide bridge (air oxidation)  

The linear precursor peptide was synthesized on Rink-Amide MBHA resin (0.5 g) with 

Fmoc/tBu strategy as it was described above. Trytyl (Trt) group was used for the side chain 

protection of Fmoc-cysteine derivative. At the end of the synthesis the N-terminus was 

acetylated with Ac2O-DIEA-DMF (1:1:3, v/v/v) mixture. The peptide was cleaved from the 

resin as it was described above. Prior to the disulfide bond formation, the crude linear peptide 

was purified by RP-HPLC. The cyclization was carried out by air oxidation in 0.1 M Tris 

buffer (pH 8.1) at 0.2 mg/mL peptide concentration for 24 or 48 hrs. The reaction mixture was 
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acidified by HCl solution and concentrated by liophylization. The remaining product was 

dissolved in eluent A and purified by semi-preparative HPLC. The purified cyclic peptide was 

characterized by analytical HPLC and mass spectrometry (Table 1 and Supporting 

Information).  

 

Synthesis of Ac-c[CNGRC]-NH2 cyclic peptide (2) with disulfide bridge (oxidation with 

Tl(tfa)3) 

In this case Fmoc-Cys(Acm)-OH was applied for the synthesis of linear precursor peptide. 

For the disulfide bridge formation the Ac-Cys(Acm)-Asn-Gly-Arg-Cys(Acm)-NH2 was 

dissolved in TFA containing 2% anisole at 0.2 mg/mL peptide concentration, then 1.2 equiv 

Tl(tfa)3 was added to the solution. The oxidation reaction was continued for 1 h followed by 

precipitation of the product with dry ether. The crude product was purified by RP-HPLC. The 

purified cyclic peptide was characterized by analytical HPLC and mass spectrometry (Table 1 

and Supporting Information).  

 

Synthesis of c[CH2CO-XNGRC]-NH2 cyclic peptide (X: Ø (3); Lys (4); Pro (5)) with 

thioether linkage 

The linear precursor peptides were prepared similarly to the previous compounds on Rink- 

Amide MBHA resin (0.5 g). The N-terminus of the peptides was chloroacetylated using 5 

equiv of chloroacetic acid pentachlorophenyl ester (ClAc-OPcp) that was prepared in our 

laboratory.38 The cleaved chloroacetylated peptides were purified by RP-HPLC prior to the 

cyclization. The thioether bond was formed in 0.1 M Tris buffer (pH 8.1) as follows: the 

liophylized linear peptides were added to the buffer solution in portions in 2 h. The final 

peptide concentration was 10 mg/mL in all cases. The reaction mixtures were allowed to stand 

for further 1 h then they were acidified with TFA. The reaction mixture was injected to RP-
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HPLC directly. The purified cyclic peptide was characterized by analytical HPLC and mass 

spectrometry (Table 1 and Supporting Information).  

Synthesis of c[CH2CH2CO-NGRC]-NH2 cyclic peptide (6) with thioether linkage 

In this case 10 equiv β-chloro- or β-bromopropionic acid in the presence of equiv DIC and 

HOBt coupling agents were used for the acylation of the N-terminus of the precursor linear 

peptide on Rink Amide-MBHA resin (0.5-0.5 g). After cleavage of haloacylated linear 

peptide from the resin, the crude products were purified by RP-HPLC. The yield of the 

purified compounds was 20.9 % in case of chloropropionylated and 27.5 % in case of 

bromopropionylated peptide. The cyclization was carried out in 0.1 M Tris buffer (pH 8.1). 

The reaction was followed by analytical HPLC. The thioether bond formation was ready 

within 4 h in case of BrCH2CH2CO-NGRC-NH2; however, the reaction was still not complete 

after 48 h in case of ClCH2CH2CO-NGRC-NH2. The yield of the purified cyclic peptides was 

33.5 % and 62.3 %, respectively, for the chloro- and bromopropionylated linear peptides as 

precursors (Table 1 and Supporting Information).  

 

Synthesis of c[CH2CO-NGRhC]-NH2 cyclic peptide (7) with thioether linkage 

The synthesis of the homocysteine containing derivative was performed identically to the 

c[CH2CO-NGRC]-NH2 (3) cyclic peptide, but Fmoc-hCys(Trt)-OH was used instead of the 

cysteine derivative. Characterization of the cyclic peptide is presented in Table 1 and 

Supporting Information.  

 

Stability studies of the cyclic NGR-peptides 

The study of the storage stability of the liophylized compounds was continued at 4°C for 6 

months. The solution stability of the compounds was studied in d.i. water, in 0.2 M NH4OAc 

buffer (pH 5.0), PBS solution (pH 7.4) and 0.1 M Tris buffer (pH 8.1) at 1.0 mg/mL (~2 mM) 

Page 30 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 31 

peptide concentration and RT for 48 h. The stability studies of the compounds were also 

investigated in DMEM GlutaMAX-I (Sigma Ltd., St. Louis, MO, USA) cell culture medium 

containing 10% FCS (fetal calf serum, Sigma Ltd.) and gentamicine (160 µg/mL) at the same 

peptide concentration and 37°C for 48 h. The decomposition of the cyclic NGR-peptide 

derivatives was followed by analytical HPLC.   

 

Structural studies by electronic circular dichroism (ECD) spectroscopy 

ECD spectra (185< λ < 300 nm) in water and TFE were recorded on a Jasco J-810 

spectropolarimeter at T= 298 K using a 0.02 cm quartz cell. Peptide concentration was set to 

0.5-1 mg/mL (~1-2 mM), each spectra are the average of five subsequent scans. The row 

spectra were subsequently smoothed by the Means Movement algorithm, final ECD band 

intensities are expressed in mean residue ellipticity ([Θ]MR, deg cm2/dmol). 

 

Structural studies by nuclear magnetic resonance (NMR) spectroscopy 

NMR samples of the all cyclic peptides (~1 mM) were prepared in H2O–D2O mixture (9:1) at 

pH of ~3 and pH~5. The NMR experiments were carried out at 288 K on a Bruker Avance III 

700 MHz spectrometer equipped with 5-mm triple-resonance probe-head with z-axis pulsed 

field gradient. The identification of spin systems and sequence specific assignments were 

obtained from 2D 1H–1H ROESY (250 and 350 ms), 1H–1H TOCSY (80 ms) and 1H–1H 

DQF-COSY spectra at 288 K. NMR data processing was performed by the help of TopSpin 

3.1 and the spectra were analyzed using CCPNMR analysis 2.1 software packages.47 From the 

appropriate ROESY spectra a total of 106, 97, 87, 122, 107, 79, and 108 distance restraints 

were obtained for cyclic peptides containing NGR motif (compounds 1-7, respectively). For 

the restraints three distance ranges (0.18–0.25, 0.25–0.35 and 0.35–0.50 nm) were used based 

on the intensity of corresponding ROESY peaks. Structure calculations were performed using 
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the standard simulated annealing protocols with the CNS software package.48,49 For each 

molecule an ensemble of 100 structures were calculated and examined. For chemical shift 

referencing DSS (2,2-dimethyl-2-sila-pentane-5-sulfonic acid) was used.  

 

Cell and culturing 

The effects of the cyclic NGR-peptides on cell adhesion were evaluated in A2058 human 

melanoma cell line derived from a brain metastasis.50 This cell line shows high metastatic 

potency, and different substrate-bound, RGD sequence containing extracellular matrix 

proteins (e.g. laminin, fibronectin) acting along gradient induced directional migration 

(haptotaxis).45 

Cultures of A2058 were maintained in RPMI 1640 (Sigma Ltd. St. Louis, MO, USA) 

containing 10% FCS (Lonza Group Ltd., Switzerland), L-glutamine (2 mM) (Gibco® / 

Invitrogen Corporation, New York, NY, USA), 100 µg/mL penicillin/streptomycin (Gibco® / 

Invitrogen Corporation, New York, NY, USA) at 37°C in a humidified 5% CO2 atmosphere. 

 

Cell adhesion assay 

The adhesion modulator effect of cyclic NGR-peptides on A2058 melanoma cell line 

was measured by xCELLigence SP System (Roche Applied Science, Indianapolis, IN, USA). 

This system is a dedicated one to detect the kinetics and strength of cell attachment by 

monitoring electrical impedance across gold microelectrodes integrated on a bottom of special 

cell culture plate (E-plate) in real time manner. The detected impedance depends on the 

number and spreading of cells adhered to the surface of the electrodes. The change in 

impedance is represented as Cell Index (CI). The CI is a relative and dimensionless value, and 

calculated by the following formula:  
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where Zi is the impedance at an individual point of time during the experiment, Z0 is the 

impedance at the start of the experiment, and Fi is a constant depending on the frequency 

(F10kHz=15). 

The cyclic NGR-peptides were tested in 10-8 – 10-6 M concentration range. The consecutive 

10-fold dilutions of the peptides were made in 0.1% gelatin (Sigma Ltd. St. Louis, MO, USA) 

solved in PBS (phosphate buffered saline pH=7.4). The surface of the electrode in each well 

of E-plate was coated by 25 µL of different concentrations of NGR-peptides for 20 min at 

4°C. After the incubation the dilutions of NGR-peptides were removed, and the wells were 

desiccated for 5 min at room temperature in sterile condition. To gain a background curve of 

constant CI value 100 µL of pure cell culture medium was added to each well and the CI was 

recorded for 30 min. In the following step 104 cells/well were loaded on E-plate. The wells 

coated with 0.1% gelatin solution without test compound served as a control. The cell 

adhesion of A2058 cells on NGR-peptide coated surface was monitored in every 20 sec for 25 

h at 10 kHz. Each measurement was carried out in triplicates. 

The Delta CI values gained at individual time points (5, 10 and 25 h) were used for data 

analysis, the integrated software (RTCA 1.2) was applied in calculations. The Delta CI refers 

to the difference of CI value at time point of cell inoculation and CI value at a given time 

point. The Delta CI values of each concentration of cyclic NGR-peptides were normalized to 

the control and were given as Norm. Delta CI (Normalized Delta Cell Index) in percent. 

 

Statistical evaluation of data 

Data shown in the Figure 7 represent averages expressed as percentage of untreated control 

and ±SD values. Statistical analysis of data was done by the application of ANOVA of Origin 

Pro8.0 (OriginLab Corporation, Northampton, MA, USA). The level of significance is shown 

as follows: x – p<0.05; y – p<0.01; z – p<0.001. 
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ASSOCIATED CONTENT 

Supporting Information 

Additional HPLC chromatograms and mass spectra that demonstrate the purity of the cyclic 

NGR peptides as well as their decomposition under different circumstances are presented in 

Supporting Information. Furthermore, some NMR characteristics are added in Supporting 

Information, too. 

 

AUTHOR INFORMATION 

* Corresponding Author: 

Prof. Gábor Mező 

MTA-ELTE Research Group of Peptide Chemistry 

Pázmány P. stny. 1/A, 1117 Budapest, Hungary: 

E-mail: gmezo@elte.hu 

Tel.: +36-1-372-2500/1433; Fax: +36-1-372-2620 

 

ACKNOWLEDGMENTS 

This work was supported by grants from the Hungarian National Science Fund (OTKA, K 

104045, K 100720, NK 101072) and by the European Union and the European Social Fund 

under grant agreements no. TÁMOP-4.2.1.B-11/2/KMR-2011-0002.  

 

REFERENCES  

1. Koivunen, E.; Wang, B.; Ruoslahti, E. Isolation of highly specific ligand for the alpha 

5 beta 1 integrin from a phage display library. J. Cell Biol. 1994, 124: 373–380. 

2. Healy, J. M.; Murayama, O.; Maeda, T. Yoshino, K.; Sekiguchi, K.; Kikuchi, M. 

Peptide ligands for integrin alpha v beta 3 selected from random phage display 

libraries. Biochemistry 1995, 34, 3948–3955. 

Page 34 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 35 

3. Arap, W.; Pasqualini, R.; Ruoslahti, E. Cancer treatment by targeted drug delivery to 

tumor vasculature in a mouse model. Science 1998, 279, 377–380. 

4. Pasqualini, R.; Koivunen, E.; Kain, R.; Lahdenranta, J.; Sakamoto, M.; Stryhn, A.; 

Ashmun, R. A.; Shapiro, L. H.; Arap, W.; Ruoslahti, E. Aminopeptidase N is a 

receptor for tumor-homing peptides and a target for einhibiting angiogenesis. Cancer 

Res. 2000, 60, 722–727. 

5. Curnis, F.; Arrigoni, G.; Sacchi, A.; Fischetti, L.; Arap, W.; Pasqualini, R.; Corti, A. 

Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor 

vessels, epithelia and myeloid cells. Cancer Res. 2002, 62, 867–874. 

6. Luan, Y.; Xu, W. The structure and main functions of aminopeptidase N. Curr. Med. 

Chem. 2007, 14, 639–647. 

7. Corti, A.; Curnis, F.; Arap, W.; Pasqualini, R. The neovasculature homing motif NGR: 

more than meets the eye. Blood 2008, 112, 2628–2635. 

8. Corti, A.; Curnis, F. Tumor vasculature targeting through NGR-peptide-based drug 

delivery systems. Curr. Pharm. Biotechnol. 2011, 12, 1128–1134. 

9. Wickström, M.; Larsson, R.; Nygren, P.; Gullbo, J. Aminopeptidase N (CD13) as a 

target for cancer chemotherapy. Cancer Sci. 2011, 102, 501–508. 

10. Geiger, T.; Clarke, S. Deamidation, isomerisation, and racemisation at asparaginyl and 

aspartyl residues in peptides. J. Biol. Chem. 1987, 262, 785–794. 

11. Stephenson, R. C.; Clarke, S. Succinimide formation from aspartyl and asparaginyl 

peptides as a model for the spontaneous degradation of proteins. J. Biol. Chem. 1989, 

264, 6164–6170. 

12. Wakankar, A. A.; Borchardt, R. T. Formulation considerations for proteins susceptible 

to asparagine deamidation and aspartate isomerisation. J. Pharm. Sci. 2006, 95, 2321–

2336. 

Page 35 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 36 

13. Curnis, F.; Cattaneo, A.; Longhi, R.; Sacchi, A.; Gasparri, A. M.; Pastorino, F.; Di 

Matteo, P.; Traversari, C.; Bachi, A.; Ponzoni, M.; Rizzardi, G. P.; Corti, A. Critical 

role of flanking residues in NGR-to-isoDGR transition and CD13/Integrin receptor 

switching. J. Biol. Chem. 2010, 285, 9114–9123. 

14. Patel, K.; Borchardt, R. T. Chemical pathways of peptide degradation. III. Effect of 

primary sequence on pathways of deamidation of asparaginyl residues in hexapeptide. 

Pharm. Res. 1990, 7, 787–793. 

15. Tyler-Cross, R.; Schirch, V. Effects of amino acid sequence, buffers, and ionic 

strength on the rate and mechanism of deamidation of asparagine residues in small 

peptides. J. Biol. Chem. 1991, 266, 22549–22556.  

16. Stevenson, C. L.; Friedman, A. R.; Kubiak, T. M.; Donlan, M. E.; Borchardt, R. T. 

Effect of secondary structure on the rate of deamidation of several growth hormone 

releasing factor analogs. Int. J. Pept. Prot. Res. 1993, 42, 497–503. 

17. Xie, M.; Schowen, R. L. Secondary structure and protein deamidation. J. Pharm. Sci. 

1999, 88, 8–13. 

18. Xie, M.; Aube, J.; Borchardt, R. T.; Morton, M.; Topp, E. M.; Vandar Velde, D.; 

Schowen, R. L. Reactivity toward deamidation of asparagine residues in beta-turn 

structures. J. Pept. Res. 2000, 56, 165–171.  

19. Capasso, S.; Balboni, G.; Di Cerbo, P. Effect of lysine residues on the deamidation 

reaction of asparagine side chain. Biopolymers 2000, 53, 213–219. 

20. Plesniak, L. A.; Salzameda, B.; Hinderberger, H.; Regan, E.; Kahn, J.; Mills, S. A.; 

Teriete, P.; Yao, Y.; Jennings, P.; Marassi, F.; Adams, J. A. Structure and activity of 

CPNGRC: a modified CD13/APN peptidic homing motif. Chem. Biol. Drug Des. 

2010, 75, 551–562. 

Page 36 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 37 

21. Curnis, F.; Sacchi, A.; Borgna, L.; Magni, F.; Gasparri, A.; Corti, A. Enhancment of 

tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted 

delivery to aminopeptidase N (CD13) Nat. Biotechnol. 2000, 18, 1185–1190. 

22. Colombo, G.; Curnis, F.; De Mori, G. M.; Gasparri, A.; Longoni, C.; Sacchi, A.; 

Longhi, R.; Corti, A. Structure-activity relationship of linear and cyclic peptides 

containing NGR tumor-homing motif. J. Biol. Chem. 2002, 277, 47891–47897. 

23. Sacchi, A.; Gasparri, A.; Curnis, F.; Bellone, M.; Corti, A. Crucial role for interferon 

gamma in the synergism between tumor vasculature-targeted tumor necrosis alpha 

(NGR-TNF) and doxorubicin. Cancer Res. 2004, 64, 7150–7155. 

24. Curnis, F.; Gasparri, A.; Sacchi, A.; Cattaneo, A.; Magni, F.; Corti, A. A target 

delivery of IFNgamma to tumor vessels uncouples antitumor from counterregulatory 

mechanism. Cancer Res. 2005, 65, 2906–2913. 

25. Crippa, L;, Gasparri, A.; Sacchi, A.; Ferrero, E.; Curnis, F.; Corti, A. Synergistic 

damage of tumor vessels with ultra low-dose endothelial-monocyte activating 

polypeptide-II and neovasculature-targeted tumor necrosis factor-alpha. Cancer Res. 

2008, 68, 1154–1161. 

26. Pastorino, F.; Brignole, C.; Marimpietri, D.; Cilli, M.; Gambini, C.; Ribatti, D.; 

Longhi, R.; Allen, T. M.; Corti, A.; Ponzoni, M. Vascular damage and anti-angiogenic 

effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res. 2003, 63, 

7400–7409.  

27. Pastorino, F.;, Brignole, C.; Di Paolo, D.; Nico, B.; Pezzolo, A.; Marimpietri, D.; 

Pagnan, G.; Piccardi, F.; Cilli, M.; Longhi, R.; Ribatti, D.; Corti, A.; Allen, T. M.; 

Ponzoni, M. Targeting liposomal chemotherapy via both tumor cell-specific and tumor 

vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res. 2006, 66, 

10073–10082.  

Page 37 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 38 

28. Ndinguri, M. W.; Solipuram, R.; Gambrell, R. P.; Aggarwal, S.; Hammer, R. P. 

Peptide targeting of platinum anti-cancer drugs. Bioconjug. Chem. 2009, 20, 1869–

1878. 

29. Luo, L. M.; Huang, Y.; Zhao, B. X.; Zhao, X.; Duan, Y.; Du, R.; Yu, K. F.; Song, P.; 

Zhao, Y.; Zhang, X.; Zhang, Q. Anti-tumor and anti-angiogenic effect of metronomic 

cyclic NGR-modified liposomes containing paclitaxel. Biomaterials 2013, 34, 1102–

1114. 

30. Chen, K.; Ma, W.; Li, G.; Wang, J.; Yang, W.; Yap, L. P.; Hughes, L. D.; Park, R.; 

Conti, P. S. Synthesis and evaluation of 64Cu-labeled monomeric and dimeric NGR-

peptides for MicroPET imaging of CD13 receptor expression. Mol. Pharm. 2013, 10, 

417–427. 

31. Ma, W.; Kang, F.; Wang, Z.; Yang, W.; Li, G.; Ma, X.; Li, G.; Chen, K.; Zhang, Y.; 

Wang, J. (99m)Tc-labeled monomeric and dimeric NGR-peptides for SPECT imaging 

of CD13 receptor in tumor-bearing mice. Amino Acids 2013, 44, 1337–1345. 

32. Dunn, M.; Zheng, J.; Rosenblat, J.; Jaffray, D. A.; Allen, C. APN/CD13-targeting as a 

strategy to alter the tumor accumulation of liposomes. J. Control. Release 2011, 154, 

298–305. 

33. Negussie, A. H.; Miller, J. L.; Reddy, G.; Drake, S. K.; Wood, B. J.; Dreher, M. R. 

Synthesis and in vitro evaluation of cyclic NGR-peptide targeted thermally sensitive 

liposome. J. Control. Release 2010, 143, 265–273.  

34. Corti, A.; Ponzoni, M. Tumor vascular targeting with tumor necrosis factor alpha and 

chemotherapeutic drugs. Signal Transduction and Communication in Cancer Cells 

2004, 1028, 104–112. 

35. Marelli, U. K.; Rechenmacher, F.; Sobahi, T. R.; Mas-Moruno, C.; Kessler, H. Tumor 

targeting via integrin ligands. Front. Oncol. 2013, 3, Article 222. 

Page 38 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 39 

36. Zou, M.; Zhang, L.; Xie, Y.; Xu, W. NGR-based strategies for targeting delivery of 

chemotherapeutics to tumor vasculature. Anticancer Agents Med. Chem. 2012, 12, 

239–246. 

37. Tugyi, R.; Mező, G.; Fellinger, E.; Andreu, D.; Hudecz, F. The effect of cyclization on 

the enzymatic degradation of herpes simplex virus glycoprotein D derived epitope 

peptide. J. Pept. Sci. 2005, 11, 642–649. 

38. Jakab, A.; Schlosser, G.; Feijlbrief, M.; Welling-Wester, S.; Manea, M.; Vila-Perello, 

M.; Andreu, D.; Hudecz, F.; Mező, G. Synthesis and antibody recognition of cyclic 

epitope peptides, together with their dimer and conjugated derivatives based on 

residues 9-22 of herpes simplex virus type 1 glycoprotein D. Bioconjug. Chem. 2009, 

20, 683–692. 

39. Perczel, A.; Hollósi, M. Turns (In: G. D. Fasman editor, Circular Dichroism and the 

Conformational Analysis of Biomolecules, Plenum Press, New York) 1996, 285–380. 

40. Vass, E.; Majer, Zs.; Kőhalmy, K.; Hollósi, M. Vibrational and chiroptical 

spectroscopic characterization of γ-turn model cyclic tetrapeptides containing two β-

Ala residues. Chirality 2010, 22, 762–771. 

41. Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff G. Stereochemistry of reaction paths at 

carbonyl centres. Tetrahedron 1974, 30, 1563–1572. 

42. Perczel, A.; Ángyán, J. G.; Kajtár, M.; Viviani, W.; Rivail, J. L.; Marcoccia, J. F.; 

Csizmadia, I. G. Peptide models 1. Topology of selected peptide conformational 

potential-energy surfaces (glycine and alanine derivatives). JACS 1991, 113, 6256–

6265. 

43. Spitaleri, A.; Mari, S.; Curnis, F.; Traversari, C.; Longhi, R.; Bordignon, C.; Corti, A.; 

Rizzardi, G.P.; Musco, G. Structural basis for the interaction of isoDGR with the 

RGD-binding site of alphavbeta3 integrin. J. Biol. Chem. 2008, 283, 19757–19768. 

Page 39 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 40 

44. Bochen, A.; Marelli, U. K.; Otto, E.; Pallarola, D.; Mas-Moruno, C.; Di Leva, F. S.; 

Boehm, H.; Spatz, J. P.; Novellino, E.; Kessler, H.; Marinelli, L. Biselectivity of 

isoDGR peptides for fibronectin binding integrin subtypes α5β1 and αvβ6: 

conformational control through flanking amino acids. J. Med. Chem. 2013, 56, 1509–

1519. 

45.  Aznavoorian, S.; Stracke, M. L.; Krutzsch, H.; Schiffmann, E.; Liotta, L. A. Signal 

transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells. J. Cell 

Biol. 1990, 110, 1427–1438. 

46. Soudy, R.; Ahmed, S.; Kaur, K. NGR-peptide ligands for targeting CD13/APN 

identified through peptide array screening resemble fibronectin sequences. ACS Comb. 

Sci. 2012, 14, 590–599. 

47. Vranken, W. F.; Boucher, W.; Stevens, T. J.; Fogh, R. H.; Pajon, A.; Llinas, M.; 

Ulrich, E. L.; Markley, J. L.; Ionides, J.; Laue, E. D. The CCPN data model for NMR 

spectroscopy: development of a software pipeline. Proteins 2005, 59, 687–696. 

48. Brunger, A. T.; Adams, P. D.; Clore, G. M.; Gros, P.; Grosse-Kunstleve, R. W.; Jiang, 

J. S.; Kuszewski, J.; Nilges, N.; Pannu, N. S.; Read, R. J.; Rice, L. M.; Simonson, T.; 

Warren, G. L. Crystallography & NMR System (CNS), A new software suite for 

macromolecular structure determination. Acta Cryst.1998, D54, 905–921. 

49. Brunger, A. T. Version 1.2 of the Crystallography and NMR System. Nat. Protocols 

2007, 2, 2728–2733. 

50. Todaro, G. J.; Fryling, C.; De Larco, J. E. Transforming growth factors produced by 

certain human tumor cells: polypeptides that interact with epidermal growth factor 

receptors. Proc. Natl. Acad. Sci. U S A. 1980, 77, 5258–5262. 

Page 40 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 41 

Graphical abstract 

 

0.284 nm

0.417 nm

0.474 nm

2.5 3.0 3.5 4.0 4.5 5.0

0

10

20

30

40

50

60

70

80

90

100

D
ea
m
id
a
tio
n
%
 (
0.
1
 M
 T
ri
s
b
uf
fe
r
pH
 8
.1
, 
48
h
)

d(HNGly-COAsn-sc) (Å)

c[CH2CO-NGRhC]-NH2

c[CH2CH2CO-NGRC]-NH2

c[CH2CO-NGRC]-NH20.284 nm0.284 nm

0.417 nm0.417 nm

0.474 nm0.474 nm

2.5 3.0 3.5 4.0 4.5 5.0

0

10

20

30

40

50

60

70

80

90

100

D
ea
m
id
a
tio
n
%
 (
0.
1
 M
 T
ri
s
b
uf
fe
r
pH
 8
.1
, 
48
h
)

d(HNGly-COAsn-sc) (Å)

c[CH2CO-NGRhC]-NH2

c[CH2CH2CO-NGRC]-NH2

c[CH2CO-NGRC]-NH2

Page 41 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

 

254x190mm (96 x 96 DPI)  

 

 

Page 42 of 42

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


