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Abstract: 

1,4-Diaryl-9H-fluoren-9-ones were prepared by regioselective Suzuki-
Miyaura cross-coupling reaction of the bis(triflate) of 1,4-dihydroxy-9H-
fluoren-9-one. The reactions proceeded with excellent site-selectivity. The 
first attack occurs at postion 1, due to electronic reasons.  
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Abstract: 1,4-Diaryl-9H-fluoren-9-ones were 

prepared by regioselective Suzuki-Miyaura cross-

coupling reaction of the bis(triflate) of 1,4-dihydroxy-

9H-fluoren-9-one. The reactions proceeded with 

excellent site-selectivity. The first attack occurs at 

postion 1, due to electronic reasons.  
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Fluorenones from natural and synthetic sources show 

a wide spectrum of biological properties.
1
 

Amidofluorenones
2
 are inhibitors of telomerase 

enzyme, kinamycin derivatives show antitumor and 

antimicrobial activity against Gram-positive bacteria.
3
 

Other fluorenone derivatives also exhibit 

pharmaceutical properties and are important 

components of many naturals products.
4-7

 

Dendroflorin (A, Figure 1), Denchrysan A (B, Figure 

1) and 1,4,5-trihydroxy-7-methoxyfluoren-9-on (C, 

Figure 1) are natural products which can be isolated 

from the orchid Dendrobium chrysotoxum and show a 

wide range of biological activities.
6
  

 

 

Figure 1. Structure of biologically active Dendroflorin (A), 

Denchrysan A (B) and 1,4,5-trihydroxy-7-methoxyfluoren-9-one 

(C) 

 

These natural products were examined for their 

inhibitory activity against the growth of human lung 

adenocarcinoma, and the human stomach cancer. 

Furthermore, they are used as drugs for the treatment 

of viral diseases, such as diarrhea, herpes, and 

hepatitis.
8,9

 Fluorenes, arylated fluorenones and 

benzofluorenones have been incorporated in 

oligomers and polymers which have been examined 

widely for potential applications as organic light-

emitting devices (OLEDs).
10

  

 

We have reported a synthetic approach to 
functionalized  fluorenones based on formal [3+3]-
cyclizations of 1,3-bis(silyloxy)-1,3-butadienes.

11
 

Since the importance of fluorenones and 
benzofluorenones are obvious, the development of 
efficient and regioselective methods for the synthesis 
of aryl-substituted derivatives is of actual importance. 
Herein, we show a convenient pathway to 1,4-diaryl-
9H-fluoren-9-one by site-selective

12
 Suzuki–Miyaura 

reactions of the bis(triflate)
13

 of 1,4-dihydroxy-9H-
fluoren-9-one (1). The preparation of these products is 
difficult by other methods. 

 

The reaction of 1,4-dihydroxy-9H-fluoren-9-one (1) 

with triflic anhydride provided bis(triflate) 2 (Scheme 

1).
14

 The Suzuki–Miyaura reaction of 2 with 

arylboronic acids 3a-h (2.4 equiv) gave 1,4-diaryl-9H-

fluoren-9-one 4a-h in 86-98% yield (Scheme 2, Table 

1).
15,16

 In addition, the application of DMF (instead of 

dioxane) was important in case of 4g due to the low 

solubility of the starting material. Both electron rich 

and poor arylboronic acids were successfully 

employed in these transformations. 
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Scheme1. Synthesis of 2, Conditions; i, 1 (1.0 equiv.), abs. 

pyridine, CH2Cl2, Tf2O (2.4 equiv.), 20 °C, 20 h. 

 

 

Scheme 2. . Synthesis of 4a-h, Conditions: i, 2 (1.0 equiv.), 3a-d, 

f-h (2.4 equiv.), Pd(PPh3)4 (6 mol %), K3PO4 (3.0 equiv.), 1,4-

dioxane, 100 °C, 8 h 

 

Table 1. Synthesis of compounds 4a-h 

3 Ar % (4)
a
 4 

a 3,4-(MeO)2C6H3 97 a 

b 4-MeOC6H4 98 b 

c 4-MeC6H4 97 c 

d C6H5 98 d 

f 4-OHC6H4 98 f 

g 5-F-2-MeOC6H3 86
b
 g 

h 4-(CF3)C6H4 87 h 

a 
Yield of isolated products 

b
 DMF was used as solvent. 

 

The Suzuki–Miyaura reaction of 2 with one equivalent 

of arylboronic acids gave 1-aryl-4-(trifluormethane-

sulfonyloxy)-9H-fluoren-9-ones 5a-h in 66-92% yield 

(Scheme 3, Table 2).
17,18

 The reactions proceeded by 

regioselective attack onto the 1-position. During the 

optimization, it proved to be important to perform the 

reaction at lower temperature (60 °C) with lower 

catalyst amount as compared to the synthesis of 1,4-

diarylated-9H-fluoren-9-ones. Repeatedly, both 

electron rich and poor arylboronic acids afforded the 

corresponding compounds in good yields. The 

structure of 5b was independently confirmed by X-ray 

crystal structure analyses
19

 (Figure 2) and by 2D 

NMR measurements. 

 

 

 

Scheme 3. Synthesis of 5a-h, Conditions: i, 2 (1.0 equiv.), 3a-h 

(1.2 equiv.), Pd(PPh3)4 (3 mol %), K3PO4 (2.0 equiv.), 1,4-dioxane, 

60 °C, 12 h 

 

 

 

 

Table 2. Synthesis of compounds 5a-h 

3 Ar % (5)
a
 5 

a 3,4-(MeO)2C6H3 66 a 

b 4-MeOC6H4 84 b 

c 4-MeC6H4 85 c 

d C6H5 92 d 

e 3-(CH2=CH)C6H4 85 e 

f 4-OHC6H4 86 f 

g 5-F-2-MeOC6H3 83 g 

h 4-(CF3)C6H4 73 h 

a 
Yield of isolated products 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Ortep plot for compound 5b
19 

 

The reaction of 5 with different arylboronic acids 

provided 1,4-diarylated-9H-fluoren-9-ones 6a-g in 

high yields (Scheme 4, Table 3).
20,21

 These transfor-

mations were successful even at lower temperature 

and with shorter reaction time.  

 

 

 

 

 

 

 

Scheme 4. Synthesis of 6a-g, Conditions: i, 5 (1.0 equiv.), 3a-g 

(1.2 equiv.), Pd(PPh3)4 (5 mol %), K3PO4 (2.0 equiv.), 1,4-dioxane, 

90 °C, 10h 
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Table 3. Synthesis of compounds 6a-g 

5 3 Ar Ar1 % [6]a 6 

g b 5-F-2-(MeO)C6H3 4-(MeO)C6H4 99 a 

g c 5-F-2-(MeO)C6H3 4-MeC6H4 99 b 

b a 4-(MeO)C6H4 3,4-(MeO)2C6H3 97 c 

e b 3-(CH2=CH)C6H4 4-(MeO)C6H4 42 d 

a f 3,4-(MeO)2C6H3 4-(HO)C6H4 94 e 

d a C6H5 3,4-(MeO)2C6H3 99 f 

c g 4-MeC6H4 5-F-2-(MeO)C6H3 96b g 

a 
Yield of isolated products 

b
 DMF was used as solvent. 
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Scheme 5. Possible explanation for the regioselectivity of the 

reactions of bis(triflate) 2 

 

In conclusion, we have report the first Suzuki–

Miyaura reactions of 1,4-bis(trifluoromethylsulfonyl-

oxy)-9H-fluoren-9-one. These reactions provide a 

convenient access to a variety of 1,4-diarylated 9H-

fluoren-9-ones. The reactions showed a very good 

regioselectivity in favour of the 1-position. Palladium 

catalyzed cross-coupling reactions of polyhalogenated 

substrates and of bis(triflates) usually proceed in 

favour of the sterically less hindered and 

electronically more deficient position. The first attack 

of palladium(0)-catalyzed cross-coupling reactions 

generally occurs at the electronically more deficient 

and sterically less hindered position.
22

 Position 1 of 

bis(triflate) 2 is sterically more hindered compared to 

position 4, because of the neighbourhood of the 

carbonyl group (Scheme 5). Therefore, the site-

selective formation of 5a–h and 6a–g can be 

interpreted by electronic reasons. In addition, 

chelation of the palladium catalyst by the carbonyl 

group might play a role. The selectivity can be 

explained by the highly electron deficient nature of the 

1-position of the 9H-fluoren-9-one moiety (due to 

electron-withdrawing effect of the carbonyl group). 
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3
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4
J = 1.2 Hz, 

1H, ArH), 7.53 (d , 
3
J = 9.1Hz, 1H, ArH), 7.48 (dt, 

3
J = 

7.5 Hz, 
4
J  = 0.9 Hz,  1H, ArH), 7.21 (d, 

3
J = 9.1Hz, 1H, 

ArH). 
13
C NMR (75 MHz, CDCl3): δ = 187.40 (CO), 

144.29, 143.06, 139.32, 138.13 (C), 136.09 (CH), 133.49 

(C), 131.48 (CH), 129.39 (C), 127.62 (CH), 125.70, 

124.5, 124.38 (C), 118.85 (q, JF,C = 321.00 Hz, CF3), 

118.66 (q, JF,C = 321.00 Hz, CF3). 
19
F NMR (282 MHz, 

CDCl3): δ = -73.02, -73.17 (2* CF3). IR (ATR, cm
-1

): v 

= 3104.6 (w), 3089 (w), 2921 (w), 2849 (w), 1726 (s), 

1427 (s), 1224 (s), 1207 (s), 1166 (m), 1134 (s), 1104 

(m), 905 (s), 886 (s), 845 (s), 812 (m), 803 (s), 762 (m), 

754 (s), 598 (s). MS (EI, 70eV): m/z = 476 (M
+
, 52); 343 

(13), 279 (100), 251 (49), 223 (35), 185 (14), 154 (16), 

128 (33), 100 (12), 69 (43). HRMS (EI): calculated for 

C15H6F6O7S2 (M
+
) 475.94536, found 475.94491.CH-

Analysis: calculated for C15H6F6O7S2 (476.32): C, 

37.82; H, 1.27. Found: C, 37.92; H, 1.08. 

15. General Procedure for the synthesis of 4a-h. In a 

pressure tube 2 (0,315 mmol), K3PO4 (3.0 equiv.), 

Pd(PPh3)4 (6.0 mol %) and arylboronic acid (2.4 equiv.) 

were mixed with dry 1,4-Dioxan , degassed  with Argon 

und stirred for 12h at 100°C. After cooling to room 

temperature the solution was filtered through cellite, 

washed with CH2Cl2 and the filtrate was concentrated by 

reduced pressure. The residue was purified by column 

chromatography to receive the bis-substituted fluorenone 

4a-h in good yields. 

16. 1,4-Bis-(3,4-dimethoxyphenyl)-9H-fluoren-9-one (4a). 

Starting with 2 (150 mg, 0.315 mmol), 3a (138 mg, 

0.756 mmol, 2.4 equiv.), Pd(PPh3)4 (22 mg, 0.018 mmol, 

6 mol %), K3PO4 (200 mg, 0.945 mmol, 3.0 equiv.) and 

1,4-dioxane (5 ml). After purification by column 

chromatography (silica gel heptane/EtOAc 1:1) 4a was 

isolated as an orange solid (138 mg, 97%); Mp: 192-

194°C. 
1
H NMR (300 MHz, CDCl3): δ = 7.62-7.58 (m, 

1H, ArH), 7.34 (d, J = 7.9 Hz, 1H, ArH), 7.23 (d, J = 7.9 

Hz, 1H, ArH), 7.21-7.17 (m, 2H, ArH), 7.15-7.11 (m, 

2H, ArH), 7.02 (s, 2H, ArH), 6.97 (d, J = 9.2 Hz, 2H, 

ArH), 6.81-6.75 (m, 1H, ArH), 4.00 (s, 3H, OCH3), 3.95 

(s, 3H, OCH3), 3.94 (s, 3H, OCH3), 3.89 (s, 3H, OCH3).  
13
C NMR (75 MHz, CDCl3): δ = 193.09 (CO), 149.35, 

149.18, 149.11, 148.43, 143.72, 142.41, 141.17, 136.87 

(C), 136.41 (CH), 134.80 (C), 134.20 (CH), 132.29 (C), 

131.35 (CH), 130.18 (C), 128.85, 124.03, 123.30, 

121.88, 121.20, 113.09, 112.26, 111.57, 110.82 (CH); 

56.15, 5615 (OCH3); 56.06, 56.06 (OCH3). IR (ATR, 

cm
-1

): v = 3008 (w), 2955 (w), 2933 (w), 2905 (w), 2838 

(w), 2627 (w), 2577 (w), 1701 (m), 1519 (m), 1441 (s), 

1251 (s), 1222 (s), 1146 (s), 1020 (s), 746 (s). MS (EI, 

70eV): m/z = 452 (M
+
, 100), 437 (9), 263 (4); 250 (4), 

226 (5), 132 (4). HRMS (ESI-TOF/MS): calculated for 

C29H24O5 ([M+H]
+
) 453.16965, found 453.16995, 

calculated for C29H24O5 ([M+Na]
+
) 475.15159, found 

475.15191. 

17. General Procedure for the synthesis of 5a-h. In a 

pressure tube 2 (0,525 mmol), K3PO4 (2.0 equiv.), 

Pd(PPh3)4 (3.0 mol %) and arylboronic acid (1.2 equiv.) 

were mixed with dry 1,4-Dioxane, degassed  with Argon 

und stirred for 12h at 60°C. After cooling to room 

temperature the solution was filtered through cellite, 

washed with CH2Cl2 and the filtrate was concentrated by 

reduced pressure. The residue was purified by column 

chromatography to receive the mono-substituted 

fluorenone 4a-h in good yields. 

18. 1-(4'-Hydroxyphenyl)-9-oxo-9H-fluoren-4-yl-

trifluoromethanesulfonate (5f) Starting with 2 (150 

mg, 0.315 mmol), 3f (53 mg, 0.378 mmol, 1.2 equiv.), 

Pd(PPh3)4 (11 mg, 0.009 mmol, 3 mol %), K3PO4 (134 

mg,0.63 mmol, 2.0 equiv.) and 1,4-dioxane (9 ml). After 

purification by column chromatography (silica gel 

heptane/EtOAc 6:1) 5f was isolated as deep yellow solid 

(112 mg, 86%); Mp: 194-196 °C. 
1
H NMR (300 MHz, 

DMSO): δ = 9.75 (s, 1H, OH), 7.80-7.69 (m, 2H, ArH), 

7.64 (t, J = 7.2 Hz, 2H, ArH), 7.51 (t, J = 7.2 Hz, 1H, 

ArH), 7.40 (m, 3H, ArH), 6.83 (d, J = 8.6 Hz, 2H, ArH). 
13
C NMR (63 MHz, CDCl3): δ = 190.03 (CO), 158.21, 

142.34, 141.91, 138.63,  135.74 (C), 135.49, 134.00 

(CH), 133.54, 133.58 (C), 130.81, 130.81, 130.68, 

127.34 (CH), 126.01 (C), 124.47, 123.03 (CH), 118.06 

(q, JF,C = 320.70 Hz, CF3), 114.73, 114.73 (CH). 
19
F-

NMR (282 MHz, CDCl3): δ = -73.13 (CF3). IR (ATR, 

cm
-1

): v = 3320 (w), 3019 (w), 2920 (w), 2850 (w), 1699 

(m), 1422 (s), 1205 (s), 1137 (s), 825 (s), 608 (s), 585 

(s), 567 (s), 547 (m), 527 (s). MS (EI, 70eV): m/z = 420 

(M
+
, 28), 287 (100), 259 (22), 231 (7), 202 (22); 176 (4); 

150 (2); 101 (5); 69 (8). HRMS (EI): calculated for 

C20H11F3O5S1 (M
+
) 420.02738, found 420.02764. CH-

Analysis: calculated for C20H11F3O5S (420.36): C, 

57.15; H, 2.64. Found: C, 57.23; H, 2.52. 

19. CCDC-xxx contains all crystallographic details of this 

publication and is available free of charge at 

www.ccdc.cam.ac.uk/conts/retrieving.html or can be 

ordered from the following address: Cambridge 

Crystallographic Data Centre, 12 Union Road, GB-

Cambridge CB21EZ; Fax: (+44)1223-336-033; or 

deposit@ccdc.cam.ac.uk.  

20. General Procedure for the synthesis of 6a-g. In a 

pressure tube 5a-e, 5g K3PO4 (2.0 equiv.), Pd(PPh3)4 
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(5.0 mol %) and arylboronic acid (1.2 equiv.) were 

mixed with dry 1,4-Dioxan , degassed  with Argon und 

stirred for 12h at 100°C. After cooling to room 

temperature the solution was filtered through cellite, 

washed with CH2Cl2 and the filtrate was concentrated by 

reduced pressure. The residue was purified by column 

chromatography to receive the cross-substituted 

fluorenone 6a-g in good yields. 

21. 1-(5'-Fluoro-2'-methoxyphenyl)-4-(4''-

methoxyphenyl)-9H-fluoren-9-one (6a). Starting with 

5g (75 mg, 0.166 mmol), 3b (30 mg, 0.199 mmol, 1.2 

equiv.), Pd(PPh3)4 (9 mg, 0.008 mmol, 5 mol %), K3PO4 

(67  mg, 0.315 mmol, 2.0 equiv.) and 1,4-dioxane (3 

ml). After purification by column chromatography 

(silica gel heptane/EtOAc 4:1) 6a was isolated as a deep 

yellow solid (67 mg, 99%); Mp: 193-195°C. 
1
H NMR 

(300 MHz, CDCl3): δ = 7.58-7.52 (m, 1H, ArH), 7.45-

7.39 (m, 2H, ArH), 7.34 (d, J = 7.9 Hz, 1H, ArH ), 7.20-

7.14 (m, 3H, ArH), 7.13-7.03 (m, 3H, ArH), 7.01 (dd, J 

= 8.7 Hz, J = 3.1 Hz, 1H, ArH), 6.93 (dd, J = 9.0 Hz, J = 

4.4 Hz, 1H, ArH), 6.84-6.78 (m, 1H, ArH), 3.92 (OCH3), 

3.74 (OCH3). 
13
C NMR (75 MHz, CDCl3): 192.72 (CO), 

159.71 (OCH3), 156.92 (d, 
2
JF,C = 238.5 Hz, CF), 153.52 

(d, 
4
J = 2.0 Hz, COCH3), 144.11, 137.45 (C), 136.57 

(CH), 135.42 (d, 
4
JF,C = 3.1Hz, CH), 134.72 (C), 134.16 

(CH), 131.95, 131.61 (C), 131.25, 130.22, 130.22 (CH), 

128.68 (d, J = 6.6 Hz, CH), 123.94, 123.24 (CH), 117.23 

(d, 
2
JF,C = 23.7 Hz, CH), 115.33 (d, 

2
JF,C = 22.6 Hz, CH), 

114,29 ( CH), 111.67 (d, 
3
JF,C = 8.2 Hz, CH), 56.33 

(OCH3), 55.52 (OCH3). 
19
F-NMR (282 MHz, CDCl3): δ 

= -124.53 (CF). IR (ATR, cm
-1

): v = 3392 (w), 3068 

(w), 3000 (w), 2957 (w), 2945 (w), 2914 (w), 2835 (w), 

1704 (s), 1483 (s), 1469 (s), 1175 (s), 1026 (s), 940 (s), 

764 (s). MS (EI, 70eV): m/z = 410 (M
+
, 35), 379 (100), 

294 (6); 190 (8); 153 (5). HRMS (EI): calculated for 

C27H19F1O3 (M
+
) 410.13127, found 410.13077. 

22. Handy, S. T.; Zhang, Y. Chem. Commun. 2006, 299. 
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