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Abstract

The electroencephalography (EEG) is a non-invasive technique to study electrical brain activity (while
brain is performing a cognitive task). The electrical brain activity is a complex process of electrical
propagation because the brain structure is an incredibly complex structure. This complex structure
leads to different conductivity property in term of its magnitude and orientation, called anisotropic
conductivity. Using Maxwell’s equations, the electrical brain activity has been studied intensively. For
simplification, the quasistatic Maxwell’s equations are used to model the electrical brain activity and
it leads to deal with a Poisson’s equation. In this research, a feasibility study of using a new method,
called Operator Splitting Method (OSM), to solve anisotropic 2-Dimensional (2D) Poisson’s equation is
performed. A freeware of finite element method (FEM), FreeFEM++, is employed to build matrices
used in the OSM algorithm. The OSM algorithm which is written in Matlab is then tested to solve
anisotropic 2D Laplace’s equation and anisotropic Poisson’s equation with dipolar source. Afterwards,
the OSM solutions are validated by using exact solution and direct numerical solution. By using L2-Error
Norm, the convergence rate of the OSM algorithm is then analyzed. Some numerical experiments have
been performed to test the performance of the OSM algorithm. The OSM solution of anisotropic 2D
Laplace’s equation coincide with the exact and direct numerical solution of the problem. For anisotropic
2D Poisson’s equation with dipolar source, some similar results has been obtained too. The pattern of
the OSM solutions are similar to the pattern of direct numerical solutions of the problem. The results
arise a hope to attempt implementing the OSM algorithm for more complex problem such as a realistic
human head model.
Keywords: Maxwell’s equations, anisotropic conductivity, OSM, FEM, Laplace’s equation, Poisson’s
equation

1. Introduction
The electroencephalography (EEG) is a non-invasive

technique to study electrical brain activity (while brain is
performing a cognitive task). The electrical brain activity
is a complex process of electrical propagation because the
brain structure is an incredibly complex structure. This
complex structure leads to different conductivity property
in term of its magnitude and orientation, called anisotropic
conductivity. Using Maxwell’s equations, the electrical
brain activity has been studied intensively. In order to im-
plement the Maxwell’s equations for EEG modelling, the
time-derivatives the Maxwell’s equations could be omitted,
that is called quasistatic approximation, and it leads to
deal with a Poisson’s equation as shown by Equation 1.
This approximation is valid for EEG modelling because the
frequency of EEG on the human head is very weak, lower
than 102 Hz [1].

∇.(σ∇V ) = ∇.Jp (1)

where V is the electric potential, Jp is the primary cur-

rent, and σ is the conductivity properties. In EEG human
head modelling, the conductivity properties of equation
1 must be specified. This property is related to the struc-
ture of human head. The structure of human head is an
incredibly complex structure because it is a heterogeneous
structure with different tissue layers and each tissue layer
has particular property as shown by Figure 1 [2] [3]. Thus,
it is a challenge for scientist to deal with this issue. For a
realistic human head model, it is very difficult to solve the
model which consider the complexity of human head struc-
ture [4] [5] [6]. Generally, this model is called anisotropic
human head model. The idea of this report is to propose
a new method, called Operator Splitting Method (OSM),
to solve anisotropic problem. The method proposed is
expected to be able to solve anisotropic problem easily.
In this report, a feasibility study of using OSM to solve a
simple anisotropic problem is performed. Hopefully, this
feasibility study can motivate researchers to implement
OSM in a realistic human head model.

Many researchers have tried to develop such a hu-
man head model for solving forward problem of EEG
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Figure 1. (a) The MRI of the human head (b) The human head tissues

(a)
(b)

Figure 2. (a) Human head model through triangle BE (b) Sagittal cut of the human head model through tetrahedral FE

source localization. The forward problem of EEG aims
at computing the electrical field produced by a known
primary current, in a known geometry. The boundary ele-

ment method (BEM) and the finite element method (FEM)
can be implemented for solving the problem. Both of these
numerical approximation methods, BEM and FEM, have

either advantages or disadvantages. Using BEM will allow
to carry out simulations at low computational cost because
by this approach, the domain decomposition or meshing
is only applied on the boundary as shown in Figure 2a.

The disadvantage of BEM is in non-realistic assump-
tions used (all tissues are homogenous and isotropic
between boundaries) [7]. While using FEM requires
high computational cost to perform simulation because
the whole computation domain must be decomposed or
meshed as shown by Figure 2b. It means that the number
of unknown vertices in using FEM is much higher than us-
ing BEM. However, FEM approach is much more realistic
than BEM approach because anisotropic material parame-
ters could be incorporated in using FEM. In this research,

using OSM, a simple anisotropic problem is tried to be
solved by considering its isotropic model and introducing
a correction term, called lineic. Therefore, the solution
of OSM is compared to the exact and direct numerical
solution of this anisotropic problem.

2. Experimental / Theoretical Method
Firstly, the OSM will be employed to solve

anisotropic 2D Laplace’s equation. The OSM solution
is then compared to the direct numerical solution and
the analytical solution in order to validate the OSM solu-
tion. Afterwards, having validated the OSM solution for
anisotropic 2D Laplace’s equation, the OSM will be tested
to obtain the solution of anisotropic 2D Poisson’s equation.
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Let us recall Poisson’s equation as equation 1. If the right
hand-side of equation 1 is equal to zero, it is called the
Laplace’s equation as stated by equation 2.

∇.(σ∇V ) = 0 (2)

In 2D domain of xy - coordinates , the conductivity
operator in equation 1 and 2, σ , can be presented as a
matrix:

σ =
(
σx 0
0 σy

)
(3)

where σx is the conductivity in x - direction ,and σy is
the conductivity in y - direction. If σx = σy, then σ is an
isotropic conductivity, σiso. When σx φ σy φ 0 or 0 π σx π
σy, then σ is an anisotropic conductivity, σanis. Thus, in
xy - coordinates, the 2D Poisson’s and Laplace’s equation
can be stated by equation 4 and 5, respectively.

∇.(σ∇V ) = σx
∂2V

∂x2 + σy
∂2V

∂y2 = ∇.Jp (4)

∇.(σ∇V ) = σx
∂2V

∂x2 + σy
∂2V

∂y2 = 0 (5)

In order to implement OSM in the problem of interest,
the conductivity operator in anisotropic 2D Poisson’s and
anisotropic 2D Laplace’s equation is treated as the sum-
mation of an isotropic conductivity, σiso, and a lineic or
correction conductivity, σlin, as follows:

σaniso = σiso + σlin (6)

In the xy - coordinates, if the assumption of σx φ σy is
taken, equation 6 can be represented as a matrix addition
as follows:

σanis =
(
σx 0
0 σy

)
= σiso+σlin =

(
σy 0
0 σy

)
+
(
σx−lin 0

0 0

)
(7)

Considering equation 1 and 2 as 2D anisotropic problem
in xy - coordinates and substituting equation 6 to both
equations, if σy = 1 , equation 1 and 2 can be re-arranged
as equation 8 and 9, respectively.

σx
∂2V

∂x2 +σy
∂2V

∂y2 = (∂
2V

∂x2 + ∂2V

∂y2 )+σlin
∂2V

∂x2 = ∇.Jp (8)

σx
∂2V

∂x2 + σy
∂2V

∂y2 = (∂
2V

∂x2 + ∂2V

∂y2 ) + σlin
∂2V

∂x2 = 0 (9)

The value of σx−lin depends on how stronger σx, the con-
ductivity in x - direction, to σy, the conductivity in y -
direction.

Solving Poisson’s equation using FEM will yield a
linear system AV = B. Thus, if equation 8 and 9 are solved
using FEM, the linear system will be produced as well. Ba-

sically, the linear system AV = B is built as follows: matrix
A is built from the left hand-side of the equations, while
matrix B is built from the right hand-side of the equations.
It can be seen that using OSM, there are two terms in the
left hand-side of the equations. It means that there are
two matrices A that will be produced. The first matrix A
is built from ( ∂2V

∂x2 + ∂2V
∂y2 ), it is called Aiso. The second

matrix A is built from σx−lin
∂2V
∂x2 , it is called Alin. Using

FreeFEM++ [8], both terms will be discretized and the el-
ements of the matrices will be generated. Afterwards, the
OSM algorithm will be developed by using those matrices
produced. In this research, the OSM algorithm proposed
is as follows:

Aiso.Vn = B −Alin.V(n−1) (10)

V(n+1) = λ.Vn + (1− λ).V(n−1) (11)

where λ is the relaxation coefficient; constant and n is the
iteration number. Introducing a relaxation coefficient, λ,
in the algorithm proposed is designed to have a hope of
speeding-up the convergence of the value of iteration.

The OSM algorithm which is written in Matlab is
then tested to solve an anisotropic Laplace’s and Poisson’s
equation with dipolar source. Afterwards, the OSM so-
lutions are validated by using exact solution and direct
numerical solution. By using L2-Error Norm, the conver-
gence rate of the OSM algorithm is then analyzed. Let us
recall the original problem, Poisson’s equation (equation
1), where σx is sigma times of σy as follows:

∇.(σanis∇V ) = sigma.
∂2V

∂x2 + ∂2V

∂y2 = ∇.JpinΩ (12)

σ
∂V

∂n
= σ∇V.n = hon∂Ω (13)

The boundary condition of equation 13 will be modified
as that Neumann boundary value will be equal to zero,

σ
∂V

∂n
= σ∇V.n = 0on∂Ω (14)

due to the hypothesis that states no current flows out-
ward of the human head is used. The problem is solved
in 2D rectangular domain with homogeneous Neumann
condition on all boundaries, as shown in Figure 3.

The Operator Splitting solution will be compared to
the direct numerical solution by using the L2-Error Norm.
The L2-Error Norm in solving anisotropic 2D Laplace’s and
Poisson’s equation with dipolar source is formulated as:√√√√i=N∑

i=1
(Vn(i)− Vdirect(i))2 (15)

where Vdirect is the direct numerical solution of the prob-
lem.
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Figure 3. Boundary conditions on the domain of 2D Poisson’s equation

3. Results and Discussion
3.1. The Numerical Solution of Anisotropic 2D Laplace’s
Equation

Before dealing with anisotropic 2D Poisson’s equa-
tion, the work will be started by solving anisotropic 2D
Laplace’s equation numerically and then validate its nu-
merical solution with the analytical solution. First of all,
the isotropic 2D Laplace’s equation will be solved by using
FEM. Let us recall 2D Laplace’s equation :

∇.(σ∇V ) = σx
∂2V

∂x2 + σy
∂2V

∂y2 = 0 (16)

The domain of this problem is a rectangular domain
in [xy - coordinates] as shown in figure 4. The boundary
conditions of equation 16 are:

V (a, y) = 0 (17)

∂V

∂n
(x, 0) = 0, ∂V

∂n
(x, b) = 0, ∂V

∂n
(0.y) = −1 (18)

Figure 4. Boundary conditions on the domain of 2D Laplace’s equation

Figure 5. Domain decomposition/meshing
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Figure 6. Direct numerical solution of anisotropic 2D Laplace’s equation for σx = 3 σy

Equation 16 is an anisotropic problem in which
σx = 3σy. On the boundaries, there are two types of
the boundary condition (BC) that are used. They are
Dirichlet BC in which the solution is fixed on the boundary
and Neumann BC where its normal derivative is fixed on
the boundary. In using FEM to solve the problem, a free
software FreeFEM++ is employed to mesh the 2D rectan-
gular domain and build the linear system of the problem,
AV = B. It means that FreeFEM++ will build both matri-
ces, matrix A and B. Furthermore, a Matlab script will be
used to solve this linear system and display the numerical
solution in graphical representation.

The dimensions of 2D rectangular domain are 0.1 ×
0.7, decomposed using a triangle meshing into 1852 nodes
or vertices and 3462 triangles as shown by figure 5. The
basis function is choosed to build the linear system. The

direct numerical solution of anisotropic Laplace’s quation
in 2D rectangular domain is shown by figure 6.

In using Operator Splitting Method to solve the prob-
lem, a free software FreeFEM++ is employed to build
matrix Aiso, Alin, and B which will be implemented in
the OSM algorithm. The OSM gives a solution of the prob-
lem as displayed by figure 7. This solution is obtained
by parameters setting of λ, relaxation coefficient = 0.1,
n, number of iteration = 30. In order to validate the nu-
merical solution of anisotropic 2D Laplace’s equation, the
analytical solution of anisotropic 2D Laplace’s equation
will be obtained. For obtaining the analytical solution,
the Separation of Variables method is employed. Figure 8
shows the analytical solution of anisotropic 2D Laplace’s
equation.

Figure 7. Operator Splitting solution of anisotropic 2D Laplace’s for σx = 3 σy
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Figure 8. Analytical solution of anisotropic 2D Laplace’s equation for σx = 3 σy

Figure 9. Comparison between exact and direct numerical solution in solving anisotropic 2D Laplace’s equation for σx = 3 σy

Figure 9 and 10 show the comparison between ex-
act and direct numerical solution and the comparison be-
tween exact and Operator Splitting solution anisotropic 2D
Laplace’s equation, respectively. It can be seen that both
direct numerical and Operator Splitting solution graphics
coincide with the exact solution. It means that either di-
rect numerical scheme and Operator Splitting algorithm
used well suit to solve anisotropic 2D Laplace’s equation.
Thus, the direct numerical scheme and Operator Split-
ting algorithm can be proposed to solve the next problem,

anisotropic 2D Poisson’s equation with dipolar source. Par-
ticulary for the Operator Splitting algorithm proposed, the
convergence rate of this algorithm can be exploited in
order to know how well this algorithm works. For this
purpose, the L2-Convergence Norm will be used to ana-
lyze the convergence for each n - th iteration. Figure 11
shows the convergence rate of the Operator Splitting algo-
rithm proposed. In general, the algorithm proposed works
well because the convergence trend is decrease along the
iteration.
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Figure 10. Comparison between exact and Operator Splitting solution in solving anisotropic 2D Laplace’s equation for σx = 3
σy

Figure 11. Convergence rate of Operator Splitting in solving anisotropic 2D Laplace’s equation for σx = 3 σy, λ = 0.1, number
of iteration = 30

In evaluating L2-Error Norm, the relaxation coeffi-
cient, λ, is varied in order to know the best setting of this
parameter in the OSM algorithm. For the number of itera-

tion of 30, the L2-Error Norm is shown by figure 12 and
13. While table 1 gives the information of the minimum
L2-Error Norm obtained for each λ.
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Figure 12. L2-Error Norm of Operator Splitting iteration in solving anisotropic 2D Laplace’s for σx = 3 σy, λ = 0.03 - 0.6,
number of iteration = 30

Figure 13. L2-Error Norm of Operator Splitting iteration in solving anisotropic 2D Laplace’s for σx = 3 σy, λ = 0.8, number of
iteration = 30

Figure 12 shows that from λ = 0.03 to λ = 0.4, the
higher lamda used, the faster the L2-Error Norm obtained.
This fact is also showed in table 4.1. While for λ = 0.5
and λ = 0.6, they have similar trend with λ = 0.2 and λ =
0.07, respectively. In figure 13, the trend line of L2-Error

Norm obtained by λ = 0.8 is basically similar to the trend
line of using λ = 0.7 and λ = 0.9. It can be seen that
using λ higher than 0.6, the L2-Error Norm will not con-
verge. Thus, it can be concluded the maximum relaxation
coefficient allowed in the OSM algorithm is about 0.6.
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Table 1. The minimum L2-Error Norm obtained in solving anisotropic 2D Laplace’s for σx = 3 σy, number of iteration = 30

Lambda Minimum L2-error norm Iteration
0.03 3.4113110e-001 30
0.05 4.4080582e-002 30
0.07 4.9033432e-003 30
0.1 1.3020293e-004 30
0.2 6.4309739e-012 30
0.3 4.4509143e-014 28
0.4 2.9083823e-014 26
0.5 5.3797911e-009 30
0.6 7.1512039e-003 30
0.7 1 1
0.8 1 1
0.9 1 1

3.2. The Numerical Solution of Anisotropic 2D Poisson’s
Equation

In this part, the anisotropic 2D Poisson’s equation
with dipolar source will be solved by using Operator Split-
ting Method. For an experiment, the anisotropic 2D Pois-
son’s equation with dipolar source is specified where σx =
sigma · σy in which sigma = 8. The solution is obtained
by parameters setting of λ, relaxation coefficient = 0.1, n,
number of iteration = 30, an initial solution for all vertices
= 0 and shown by figure 14. By modifying sigma from 2

to 10, the computation parameters for obtaining a proper
solution are shown by table 2.

In solving anisotropic 2D Poisson’s equation with
dipolar source, the Operator Splitting solution will be vali-
dated by using the direct numerical solution. The direct
numerical scheme used, FEM, is very well-known tech-
nique and it has been used in wide area. Hence, the
Operator Splitting solution will be compared to the direct
numerical solution by using the L2-Error Norm. Figure
15 shows the comparison between the OSM and direct
numerical solution for sigma = 0.8.

Figure 14. Operator Splitting solution of anisotropic 2D Poisson’s equation for sigma = 8, λ = 0.1, and number of iteration =
30
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Table 2. Computation parameters of the OSM for obtaining a proper solution

Sigma Lambda Iteration XMinimum L2-error norm
2 0.5 5 0.00020618
3 0.4 4 0.00012632
4 0.4 21 0.00140830
5 0.2 12 0.00035377
6 0.2 12 0.00009549
7 0.2 14 0.00147514
8 0.1 23 0.00005298
9 0.1 9 0.00238260
10 0.1 26 0.00024813

Figure 15. Comparison between direct numerical and Operator Splitting solution in solving anisotropic 2D Poisson’s equation
for σ = 8, λ = 0.1, and number of iteration = 23

4. Conclusions
The numerical experiments show that the Opera-

tor Splitting Method proposed is able to solve either
anisotropic 2D Laplace’s equation or anisotropic 2D Pois-
son’s equation with dipolar source. In solving anisotropic
2D Laplace’s equation, the OSM solution coincides with
the exact and direct numerical solution of the problem.
While for solving anisotropic 2D Poisson’s equation with
dipolar source, the pattern of the OSM solutions are simi-
lar to the pattern of the direct numerical solutions. Indeed,
some of OSM solutions almost coincide with the direct
numerical solution.

In solving anisotropic 2D Poisson’s equation with
dipolar source, the maximum number of iteration is speci-
fied equal to 30. This parameter setting is based on some

facts that a setting of number of iteration more than 30 will
not lead a convergence iteration. Furthermore, for deter-
mining computation parameters, the relaxation coefficient
and number of iteration, to obtain “the best” solution of
the problem, the minimum L2-Error Norm obtained and
its number of iteration are consider. Sometime, there is
a trade-off between those values in choosing a proper
computation parameters because of a small differences of
those values.

The performance of the OSM algorithm proposed
works well in solving either anisotropic 2D Laplace’s equa-
tion or anisotropic 2D Poisson’s equation with dipolar
source. It arises a hope or motivation to attempt imple-
menting the OSM algorithm for more complex problem
such as a realistic human head model. Applying the OSM
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algorithm in a such complex domain, it seems that the
most difficult task is building matrix that will be imple-
mented to the algorithm proposed. Thus, in the future,
this challenge is a very interesting research topic for re-
searchers. And hopefully, a new method, Operator Split-
ting Method, will be really able to solve a real problem of
EEG modelling.
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