Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye

XXXVIII. Kémiai Előadói Napok

Program és előadás-összefoglalók

Szegedi Akadémiai Bizottság Székháza Szeged, 2015. október 26-28. Szerkesztették:

Bohner Bíborka

SZTE TTIK Fizikai Kémiai és Anyagtudományi Tanszék

Mesterházy Edit

SZTE TTIK Szervetlen és Analitikai Kémiai Tanszék

ISBN 978-963-9970-64-9

Ga₂O₃ KATALIZÁTOROK SZERKEZETI ÁTALAKULÁSA FOTOKATALITIKUS METANOL REFORMÁLÁS ALATT

<u>Vass Ádám</u>, Pászti Zoltán, Tálas Emília, Bálint Szabolcs, Németh Péter, Tompos András

MTA Természettudományi Kutatóközpont, Anyag- és Környezetkémiai Intézet, 1117 Budapest, Magyar tudósok körútja 2.

A Ga₂O₃ optikai és elektromos tulajdonságai miatt sok szempontból ígéretes anyag. Mivel széles tiltott sávú félvezető (~4,6 eV), az UV sugárzás tartományában jó fotokatalizátor lehet. Aktivitását gyakran tesztelik szennyező komponensek oxidációs lebontásában vizes fázisban (például rodamin B,^[1] szalicilsav^[2]). A Ga₂O₃-ot alkalmazták illékony aromás vegyületek (benzol, toluol, etilbenzol) fotokatalitikus elbontására száraz levegő áramban is.^[3] A degradációs reakciók mellett a Ga₂O₃ aktív metán nem-oxidatív kapcsolási reakciójában,^[4] metán fotokatalitikus gőz reformálásában,^[5] és fotokatalitikus vízbontásban.^[6] Ez utóbbi két reakció célterméke a H₂, amely ígéretes új energiahordozó.

Ismeretes, hogy a felületi fémoxid vagy nemesfém nanorészecskék növelik a fotokatalizátor hatékonyságát azáltal, hogy sikeresen megakadályozzák a besugárzás hatására kialakult elektron-lyuk pár rekombinációját.^[7] Emellett a kokatalizátornak van egy kevésbé hangsúlyozott, ám fontos szerepe, katalizálhatja azokat az elemi reakciólépéseket is, amelyek nem kapcsolódnak közvetlenül a besugárzáshoz, a töltés szeparációhoz.^[8] A fotokatalizátor, hanem kiváló katalitikus aktivitást mutat a H⁺ redukciójában, és elősegíti a felületi adszorbeált H atomok egyesülését molekuláris hidrogénné. A H₂ fejlődésre a legalacsonyabb aktiválási energiát a platinán mérték.^[8]

Munkánkban Pt/Ga_2O_3 fotokatalizátor rendszert hoztunk létre. Célunk volt a Pt kokatalizátor szerepének vizsgálata, a katalizátorok jellemzése anyagvizsgálati módszerekkel a fotokatalitikus reakció előtt és után. Modell reakcióként a metanol fotokatalitikus reformálását (1) választottuk.

$$CH_{3}OH + H_{2}O \longrightarrow CO_{2} + 3 H_{2}$$
(1)

Kiindulási anyagként kereskedelmi β -Ga₂O₃-ot (Aldrich) használtunk. Felületére 1 m/m% Pt-t vittünk fel Pt(NH₃)₄(NO₃)₂ vizes oldatával történő impregnálással. Ezután a mintát 90 °C-on szárítottuk (12 h), majd 300 °C-on kalcináltuk (1 h).

A metanol fotokatalitikus reformálását a gáztér analizálására átalakított belső megvilágítású fotoreaktorban (UV-Consultig Peschl UV-Reactor System 1, TQ 150 Z2 (150 W) Hg lámpa) vizsgáltuk 30-35 °C hőmérsékleten, 6 V/V %-os metanol oldat (370 cm³) és 50-300 mg katalizátor felhasználásával 4 órán át. A reaktoron N₂ áramlott keresztül, a H₂ fejlődést gázkromatográfiával követtük SUPELCO Carboxen 1010 kolonna, hővezető képességi detektor és argon belső standard használatával. A fotokatalitikus reakció után a használt fotokatalizátor mintákat visszanyertük a metanolos oldatból. A kiindulási Ga₂O₃-ot, az impregnálást követő kalcinálással előállított Pt/Ga₂O₃-t, valamint a használt Ga₂O₃-ot és a használt, Pt tartalmú katalizátor röntgendiffrakcióval (XRD),

transzmissziós elektronmikroszkópiával (TEM) és röntgen fotoelektron spektroszkópiával (XPS) jellemeztük.

Az 1. ábrán látható, hogy a kokatalizátor jelenlétében mintegy négyszeresére növekedett a H₂ termelés. A görbe felfutó szakasza egyrészt abból adódhatott, hogy a szilárd-folyadék-gáztér rendszerben a H₂-nek egyensúlyba kellett kerülnie, másrészt a jelenség utalhat a katalitikusan aktív helyek *in situ* kialakulására is.

1. ábra. Fotokatalitikus hidrogénfejlődés. □: Ga₂O₃ ▲: Pt/Ga₂O₃

Az XRD eredmények (2. ábra) szerint a kalcinálással történő Pt felvitel nem változtatta meg a tömbi Ga_2O_3 -ot. A használt Ga_2O_3 katalizátor szerkezete nem tér el a kiindulási Ga_2O_3 -étól, azonban a Pt-t tartalmazó használt katalizátor szerkezete alapvető különbséget mutat. A Ga_2O_3 helyett egy új fázis, a GaOOH jelent meg.^[9]

A Ga₂O₃ alapú minták TEM képei (3. ábra) összhangban vannak az XRD eredményekkel. A 2A-C ábrán látható minták megjelenése egymáshoz hasonló, µm tartományba eső rudakból épülnek fel. Az erősebb nagyítású felvételeken megfigyelhető, hogy már a Pt bevitel hatására kisebb változás lépett fel. A Pt-t tartalmazó használt katalizátor (2. D ábra) azonban az előzőektől teljesen eltérő képet adott. A diffrakciós kép (2. D ábra) szintén bizonyítja, hogy a Pt/Ga₂O₃ minta a fotokatalitikus reakció során átalakult, a használt katalizátor csak GaOOH-ot tartalmazott.

Az 1. táblázat a minták XPS vizsgálata során kapott legfontosabb eredményeket foglalja össze.

	Ga ₂ O ₃	Használt	Impregnált	Kalcinált	Használt
		Ga_2O_3	Pt/Ga_2O_3	Pt/Ga_2O_3	Pt/Ga_2O_3
Pt 4f			72,3	71,2	70,8
				72,6	72.4
				73,7	
Ga 3d	20,5	20,2	20,3	20,4	20,2
O 1s	531,4	531,3	531,4	531,4	531,2
	533,1	532,9	533,1	533,0	532,6
Ga/O arány	0,75	0,65	0,71	0,70	0,53

1. táblázat. A Ga₂O₃ alapú minták XPS vizsgálata

A kiindulási Ga_2O_3 minta 20,5 eV-os Ga 3d kötési energiája a várakozásokkal összhangban a teljesen oxidált galliumnak felel meg.^[10] Az O 1s sáv minden vizsgált minta esetében két komponensre bontható. Az 531,2-531,4 eV körüli kötési energiájú erősebb csúcs Ga_2O_3 -hoz rendelhető,^[11] míg az 533 eV körüli kötési energiájú gyengébb komponens felületi OH csoportoktól származtatható.^[12]

A fotokatalitikus kísérlet után vizsgált Ga_2O_3 minta esetében a Ga 3d csúcs néhány tized elektronvolttal eltolódik kisebb kötési energiák felé, miközben kismértékben szélesebbé válik. A Ga 3d csúcs kötési energiájának és a Ga $L_3M_{45}M_{45}$ Auger-elektron-csúcs kinetikus energiájának összegeként számított Auger-paraméter értéke ugyanakkor a Ga₂O₃-ra jellemző 1082,6-1082,7 eV marad, jelezve, hogy a Ga továbbra is megőrizte a 3⁺ ionizációs állapotát. A Ga 3d csúcs kötési energiájának és alakjának változása tehát arra utal, hogy a használt Ga₂O₃ katalizátorok felületén az oxidréteg jellegében más, mint a kiinduló állapotban, bár továbbra is Ga³⁺ ionokat tartalmaz. A szerkezeti vizsgálatok és a későbbiek tükrében valószínűsíthető, hogy a katalizátorrészecskék felületén GaOOH képződésére került sor. Az irodalomban rendelkezésre álló kisszámú adat alapján,^[13-14] a GaOOH-ban a Ga 3d csúcs kötési energiája 20,0-20,1 eV körül van. A csökkenő Ga/O arány (növő oxigéntartalom) és az O 1s spektrum növekvő OH-eredetű komponense (4. A ábra) szintén alátámasztja a katalitikus folyamat során végbemenő Ga₂O₃ – GaOOH átalakulásra vonatkozó feltevést.

A kvantitatív kiértékelés szerint a Pt/Ga₂O₃ fotokatalizátorok Pt tartalma megfelel a tervezett értéknek (1-2 m/m %). A Pt kokatalizátor aktiválása során felvett, és a használt fotokatalizátoron mért Pt 4f spektrumok a 4B ábrán láthatók. A Pt-só felvitelét követő állapotban (impregnált katalizátor) a Pt 4f spektrum széles $4f_{7/2}$ - $4f_{5/2}$ dublettje 72,3 eV

kötési energiánál található $4f_{7/2}$ komponenssel Pt²⁺ ionok jelenlétét mutatja.^[11,15] Az impregnált mintában fémes platinára utaló jel (Pt $4f_{7/2}$ csúcs 71,2 eV kötési energia körül ^[11]) nem található. Az impregnált Pt/Ga₂O₃ Ga 3d csúcsa a kiindulási porban mértnél kicsit kisebb kötési energiánál található. A Ga Auger-paraméter értéke megfelel a Ga³⁺ ionállapotnak, az O 1s spektrum pedig megegyezik a kezeletlen Ga₂O₃ poréval.

A kalcinálás a Pt részleges redukcióját eredményezi: bár a Pt 4f spektrum legerősebb járuléka továbbra is a Pt²⁺ ionállapothoz rendelhető (Pt 4f_{7/2} kötési energia: 72,6 eV), de szintén erős a fémes platinától származó jel (71,2 eV). A harmadik gyenge csúcspár 73,6 eV-nál Pt⁴⁺ ionoktól (pl. PtO₂) származik.^[15] A Ga 3d kötési energia és a Ga Augerparaméter alapján a kalcinált fotokatalizátor gyakorlatilag teljesen Ga₂O₃-ból áll.

A használt Pt/Ga₂O₃ fotokatalizátor Ga 3d kötési energiája a Pt-mentes használt katalizátoréhoz hasonlóan kisebb értékek felé tolódott; ezzel párhuzamosan az oxigén tartalom és a hidroxil eredetű O 1s komponens (4. A ábra) is jelentősen növekedett. A szerkezetvizsgálati módszerek a használt mintában a Ga₂O₃ részleges GaOOH-dá alakulását igazolták, így az XPS-el megfigyelt változásokat biztonsággal tulajdoníthatjuk az oxihidroxid fázis megjelenésének.

A fotokatalitikus reakció során a platina további redukciójára került sor (4. B ábra). A Pt 4f spektrumban még mindig megtalálható a Pt²⁺ ionok járuléka (72,4 eV), de az erősebb komponens fémes platinától származik, amelynek kötési energiája ráadásul szokatlanul kicsi (70,8 eV). Az XPS adatok a szerkezetvizsgálati eredményekkel összhangban azt jelzik, hogy a metanol fotokatalitikus reformálási reakciója (besugárzás/*in situ* hidrogénfejlődés) során a Ga₂O₃ legalább részben GaOOH-dá alakul, ezzel párhuzamosan a Pt fokozatosan redukálódik, így a katalitikusan aktív rendszer a reakciókörülmények között alakul ki. A fémes Pt komponens szokatlanul kicsi Pt $4f_{7/2}$ kötési energiája a Pt szemcsék elektrondús környezetére utal, ami a kokatalizátor szerepének megfelelően a Ga-oxid/oxihidroxid felől a Pt felé irányuló elektronátadás eredménye. A kokatalizátor fontosságát mutatja a jelenlétében megnövekedett hidrogéntermelés is.

4. ábra XPS eredmények. A: O 1s spektrumok, B: Pt 4f spektrumok

A szerzők köszönik az anyagi támogatást a Nemzeti Fejlesztési Ügynökségnek (KTIA_AIK_12-1-2012-0014) és az Országos Tudományos Kutatási Alapprogramoknak (OTKA K77720 (Tompos András); OTKA K100793 (Pászti Zoltán)).

- [¹] K. Girija, S. Thirumalairajan, A. K. Patra, D. Mangalaraj, N. Ponpandian, C. Viswanathan; *Current Applied Physics* **2013** (13) 652-658.
- ^[2] Y. Hou, J. Zhang, Z. Ding, L. Wu; *Powder Technology* **2010** (203) 440-446.
- [³] Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, X.Fu; *Journal of Catalysis* 2007 (250) 12-18.
- ^[4] L. Yuliati, T. Hattori, H. Itoh, H. Yoshida; *Journal of Catalysis* **2008** (257) 396-402.
- ⁵] K. Shimura, et al.; *Journal of Physical Chemistry C* **2010** (114) 1146-11474.
- [⁶] Y. Sakata, Y. Matsuda, T. Yanagida, et al.; *Catalysis Letters* **2008** (125) 22-26.
- ⁷] A. L. Linsebigler, G. Lu, T. Yates; *Chemical Reviews* **1995** (95) 735-758.
- ^[8] J. Yang, D. Wang, H. Han, C. Li; *Account of Chemical Research* **2013** (46) 1900-9.
- [9] M. Muruganandham et al.; Journal of Physical Chemistry C 2012 (116) 44-53.
- ^[10] C.C. Surdu-Bob, S.O. Saied, J. Sullivan, Applied Surface Science 2001 (183) 126-136
- [¹1] C.D. Wagner, et al.; NIST X-ray Photoelectron Spectroscopy Database, Version 3.4, National Institute of Standards and Technology, Gaithersburg, MD 2003; http://srdata.nist.gov/xps/
- ^{[1}2] K. Maeda et al.; *Journal of Physical Chemistry*. B 2005 (109) 20504-20510.
- ^{[1}3] J.M. Epp, J.G. Dillard, *Chemistry of Materials* **1989** (1) 325-330.
- ^[4] X. Zhang, S. Ptasinska, Journal of Physical Chemistry C 2014 (118) 4259-4266.
- [¹5] V. Matolín et al; *Langmuir* **2010** (26) 12824-12831.