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Abstract: Postoperative pancreatic fistula (POPF), the major driver of morbidity and mortality
following pancreatectomy, is caused by an abnormal communication between the pancreatic ductal
epithelium and another epithelial surface containing pancreas-derived, enzyme-rich fluid. There is a
strong correlation between the amylase content in surgically-placed drains early in the postoperative
course and the development of POPF. A simple and cheap method to determine the amylase content
from the drain effluent has been eagerly advocated. Here, we developed an amylase optical biosensor,
based on a surface plasmon resonance (SPR) plastic optical fiber (POF), metallized with a 60 nm
layer of gold and interrogated with white light. The sensor was made specific by coupling it with
an anti-amylase antibody. Each surface derivatization step was optimized and studied by XPS,
contact angle, and fluorescence. The POF-biosensor was tested for its response to amylase in diluted
drain effluents. The volume of sample required was 50 pL and the measurement time was 8 min.
The POF-biosensor showed selectivity for amylase, a calibration curve log-linear in the range of
0.8-25.8 U/L and a limit of detection (LOD) of ~0.5 U/L. In preliminary tests, the POF-biosensor
allowed for the measurement of the amylase content of diluted surgically-placed drain effluents
with an accuracy of >92% with respect to the gold standard. The POF-biosensor allows for reliable
measurement and could be implemented to allow for a rapid bedside assessment of amylase value in
drains following pancreatectomy.

Keywords: optical fiber sensors; surface plasmon resonance; plastic optical fibers; antibody; amylase;
postoperative pancreatic fistula

1. Introduction

Postoperative pancreatic fistula (POPF), the major cause of morbidity and mortality
following pancreatectomy, is an abnormal communication between the pancreatic ductal
epithelium and another epithelial surface containing amylase-rich fluid. From a mechanistic
standpoint, a POPF is generated from a failure of the healing and sealing of a pancreatic-
enteric anastomosis or from a direct parenchymal leak [1]. In 2005, an international panel
of pancreatic surgeons agreed to establish an easy-to-apply clinical definition of POPF: an
output from surgically or percutaneously-placed drains of any measurable volume of fluid
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on or after postoperative day 3, with an amylase content greater than 3 times the upper
bound of normal serum amylase activity [1]. While a certain diagnosis of POPF can be
established from postoperative day 3 and onwards, POPF is reliably predicted by measuring
the amylase value from surgically-placed drains on postoperative day 1 [2]. This allows
for tailored fast-track recovery pathways in low-risk patients and the implementation of
mitigation strategies in high-risk patients [3]. Amylase level measurements (U/L) are
typically based on a colorimetric test principle whose procedure takes about 30 min and is
carried out in clinical laboratories by specialized personnel [4,5]. Having a fast, reliable,
and easy to use point-of-care system to measure the levels of amylase in POPF would be of
great importance for an early assessment of high-risk patients and for their treatment.

In general, the detection of amylases by means of biosensors are mostly based on
electrochemical transduction systems and, in particular, are focused on the detection of
amylases in saliva [6-10] and in human serum [11,12]. Concerning the measurement of
amylase in drain fluids, to date just a single example of a biosensor is reported [13]. In this
work, Forster resonance energy transfer (FRET) was selected as the working principle for
the sensor and a labelled protein-assembly nanoprobe, sensitive to activated pancreatic
proteases (i.e., elastase, a-chymostrypsin, trypsin), was able to optically detect activated
pancreatic juices. In a preliminary test, the sensor was used to measure drain fluids, but
the detection was solely of the drain fluid’s activated proteases. The results showed that
the data of the FRET sensor positively correlated to the classification of the post-operatory
conditions of the patients, which is routinary based on the determination of the amylase
level. Nevertheless, the FRET-sensor did not strictly measure amylase. Given the key role
played by the amylase levels in detecting POPF, we propose the development of a biosensor
for fast, point-of-care, cost-effective and quantitative amylase measurements in surgically-
placed drain effluent. The sensor is based on surface plasmon resonance (SPR) on a plastic
optical fiber (POF) that is derivatized with a specific anti-amylase antibody. Previously, we
reported on POF sensor systems with an innovative geometry [14,15] that were suitable
for bio-applications [16]. The POF offers several advantages over glass fibers: it is easy
to manipulate and, given its flexibility, it has a great numerical aperture and possesses a
large diameter. The POF can be derivatized with a variety of recognition elements, such as
proteins and antibodies [17], aptamers [18] and biomimetics, such as molecularly imprinted
polymers [19], including molecularly imprinted nanogels [20], offering a versatile platform
for biosensing. Moreover, the POF biosensor has demonstrated high sensitivity, down to
the pM and fM levels, thus it matches the need for the detection of biomarkers in body
fluids with low concentrations.

In the present work, we developed a SPR-POF-based biosensor for detection of amy-
lase from the surgically-placed drain effluent of patients undergoing pancreatectomy. For
this purpose, the POF surface was sputtered with a thin layer of gold (60 nm) that was
chemically modified through the formation of a self-assembling monolayer (SAM) using
a-lipoic acid, followed by covalent binding of the anti-amylase antibody to the surface
by classical ethyleneimine-carbodiimide coupling chemistry. It was anticipated that the
POF-sensor would be able to quantitatively detect amylase in PO fluids in a timespan of just
a few minutes, offering quick response time for the assessment of the patient’s condition.

2. Materials and Methods
2.1. Substrates and Reagents

Gold substrates were prepared by depositing 10 nm of titanium on a silicon substrate
(100), followed by 100 nm of gold purchased from MicroFabSolution srl (Trento, Italy).

Bovine serum albumin (BSA, A7030), «-lipoic acid (T5625), anti-x-amylase produced
in rabbit fractionated antiserum (A8273) (IgG AMY), anti-mouse polyvalent immunoglobu-
lins (G,A,M)—FITC, antibody produced in goat (F1010) (IgG FITC), and all of the powders
for buffer solutions were purchased from Sigma-Aldrich srl (Milan, Italy). The mouse
IgG1, kappa monoclonal [MOPC-21]—isotype control (ab18443) (IgG) was purchased
from Abcam (Cambridge, U.K.). SuperSignal West Femto Chemiluminescent Substrate
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kit (34095), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC, 22980)
and N-hydroxysulfosuccinimide (Sulfo-NHS, 24510), and albumin from bovine serum,
tetramethylrhodamine conjugate (BSA-TAMRA, A23016), were purchased from Thermo
Scientific (Rockford, IL, USA).

2.2. Horseradish Peroxidase (HRP) Conjugated Amylase

The protocol for the two-step coupling of proteins by means of EDC and sulfo-NHS
was done according to [21]. Human amylase (Sigma, Milan Italy) was dissolved at 5 mg/mL
in 10 mM of MES pH 5 buffer. The HRP was dissolved at 5 mg/mL in 100 mM MES
pH 6. Sulfo-NHS was prepared at 200 mM in 10 mM of MES pH 5 buffer. EDC was
prepared at 200 mM in 10 mM of MES pH 5 buffer. A quantity of 44 pmoles of HRP
was admixed with EDC and sulfo-NHS and left to react at room temperature for 15 min.
Then, 42 pmoles of amylase were added and the proteins were left to react for 2 h at room
temperature in the dark. The HRP-amylase conjugate was dialyzed O/N at 4 °C against
3 L of 20 mM phosphate buffer (PB) with a pH of 7.5. An aliquot was diluted ten times in
buffer and quantified by spectrophotometer. The conjugate was purified on a FPLC with a
gel permeation column Superdex 200 10/300 GL on an AKTA prime separation system
(GE, Sweden). The elution buffer was PB 50 mM pH 7.4 and the flow rate was 0.3 mL/min.

2.3. Biological Samples

Biological samples were obtained on postoperative 1 from surgically-placed trans-
anastomotic stents (PankreaPlus, Peter Pflugbeil Gmbh, Germany) or intra-abdominal
drains (Easy flow, Redax, Italy) of patients undergoing pancreatic resection at the Unit
of General and Pancreatic Surgery in the University of Verona Hospital Trust. Trans-
anastomotic stenting and drain placement in the proximity of a pancreatic-enteric anas-
tomosis or pancreatic raw surface is a standard practice following pancreatic resection.
Patients signed informed consent for utilization of biologic samples (PAD-R protocol,
1101CESC).

2.4. Gold Surface Functionalization

The protocol is reported in Figure 1. Prior to functionalization, gold substrates were
cleaned by argon plasma for 2 min at 6.8 W to remove organic contaminants. Then,
substrates were immersed in o-lipoic acid ethanolic solution (8% in MilliQ water) at
0.3 mM for 18 h at room temperature. After incubation, three washings with MilliQ water
were applied to remove excess solution. The activation of carboxylic groups was performed
using a mixture of EDC and sulfo-NHS in 50 mM of MES buffer pH 5.5, spanning different
molar ratios and incubation times to find the best conditions. Then, a specific antibody
(Ig GAMY) or an aspecific one (IgG) were incubated in binding buffer (10 mM phosphate
buffer, 138 mM NaCl, 2.7 mM KCl, pH 7.4) in a range between 1 + 50 pg/sample for
different times (20 < 120 min). Finally, after three washings in binding buffer, surfaces were
passivated by testing different BSA solutions (0.05 + 1 mg/mL) for 30 min in binding buffer.
Optimized conditions are reported in the Results and Discussion section in paragraph 3.
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Figure 1. Scheme of the functionalization protocol: (1) gold cleaning with Argon plasma, (2) a-lipoic acid self-assembled

monolayer, (3) activation with EDC/sulfo-NHS, (4) anti-amylase antibody immobilization and, finally, (5) surface passivation
with bovine serum albumin (BSA).

2.5. Surface Characterization

The functionalization process on the flat gold substrate was characterized using X-ray

photoelectron spectroscopy (XPS), contact angle (CA), chemiluminescence and fluorescence
measurements.

2.5.1. XPS Measurement

A Kratos Axis Ultra DLD (Kratos Analytical Ltd., U.K.) instrument, equipped with
a hemispherical analyzer and a monochromatic AlK« (1486.6eV) X-ray source in spec-
troscopy mode, was used to analyze the samples. The emission angle between the analyzer
axis and the normal sample surface was 0° or 60° (sampling depth of approximately 10 or
2-3 nm [22]). The following core lines were acquired: O 1s, C 1s, N 1s, S 2p and Au 4f. The
quantification, reported as a relative elemental percentage, was performed by using the
integrated area of the fitted core lines (after Shirley background subtraction) and by cor-
recting for the atomic sensitivity factors through a dedicated software [23]. This procedure
provided a quantitative analysis, which was useful for the chemical characterization of the
surface at different modification steps.

2.5.2. Fluorescence Measurement

The FITC fluorescence signal on IgG and TAMRA on BSA molecules were monitored
using a fluorescence microscope (Leica DMLA; Leica Microsystems, Germany) equipped
with a mercury lamp and the fluorescence filter L5 and N2.1, respectively (Leica Mi-
crosystems, Germany). All samples were observed with a 20x magnification objective and
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measured with a cooled CCD camera (DFC420C, Leica Microsystems, Germany), analyzing
the signal with Fiji software [24].

2.5.3. Contact Angle (CA) Characterization

The static contact angle was measured using a home-made system, depositing 2 uL
of deionized water droplets on the substrate (at least two drops per sample). The images
were acquired with a CMOS camera and analyzed by Drop-Analysis, a plugin of Fiji
software [24]. The results were reported as average value and standard deviations.

2.5.4. Chemiluminescence Characterization

After incubation and washing, the samples were transferred into a black microplate.
A 100 pL of chemiluminescent substrate was added to the wells and after 5 min the
signal was acquired. The chemiluminescence signal of the HRP conjugated amylase was
developed using the SuperSignal West Femto Chemiluminescent Substrate kit, according
to manufacturer instructions, and measured through a Chemidoc MP Imaging System
(BioRad) with 1 s of acquisition time. The measured signal was quantified using Fiji
software [24].

2.6. Amylase Measurements on the POF-Biosensor

Sensing measurements on the POF-biosensor platform were performed by dropping
~50 uL of sample in binding buffer (10 mM phosphate buffer, 138 mM NaCl, 2.7 mM KCl,
pH 7.4) over the sensing region; spectra were acquired over time for up to 8 min. After
8 min of incubation, the spectrum was acquired, then a washing step in the same buffer
was applied and the spectrum was acquired again by dropping fresh buffer over the sensor.
The following samples were used for the measurements: amylase denatured, effluent from
surgically-placed intra-abdominal drains (1 = 2) and pancreatic juice from intrapancreatic,
trans-anastomotic stent (n = 1). All samples were diluted prior to measurement in binding
buffer supplemented with Tween 20 0.02% v /v.

3. Results and Discussion
3.1. Optimization of the Surface Chemistry for the Preparation of the POF-Biosensor

The strategy adopted for the derivatization of the POF’s gold surface was adapted
from [17]; the derivatization steps are schematized in Figure 1. The surface derivatiza-
tion protocol was initially optimized on flat gold substrates and later transferred to the
POF platforms.

The gold surfaces were coated with a self-assembled monolayer of x-lipoic acid ac-
cording to [20]. Then, the effect of different molar ratios of EDC and sulfo-NHS (10:10,
20:10, 40:10, and 80:10 mM) on the immobilization of the antibody were tested as a func-
tion of the incubation time (20 < 120 min), using a fluorescent antibody (IgGFITC; 5 g)
as a probe and measuring the fluorescent signals by means of fluorescence microscopy.
Figures S1 and S2 report the fluorescent (FITC) signal of IgG FITC derivatized surfaces and
fluorescence images, respectively, for the different conditions tested. The mean fluorescence
signal (Figure S1) suggested that each molar ratio tested guaranties an equal antibody
immobilization up to 60 min. With increasing EDC concentrations, higher fluorescence
signals were observed, mostly at 2 h of incubation, however some aggregates were im-
aged, as reported in Figure S2. Increasing the sulfo-NHS concentration did not report
any advantages (data not shown). Based on the resulting images (Figure S2), a ratio of
EDC-sulfo-NHS 10:10 mM for 40 min was selected for the further functionalization steps,
given the uniform coverage achieved. The next step was to define the best concentration for
the antibody to be immobilized and its incubation time over the EDC-sulfo-NHS activated
surfaces. Using the fluorescent antibody IgG FITC in the range of concentrations between
1+50 pg and for different times, we observed the binding curves over time as reported in
Figure 2. The highest fluorescence signal was obtained by incubating 50 pg of IgG FITC for
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Figure 2. IgG FITC fluorescence on gold substrates functionalized at different concentration for different times: 20 min (A),

40 min (B), 60 min (C) and 120 min (D). Data are reported as mean value of five images acquired on the samples and error

bars represent standard deviation.

A fundamental step for the preparation of a functional interface for the measurements
of biological samples is the passivation of the surface. This step’s role is to prevent
non-specific interactions between the surface and biomolecules of the sample, such as
non-specific protein adsorption. Surface passivation is particularly important for optical
biosensor applications because the non-specific binding events contribute to the optical
signal, giving rise to false positives and to drift in the baseline.

The most common molecule used for passivation is bovine serum albumin (BSA). To
set up the passivation step, we used a fluorescent, TAMRA-conjugated, BSA spanning
a wide range of concentrations (0.03 + 1 mg/mL in binding buffer), with each used to
passivate the IgG functionalized gold surfaces for 30 min. The excess BSA was removed by
washings in binding buffer and the surfaces were imaged with a fluorescent microscope.
Figure 3 reports the fluorescence signal of TAMRA-BSA on the surface as a function of the
TAMRA-BSA concentration. Data fitted with Langmuir showed a correlation coefficient of
0.96. A BSA concentration of 0.25 mg/mL was selected for the passivation step.
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Figure 3. BSA-TAMRA adsorption to antibody functionalized surfaces after 30 min of incubation
as a function of different BSA-TAMRA concentrations. Data are reported as the mean value of five
images acquired on the samples and the error bars represent standard deviation.

3.2. Physico-Chemical Characterization of the Anti-Amylase Flat Gold Surface

Each step of the preparation of the IgG surfaces was physico-chemically characterized.
Surface characterization was performed by means of X-ray photoelectron spectroscopy
(XPS) and contact angle (CA) measurements. As reported in Table 1, the chemical composi-
tion of the gold surface changed after each modification step. The formation of the o-lipoic
acid SAM was clearly highlighted by the increase in the carbon content, the appearance
of a sulphur signal and the decrease of the gold signal, confirming the coverage of the
gold surface. The antibody immobilization was confirmed by the nitrogen appearance, the
increase in oxygen and carbon content, and the decrease of the sulphur (typical of «-lipoic
acid chains) and gold signal. A more detailed analysis was performed acquiring the core
line levels for the different elements. Table S2 and Figure S3 report the quantification and
the core lines at 60° take-off angle to highlight the differences between the samples. The
a-lipoic acid immobilization (Au + SAM sample in Table 1, Table S2 and Figure S3) was
confirmed by the appearance of a carboxylic moiety at around 289 eV and gold bound
thiolate at around 162 eV in agreement with the literature [25]. After the antibody immo-
bilization, the shape of the carbon core line greatly modified (Figure S3), increasing in
the components related to C-O, C-N bonds at 286.5 eV and N = C-O bonds at 288.4 eV, in
agreement with published works [26,27].

Table 1. XPS characterization at 0° take-off angle and contact angle measurements on bare gold
surface (Au), after o-lipoic acid coating (Au + SAM) and after antibody immobilization (Au + SAM +
IgG AMY). XPS standard error does not exceed the 1-2% of the reported value.

O1s(%) N1s(%) C1s(%) S2p(%)  Au4f (%) CA[°]

Au 16.4 - 14.6 - 68.9 <5
Au + SAM 9.9 - 418 40 443 56.1 + 3.4
Au+SAM + 189 7.0 482 2.9 229 52.6 + 3.8

IgG AMY
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Contact angle measurements, reported in Table 1, confirmed the gold substrate modifi-
cation after a-lipoic acid immobilization given the increase in hydrophobicity of the surface.
The further derivatization with the antibody layer conferred a slightly more hydrophilic
character to the surface.

3.3. Functional Characterization of the Anti-Amylase Flat Gold Surface

Before proceeding with the preparation of the POF-biosensor, the selectivity of the
anti-amylase (IgGAMY) flat gold surfaces for amylase was compared to that of non-specific
IgG surfaces. The functional test was performed by assaying the surfaces for the binding of
an HRP-conjugated amylase that was used as analyte. Increasing amounts of HRP-amylase
were incubated onto both the IgG AMY and the IgG surfaces for 1 h, followed by three
washings with binding buffer. To minimize the non-specific adsorption, the binding and
washing buffers were supplemented with the neutral detergent Tween 20 at 0.02% v /v.
The surfaces were then transferred into a black microplate and the chemiluminescent
substrate was added. After 5 min, the signal was acquired with a 1 s exposure. Figure 4
shows the chemiluminescent signal for both IgG AMY and IgG surfaces as a function of
the HRP-amylase concentration.
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Figure 4. HRP-amylase chemiluminescence signal detected on flat gold surfaces prepared with
specific antibody (IgG AMY) or aspecific one (IgG) in the linear range. Data are reported as the mean
of two independent experiments and the error bars represent standard deviation.

By referring the data of Figure 4 to the calibration curve, reported in Figure 54, the
amount of HRP-amylase bound to the surface was estimated. Considering the incubation
of 200 nM as the surface saturation, and by using the fitting parameters reported in Figure
S4, a surface coverage of 16.7 pmol/cm? was estimated. Figure 4 highlights the high
non-specific adsorption to IgG antibody surface despite the addition of detergent in the
incubation and washing steps. The specific antibody had a response 2.5 times higher than
the aspecific one.

3.4. The POF-Biosensor Set Up and Its Use for the Detection of the Amylase in Surgically-Placed
Drain Effluent

Finally, the POF-biosensor was prepared according to the optimized protocol, as
defined in the Sections 3.1-3.3. The surface plasmon resonance (SPR) sensing probe was
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realized by modifying a multimode POF with a PMMA core of 980 pm and a fluorinated
polymer cladding of 10 um (a total diameter of Imm), as described in [14]. In the first step,
the cladding and part of the core of the POF were removed along half the circumference
by a polishing process obtained by exploiting two different polishing papers (5 pm and
1 um polishing papers). After this step, the interaction between the propagated light and
the SPR phenomenon was improved by a buffer layer of Microposit S1813 photoresist
spun (6000 rpm for 60 s) on the exposed core. The buffer layer presented a refractive index
major then that of the POF core [14]. Finally, a thin gold film was sputtered onto the buffer
layer. The obtained gold nano-film was 60 nm thick and presented a good adhesion to
the substrate.

The POF-biosensor selectivity was obtained by covering the gold active surface with a
very specific receptor layer for the considered analyte; in the present case, the anti-amylase
antibody was used. The experimental measurements were carried out using a simple to
use setup arranged to measure the transmitted light spectra using a halogen lamp, the
SPR-POF sensor, and a spectrometer connected to a laptop. The halogen lamp exhibited
a wavelength emission range from 360 nm to 1700 nm, while the spectrometer detection
range was from 300 nm to 1100 nm. Figure 5 shows an outline of the sensor system with
the equipment and a cross section of the SPR-POF sensor.

Aqueous Medium

Receptor

Photoresist layer

Gold Film

POF Core Resine Block

POF Cladding

Spectrometer

=

2
N

White
light source

-

Figure 5. Setup of the POF-biosensor, as described in [14], with the equipment. The upper inset
shows the cross section of the SPR-POF biosensor.
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The SPR curves were obtained through Matlab software (MathWorks, Natick, MA,
USA) by the experimental SPR-transmitted spectra, normalized to the spectrum acquired
with air as the surrounding medium, for which the resonance condition was not satisfied
(reference spectrum).

Before testing the ability of the POF-biosensor to detect amylase in the patient drain
effluent, we estimated the theoretical binding capacity of the sensing surface to define
the expected saturation of the sensor. Referring to the results reported in Section 3.3, we
assumed that the IgG AMY covered the sensing surface at the density of 16.7 pmol/cm?.
The POF-biosensor had a sensing area of 1 x 0.1 cm, which implied an expected maximal
binding capacity of 1.67 pmol for the amylase. This corresponded to an expected maximal
binding capacity of about 90 ng of amylase on the POF-biosensor.
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Being that the intended final working environment for the POF-biosensor was the
drain effluent of patients undergoing surgery, the sensor’s response and the calibration
curve were directly studied on the surgically-placed drain effluent samples of known
amylase contents. This choice allowed us to perform the measurements in the presence of a
true matrix effect. In contrast, the use of pure human pancreatic amylase diluted in buffer
seemed too dissimilar from the real samples for the present analytical purposes, such as
the calibration curve on the POF-biosensor. Thus, pooled effluent with known content in
amylase, as determined by standard laboratory measurement, were used.

Initially, the kinetic response of the POF-biosensor for the binding of amylase was
studied to define the optimal measurement time. As shown in Figure 6, following the
deposition of 50 pL of sample (3.2 U/L amylase) on the POF-biosensor, the binding of
the amylase to the sensor’s surface produced a shift in the optical minimum. The optical
shifts of the sensor’s response were monitored over time and plotted (Figure 6, inset). Each
experimental value was the average of three measurements obtained on the same POF-
biosensor after the regeneration steps. The error bars reported in Figure 6 were calculated
as the maximal measured standard deviation (equal to 0.2 nm). It was observed that after
7-8 min of incubation, the minimum stabilized. As a result, an incubation time of 8 min
was set for all the following measurements.

580

Resonance Wavelength (nm)

—32UL" t= 0 min

—32UL" t= 1min

—3.2UL" t=2 min

32Ul t= 3 min

Time (minute) 32UL" t= 4 min
3.2UL" t= 5 min

—32UL" t= 6 min
32UL" t= 7 min
—3.2UL" t= 8 min

590 600 610 6é0 630
Wavelength (nm)

Figure 6. Kinetics of binding of 3.2 U/L amylase in surgically-placed drain effluent solution to the POF-biosensor. During

the sample incubation (t = 8 min) the optical minimum shifts were recorded and plotted over time (inset). Eight minutes

showed the endpoint of the kinetics and was chosen as the incubation time for all the measurements. The error bars were

calculated on a same POF-biosensor platform and equal to 0.2 nm.

The dynamic range of the response of the POF-biosensor for amylase was investigated.
The drain effluent was diluted in a range of concentrations between 0.8 and 25.8 U/L and
each sample was incubated for 8 min on the sensor surface. At the end of the incubation,
the sensor was washed with PBS-Tween. A volume of 50 uL of PBS-Tween was dropped
at the sensor surface and the signal was recorded. As shown in Figure 7A, increasing
concentrations of amylase in the sample correlated to a red shift of the optical minimum.
Figure 7B shows the binding isotherm, plotted as the AA of the optical minima as a function
of the amylase units (U/L) and fitted with Langmuir equation: y = Bmax L/ (K + L), where
Bmax was the maximal bound ligand, L was the ligand, i.e., the amylase herein expressed in
U/L, and K was the half saturation. The apparent half saturation (K) for the POF-biosensor
resulted at 1.989 U/L. The parameters for the Langmuir equation are reported in Table 2
and the chemical parameters for the POF-biosensor are shown in Table 3, where a limit of
detection (LOD) roughly equal to 0.5 U/L is also reported. Moreover, the measurements
were repeated on two sensing platforms, prepared from two different POF batches, and
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the mean data were linearly plotted using the mean values of AA min as a function of
the logarithm of the concentration of amylase, expressed in U/L (Figure 7C). The linear
equation was the following: y (AA)=0.89 In (x) + 1.41.

600 620 640 660 680
Wavelength (nm)

560 580

540

700

C

5 -
5
4 B -
! y
l ) + .
3 e o |
' £
» ‘ 3 =
2 e . F
1 L]
1A
114 -
0 T T T T T 1 ' T T T T T
0 5 10 15 20 P 0 1 18 32 6.4 129 258
Amilase (UL) Amylase (U/L)

Figure 7. The (A) transmission spectra of SPR-POF platform functionalized with specific antibody (IgG AMY) and tested

with amylase in surgically-placed drain effluent solution, (B) plasmon resonance wavelength variation (AA), with respect to

the blank, versus the concentration of amylase content in drain effluent solution (U/L), and (C) linear fitting of data (mean

value) obtained by two independent POF-biosensor batches. Error bars represent the standard deviation of measurements

carried out on three different POF-biosensors prepared from three different batches.

Table 2. Langmuir parameters of amylase detection in real solution by the SPR-POF biosensor.

Bmax K Statistics
Value Standard Value Standard Reduced Adj.
Error Error Chi-Sqr R-Square
3.694 0.124 1.989 0.247 1.620 0.981
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Table 3. Chemical parameters for amylase detection in real samples by SPR-POF biosensor.

Parameters Value
K[UL™] 1.989
SPR-POF Sensitivity at low ¢ [nm/UL™] 1.857
biosensor (Sensitivity at low ¢ = Bmax/K) '
-1
LOD [UL™"] 048

(3*standard deviation of blank/Sensitivity at low c)

To investigate the specificity of the POF-biosensor’s response to amylase, we used
a passivated bare gold POF as a negative control. The optical response of the bare gold
POF was monitored for dilutions of the drain effluent in the same range of concentrations
used to draw the binding isotherm in Figure 7. The resulting optical minima on passivated
gold POF for amylase 0.8-25.8 U/L are shown in Figure 8. Negligible optical shifts were
observed, thus confirming the POF-biosensor had a specific response for amylase.

T e

\\_/’/ 1 Reference Sensor (without Bioreceptor)

1 1 | | 1 1 I 1 1
540 560 580 600 620 640 660 680 700
Wavelength (nm)

Figure 8. Transmission spectra of SPR-POF platform non-functionalized and tested with PO fluid solution.

As a further control, we compared the POF-biosensor’s response for the drain effluent
with the response of a degraded amylase. The solution of a commercial amylase in PBS was
stored at room temperature for a few days to promote degradation and unfolding, then the
amylase solution was diluted in the range 0.8-6 U/L and measured with the POF-biosensor.
The results (Figure 9) clearly showed that the signal of the POF-biosensor for the degraded
amylase result was negligible when compared with the non-degraded sample.

Lastly, we tested the POF-biosensor response blindfolded with a surgically-placed
drain effluent of unknown amylase content. After dilution, the blind surgically-placed
drain effluent was measured on the POF-biosensor and the U/L of the unknown sample
was calculated using the linearized calibration curve (Figure 7C). The results shown in
Table 4 demonstrate a good agreement between the POF-biosensor measurement and the
amylase U/L determined with the enzymatic colorimetric test (IFCC), as also demonstrated
by the calculation of the test accuracy, expressed in the Equation (1) according to [28]:

100% — detected value — true value 100 1)
true value

where detected value is obtained by POF biosensor and true value by IFCC test.
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Figure 9. Plasmon resonance wavelength shifts (AA), with respect to the blank, versus the concentra-
tion of amylase (U/L). Red circles represent surgically-placed drain effluent; black squares represent
amylase degraded (unfolded). Standard deviation associated with the measurements was 0.2 nm.

Table 4. Comparison between the determination of the amylase (U/L) made by the POF-biosensor
and the enzymatic colorimetric test used as the gold standard.

POF-Biosensor Enzymatic Colorimetric Assay

0,
Sample UIL U/L Accuracy (%)
Drain effluent n.1 29,501 £ 6050 31,320 94.2
Drain effluent n.2 857 + 76 794 92.1

4. Conclusions

In this paper, we reported on the development of a SPR POF-biosensor selective
for amylase and suitable for determining it in surgically-placed drain effluent following
pancreatectomy. The SPR sensing surface was composed of a metallized D-shaped POF
derivatized with a specific anti-amylase antibody. The results showed that the POF-
biosensor measurement time was a few minutes, thus offering fast responses. The POF-
biosensor was used to measure amylase directly on diluted drain effluent, thus reducing
the analytical procedure to just a simple sample dilution. The POF-biosensor is the first
described and based on the SPR principle. Currently, there are no sensors for the direct
measurement of pancreatic amylase, thus the POF-biosensor is intended to fill the gap
of fast and easy to use systems for the detection of the pancreatic amylase in patient’s
postoperative conditions. Being that the POF-biosensor is suitable for use in remote
sensing, it allows, in principle, performance of the analysis bedside instead of centralizing
the collections of the results.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21103443/s1, Figure S1: IgGFITC fluorescence on gold substrates functionalized with a-lipoic
acid and different molar ratio (mM) of EDC:sulfoNHS as a function of time. Data are reported as mean
value of five images acquired on the samples and error bars represent standard deviation, Figure S2:
Fluorescence images of IgGFITC antibody incubated at 5 ug/sample for different times (20 <+ 120 min)
on samples with different EDC:sulfoNHS molar ratio and acquired at 20x magnification objective.
Scale bar is 100 pum., Figure S3: Main core line levels of different samples reported in Table S2 at 60°
take-off angle, Figure S4: HRP-amylase calibration curve. Data are reported as mean value of two
experiments and error bars represent standard deviation Table S1: Fitting parameters of the Langmuir
curves y = A*x/(B + x) reported in Figure 2, Table S2: XPS characterization at 60° take-off angles
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on bare gold surface (Au), after «-lipoic acid coating (Au+SAM) and after antibody immobilization
(Au+SAM+IgGAMY). XPS standard error does not exceed the 1-2% of the reported value.
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