Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye

XXXVIII. Kémiai Előadói Napok

Program és előadás-összefoglalók

Szegedi Akadémiai Bizottság Székháza Szeged, 2015. október 26-28. Szerkesztették:

Bohner Bíborka

SZTE TTIK Fizikai Kémiai és Anyagtudományi Tanszék

Mesterházy Edit

SZTE TTIK Szervetlen és Analitikai Kémiai Tanszék

ISBN 978-963-9970-64-9

IRÁNYÍTOTT FELÜLETI REAKCIÓK ALKALMAZÁSA PEM TÜZELŐANYAG-ELEMEK CO- TOLERÁNS ANÓDOLDALI ELEKTROKATALIZÁTORAINAK FEJLESZTÉSÉHEZ

Gubán Dorottya, Borbáth Irina, Pászti Zoltán, Bálint Szabolcs, Németh Péter, Gajdos Gergely, Tompos András

MTA Természettudományi Kutatóközpont, Anyag- és Környezetkémiai Intézet, 1117 Budapest, Magyar tudósok körútja 2.

Bevezetés. Korunk egyik legnagyobb kihívása a világ egyre növekvő energiaszükségletének kielégítése, lehetőség szerint minél nagyobb arányban tiszta és megújuló energiaforrások felhasználásával. A tüzelőanyag-elemek képesek a hidrogén vagy alkoholok kémiai energiáját elektromos energiává átalakítani légszennyező anyagok kibocsátása nélkül, így minden bizonnyal fontos szerepet fognak játszani a jövő energiagazdaságában. A hordozható alkalmazások számára ideális polimer elektrolit membrános (PEM) tüzelőanyag-elemek anód- és katódoldalán nagy mennyiségű (40 m/m%) platinát tartalmazó elektrokatalizátorok segítik elő az oxidációs és redukciós folyamatokat, azonban ezek a katalizátorok költségesek és nem eléggé hatékonyak. Az üzemanyagként szolgáló hidrogén általában tartalmaz néhány ppm szénmonoxidot, ami kedvezőtlenül befolyásolja a tüzelőanyag-elemek működését. Alkoholok üzemanyagként való alkalmazásánál az oxidációs reakció közti termékeként mindig keletkezik CO. Ezért a jelenlegi tüzelőanyag-elem katalizátor kutatások középpontjában a stabil, csökkentett platina tartalmú, szénmonoxid-toleráns anód elektrokatalizátorok fejlesztése áll.

Leggyakrabban a Pt mellett egy második, oxofil fémet (például Ru, Mo, vagy Sn) alkalmaznak, ami a víz aktiválása révén a tiszta Pt-hoz képest kevésbé pozitív potenciálon képes biztosítani a CO oxidációjához szükséges felületi -OH_{ad} csoportokat, illetve az elektronszerkezeti hatás által növeli a CO-toleranciát. Az eddigi munkáink azt támasztják alá, hogy az Sn-Pt ötvözet alapú rendszerek közül a lapcentrált köbös (fcc) Pt₃Sn fázist tartalmazó katalizátorok a legstabilabbak és a legaktívabbak CO és alkoholok elektrooxidációjában.^[1,2]

Ugyanakkor a Pt₃Sn ötvözet kizárólagos képződése tiszta formában ritkán fordul elő, megjelenése erősen függ a szintézismódszertől. Az irányított felületi reakció (IFR) kutatócsoportunkban kifejlesztett módszerével különböző hordozós kétfémes E_x-M_v (E= Sn, Ge; M= Pt, Pd, Rh, Ru) katalizátorok állíthatók elő, amelyekben még nagy E/M arány esetében is kizárólagosan fém-fém (E-M) kapcsolatok fordulnak elő.^[3,4] Az alapvető felületi reakciók, amelyek a hordozós Pt katalizátor ón-tetraalkillel (SnR₄) történő módosításában szerepet játszanak, az alábbi egyenletekkel írhatók le:^[3] (1)

 $PtH_{ad} + SnR_4 \rightarrow Pt-SnR_{(4-x)} + x RH$

(2)

 $Pt-SnR_{(4-x)} + (4-x)/2 H_2 \rightarrow Pt-Sn + (4-x) RH$

A fenti kétlépéses IFR módszer garantálja, hogy az ón csak a platinához kössön, azaz kiküszöbölhető a nem kívánt ón-hordozó kölcsönhatás. A Pt-Sn rendszerek esetében még nagy Sn/Pt arány esetében is $(Sn/Pt_s = 2,05, ahol az Sn/Pt_s az egy felületi Pt atomra eső$ rögzített Sn mennyisége) elérhető az Pt-Sn ötvözet fázis kizárólagos keletkezése.^[4]

Kutatócsoportunk IFR alkalmazásával korábbi munkái során már előállított ónnal módosított 40 m/m% Pt/C elektrokatalizátorokat.^[1,2,5] A CO oxidáció kezdeti potenciálja 0,62 V-ról 0,21 V-ra, az etanol oxidáció kezdeti potenciálja 0,31 V-ról 0,1 V-ra csökkent, ha a Pt/C katalizátor helyett Pt/Sn = 4 platina-ón arányú kétfémes katalizátort alkalmaztunk.^[1] Kimutattuk,^[1] hogy a Pt-Sn/C katalizátorok aktivitása megnő az etanol elektrooxidáció korai szakaszában az fcc Pt₃Sn fázis mennyiségének növekedésével. Egyértelműen sikerült igazolni,^[2,5] hogy elektrokatalitikus szempontból mind a CO oxidációban, mind a metanol oxidációjában az fcc Pt₃Sn fázis előnyösebb a hexagonális szoros illeszkedésű (hcp) PtSn ötvözet fázisnál.

A Pt-Sn/C katalizátorok fejlesztése során célunk az IFR optimális szintézisparamétereinek megtalálása volt, melyek kizárólagosan az Pt₃Sn fázis kialakításához vezetnek. Emellett megkíséreltük olyan stabil, 20 m/m%-ra csökkentett Pt tartalmú Pt-Sn/C katalizátorok létrehozását, amelyek nemcsak a CO oxidációs reakcióban, hanem a metanol elektrooxidációjában is megfelelő aktivitást mutatnak, így hozzájárulhatnak olcsóbb tüzelőanyag-elemek kifejlesztéséhez.

Kísérleti rész. A Pt-Sn/C katalizátorok (Pt/Sn = 3,0) előállítása során 40 m/m% platina tartalmú Pt/C (Quintech, 40Pt/C) és saját készítésű 20 m/m%-os Pt/C katalizátort (20Pt/C) módosítottunk ón-tetraetillel (SnEt₄) IFR módszer alkalmazásával. A 20 m/m% platina felvitele a tiszta aktív szénre (Black Pearls 2000) etilénglikolos közegben NaBH₄-des redukciós módszerrel történt.^[6]

A nagy óntartalommal rendelkező Pt-Sn/C katalizátorok több ón beadagolási lépésből álló előállítási eljárását IFR módszerrel korábban már bemutattuk.^[5] Röviden, egy autoklávban a kiindulási Pt/C katalizátort *n*-dekánban szuszpendáltuk, 5 bar hidrogén túlnyomás beállítása után 170 °C-ra fűtöttük, majd intenzív keverés mellett beadagoltuk az első adag dekánban oldott SnEt₄-t. Az adagolási lépések egy óránként követték egymást, három konszekutív ónfelviteli lépést alkalmaztunk, a teljes reakcióidő 3 óra volt. A módosítás után a katalizátort centrifugáltuk, többször mostuk, szárítószekrényben 60°C-on 1 óráig szárítottuk, végül hőmérsékletprogramozott redukcióval (TPR) aktiváltuk, melynek végső hőmérséklete (T_{red}) 250 vagy 350 °C volt, ahol 2 órán át tartottuk a mintát. A szerkezeti és az összetétellel kapcsolatos tulajdonságokat XRD, TEM és XPS mérésekkel határoztuk meg; a CO toleranciát és a metanol elektrooxidációjában mutatott katalitikus tulajdonságokat ciklikus voltammetriás mérésekkel vizsgáltuk.

Eredmények és értékelésük. Kutatócsoportunk korábban már sikeresen kidolgozott egy módszert, amellyel növelni lehet a módosítandó fémmel kölcsönhatásba lépő ón mennyiségét. Bemutattuk,^[7] hogy a reakcióelegy túlzottan magas SnEt₄ koncentrációját ajánlott elkerülni, mivel az a megkötött módosító koncentrációgradienséhez vezet. Az egymás utáni reakciólépések alkalmazása segít elkerülni (i) a hordozó felületi csoportjai és az ón prekurzor közti nem kívánt reakciót és (ii) a módosító inhomogén eloszlását a módosítandó fémszemcséken.^[1,5] Kimutattuk,^[1,2,5] hogy az IFR paramétereinek módosításával jól kontrollálható a Pt-Sn/C elektrokatalizátorok szerkezete. Az így előállított katalizátorok kizárólag Pt-Sn ötvözetfázisokat tartalmaznak nagy fcc Pt₃Sn tartalonmal. A szintézis második lépése során alkalmazott redukció végső hőmérsékletének (T_{red}) hatását vizsgáltuk (i) a kialakult kétfémes fázisok összetételére, (ii) az Sn és a Pt kémiai állapotára és (iii) a módosítatlan Pt, valamint SnO_x fázisok jelenlétére vagy hiányára.

A 40Pt-Sn/C és a 20Pt-Sn/C elektrokatalizátoron végzett XRD- és TEM mérések eredményét az 1. táblázat foglalja össze. Az XRD mérések kimutatták, hogy a kívánt Pt/Sn = 3 aránnyal rendelkező elektrokatalizátorok közel sztöchiometrikus fcc Pt₃Sn ötvözetfázist (50-76 %) és bizonyos mennyiségű, Pt-ban dús Pt_(1-x)Sn_x szilárdoldat fázist tartalmaznak. Az XRD analízis nem mutatott ki SnO₂ fázist a mintákban, tehát ón nem

került a hordozóra, csak a platinával van kölcsönhatásban. Az XRD mérések tanulsága szerint az elektrokatalizátorokban az fcc Pt_3Sn fázis mennyisége és diszperzitása függ a TPR lépésben alkalmazott hidrogénes kezelés végső hőmérsékletétől (T_{red}).

1. táblázat Az ónnal módosított Pt/C katalizátor rácsparamétere és átlagos krisztallitmérete.

Minta	T _{red} ,	Rácsparaméter, Å		Átlagos szemcseméret ^{c)} , nm		
	°C	(Fázis, %)		XRD		TEM
		fcc Pt _{1-x} Sn _x ^{a)}	fcc Pt ₃ Sn ^{b)}	Pt _{1-x} Sn _x	Pt ₃ Sn	
20Pt-Sn/C	250	a:3,933 (50)	a:3,975 (50)	6,2	5,9	$2,7 \pm 2,1$
20Pt-Sn/C	350	a:3,933 (33)	a:3,975 (67)	9,1	6,7	$11,7 \pm 4,4$
40Pt-Sn/C	250	a:3,933 (29)	a:3,980 (71)	9,1	7,7	$6,5 \pm 2,5$
40Pt-Sn/C	350	a:3,933 (24)	a:3,975 (76)	15,0	7,7	$7,0 \pm 5,1$

^{a)} Pt rácsparamétere: a = 3,917 Å;

^{b)} fcc Pt₃Sn rácsparaméter: a = 4,0015 Å;

^{c)} a kiindulási katalizátor szemcsemérete: 40Pt/C: $(4,1 \pm 1,6)$ nm, 20Pt/C: $(2,0 \pm 1,1)$ nm.

ábra A redukció végső hőmérsékletének (T_{red}) hatása a 40Pt-Sn/C és a 20Pt-Sn/C katalizátorok mikroszerkezetére. Felső sor: 40Pt/C kiindulási katalizátor (A), 40Pt-Sn/C 250 °C-os (B) és 350 °C-os (C) redukció után. Alsó sor: 20Pt/C kiindulási katalizátor (E), 20Pt-Sn/C 250 °C-os (F) és 350 °C-os (G) redukció után.

A 40Pt-Sn/C mintában a 250- és 350 °C-on történő hidrogénes kezelés hatására keletkező Pt₃Sn fázis mennyisége alig különbözik (71-76 %). A TEM felvételek (1. ábra) alapján az ón beépülése csak kismértékben változtatta a kiindulási 20Pt/C katalizátor szemcseméretét, viszont a T_{red} = 350 °C-os kezelés után a kétfémes részecskék átlagos szemcsemérete nőni kezd. Az XRD és TEM eredmények alapján (1. táblázat) a Pt-Sn/C katalizátor kétfémes részecskéi a T_{red} = 250 °C-os kezelés hatására kisebbek, mint a 350 °C-os kezelés után kapottak. Figyelembe véve a tényt, hogy a Pt₃Sn fázis relatív

mennyisége a 40Pt-Sn/C mintában közel azonos a 250- és 350 °C végzett hőkezelés után, az IFR reakció második lépése során a 250 °C-os hőmérséklet alkalmazása javasolt.

Mivel SnO_x fázis nem mutatható ki sem röntgendiffrakcióval, sem energiadiszperzív röntgen-spektrometriával (EDS), az ón a várakozásoknak megfelelően nem került az aktívszén hordozóra. Az EDS mérés során a 40Pt-Sn/C mintán az elektronsugárnak az ónnal módosított platina részecskékre történő fókuszálásával kimutattuk,^[5] hogy az Sn mennyisége (25 at.%) megfelel a várt Pt₃Sn összetételnek.

2. ábra A 40Pt-Sn/C minta Sn 3d vegyértéksáv spektruma a szintézis utáni állapotban, 350 °C-on hidrogénben történő redukció után, majd újraoxidálás után.

Az XPS eredmények alapján (2. ábra) a levegőn tárolt 40Pt-Sn/C katalizátor SnO₂ és fémes Sn fázisokat tartalmazott. Az elektrospektrométer preparációs kamrájában H₂-ben végzett 350 °C-os *in situ* redukció során az ón teljes mennyisége fémes állapotúvá redukálódott (2. ábra), egy napos fellevegőzés után azonban az ón egy része visszaalakult SnO₂-dá. Csoportunk korábbi tanulmányai igazolták az ón feldúsulását az ötvözettípusú PtSn katalizátor felületi rétegeiben és feltárták, hogy O₂ és H₂ jelenlétében a reverzibilis PtSn \leftrightarrow Sn⁴⁺ + Pt átalakulás már szobahőmérsékleten is könnyedén végbemegy.^[8] Így az ón könnyű redukálhatósága alátámasztja a kizárólagos Sn-Pt kölcsönhatás megvalósulását.

A CO- és metanol elektrooxidációs mérések egyértelmű kapcsolatot mutatnak a TPR lépésben alkalmazott hidrogénes kezelés végső hőmérséklete (T_{red}) és az elektrokatalitikus aktivitás között (3. ábra). A mérések alapján arra következtethetünk, hogy az alacsonyabb kezelési hőmérséklet ($T_{red} = 250$ °C) előnyösebb elektrokatalitikus tulajdonságokat eredményezett. A Pt-Sn katalizátorok esetében a CO-oxidációs reakció kezdeti potenciálja 500 mV-tal kevésbé pozitív irányba tolódott a Pt/C-en mérhetőhöz képest. A metanol oxidációs reakcióban a 250 °C-on történő hidrogénes kezelés hatására mindkét Pt-Sn/C katalizátor esetében növekedett a katalitikus aktivitás a Pt/C-en mérhetőhöz képest. A 40Pt/C katalizátor CO oxidációból meghatározott katalitikusan aktív felülete (ECSA) csak kis mértékben volt magasabb, mint a saját készítésű 20Pt/C mintáé (ECSA_{20Pt/C} / ECSA_{40Pt/C} = 0,8). A kapott eredmények alátámasztják, hogy az Sn mindkét, különösen a metanol oxidációs reakcióban jó promoter a Pt-alapú katalizátorokban.

3. ábra CO (A-C) és metanol (D-F) oxidáció a módosítatlan Pt/C, továbbá a 250 °C-on és a 350 °C-on redukált Pt-Sn/C katalizátorokon. Elektrolit: 0,5 M H₂SO₄, 1 M metanol, polarizációsebesség: 10 mV·s⁻¹.

Összefoglalás. Ónnal módosított platina katalizátorokat hoztunk létre az IFR módszerrel, amelyek igen kedvező viselkedést mutatnak PEM tüzelőanyag-cellák CO-toleráns anód elektrokatalizátoraként. A kívánt Pt/Sn = 3 aránnyal rendelkező katalizátorok közel sztöchiometrikus összetételű, elektrokatalitikusan aktív fcc Pt₃Sn ötvözetfázist és bizonyos mennyiségű, platinában dús $Pt_{(1-x)}Sn_x$ szilárdoldat fázist tartalmaznak. Eredményeink bizonyítják, hogy a Pt₃Sn fázis mennyisége és diszperzitása is szabályozható. A megnövekedett aktivitás oka mindkét oxidációs reakcióban (i) a Pt₃Sn fázis jelenléte és (ii) a kis részecskeméret. A kiindulási katalizátor platinatartalmának megfelezésével is jól használható elektrokatalizátorokat kaptunk.

A szerzők köszönetüket fejezik ki az anyagi támogatásért a Nemzeti Fejlesztési Ügynökségnek (№: KTIA_AIK_12-1-2012-0014), és az Országos Tudományos Kutatási Alapprogramoknak (OTKA, K100793 és K77720) a kutatások anyagi támogatásáért.

- [1] S. García-Rodríguez, F. Somodi, I. Borbáth, J.L. Margitfalvi, M.A. Peña, J.L.G. Fierro, S. Rojas; *Applied Catalysis B: Envoronmental*, **2009** (91) 83-91.
- [2] T. Herranz, S. García, M.V. Martínez-Huerta, M.A. Peña, J.L.G. Fierro, F. Somodi, I. Borbáth, K. Majrik, A. Tompos, S. Rojas; *International Journal of Hydrogen Energy*, 2012 (37) 7109-7118.
- [3] J.L. Margitfalvi, I. Borbáth, E. Tfirst, A. Tompos; Catalysis Today, 1998 (43) 29-49.
- [4] J.L. Margitfalvi, I. Borbáth, M. Hegedűs, E. Tfirst, S. Gőbölös, K. Lázár; Journal of Catalysis, 2000 (196) 200-204.
- [5] I. Borbáth, D. Gubán, Z. Pászti, I.E. Sajó, E. Drotár, J.L.G. de la Fuente, T. Herranz, S. Rojas, A. Tompos; *Topics in Catalysis*, **2013** (56) 1033-1046.
- [6] P. Kim, J.B. Joo, W. Kim, J. Kim, I.K. Song, J. Yi; *Journal of Power Sources*, 2006 (160) 978-990.
- [7] J.L. Margitfalvi, I. Borbáth, M. Hegedűs, S. Gőbölös; Applied Catalysis A: General, 2001 (219) 171-182.
- [8] J.L. Margitfalvi, I. Borbáth, K. Lázár, E. Tfirst, Á. Szegedi, M. Hegedűs, S. Gőbölös; Journal of Catalysis, 2001 (203) 94-103.