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Abstract 

In Hungary two geological sites of the Boda Claystone Formation (BCF) located in the W-Mecsek 

Mountains (South Hungary) have been selected for the study of potential host rocks for high level 

radioactive waste (HLW), Gorica (G) Block and W-Mecsek Anticline (WMA) Block. The aim of the 

study was to obtain information on the uranium uptake characteristics of both sites.  

Our results revealed that in the sample, taken from WMA Block, where dolomites have ankerite rims 

and U-bearing rings, newly formed FeOOH precipitations were observed, which partly replaced the 

ankerite at near neutral pH (6.8). UO2
2+

 ions were adsorbed easily due to the enhanced specific surface 

area and high adsorption capacity of FeOOH formed from the dissolution of ankerite. The oxidation of 

Fe
2+

 leads to the formation of FeOOH parallel to partial reduction of U
6+

 to U
4+

. 75% of uranium was 

taken up by clay minerals and 25% by FeOOH although the ankerite concentration is as low as 6% in 

WMA Block of BCF. In G Block, the argillaceous matrix was found to be mainly responsible for the 

UO2
2+

 uptake. The study demonstrated that the U retention capacity of different BCF locations was 

significantly influenced by the mineralogy of these sites. 

Keywords: Boda Claystone Formation, uranium uptake, ankerite, FeOOH, nuclear waste 

repository 

 

Introduction 

In order to confirm the feasibility of a potential high level radioactive waste (HLW) repository site 

(Schwartz 2009; Andersson et al. 2013), the retention of uranium has superior significance, provided 

that it is released from the conditioned waste. In Hungary, the investigation of potential host rock for 

HLW disposal started by studying Boda Claystone Formation (BCF). The national investigations 

pointed out that BCF displayed exceptional features for HLW disposal and further detailed research 

was suggested. On BCF samples, in addition to the geological studies, numerous sorption and 

migration tests have been performed such as in situ diffusion and break through tests of 
85

Sr, 
137

Cs, 
60

Co, 
14

C, 
125

I, 
99

Tc, 
235/238

U, 
232

Th,
 241

Am and 
239

Pu  (Mell 2006ab; Guczi and Szabó 1995, 1996 and 

1997; Szabó et al. 2004).  

Uptake mechanisms of uranium have been studied on materials of the engineered barriers of a future 

repository installation such as hardened cement paste (Wieland et al. 2010; Gaona et al. 2012) and 

bentonite (Meleshyn et al. 2009; Bachmaf and Merkel 2011). The retention of UO2
2+

 by different 

argillaceous host rocks was also studied for Opalinus Clay, Switzerland, as well as Callovo-Oxfordian 

Clay, France (Bradbury and Baeyens 2011; Joseph et al. 2011; Hartmann et al. 2008), mostly using 

wet chemistry batch experiments involving bulk samples and sorption modelling. However, the 
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mineralogical and geochemical processes of the uptake onto different host rocks are hardly 

understood. Although clay minerals were found to play an important role in the retention of uranium, 

other mineral phases such as quartz and especially iron oxy-hydroxides cannot be excluded as 

effective adsorbents of UO2
2+

 (Green-Pedersen and Pind 2000; Joseph et al. 2011; Nair et al. 2014). 

Furthermore, Zheng et al. (2003) pointed out that ferrihydrites in soils in oxidizing conditions have 

much larger specific sorption capacity for UO2
2+

 than clays. For this reason it is important to identify, 

which mineral phases are responsible for the UO2
2+

 uptake on the microscale, complementing the wet 

chemistry studies. The spatial distribution of uranium was successfully studied on thin sections using 

synchrotron-radiation microbeam X-ray fluorescence (micro-XRF) in investigating rocks from a 

natural analogue site for radioactive waste disposal (Denecke et al. 2005) and for cementitious 

materials after diffusion experiments (Wieland et al. 2010). Although information concerning spatial 

heterogeneity in uptake mechanism would be essential, studies involving petrographic thin sections 

after sorption experiments are very limited and dealing only with other elements such as Np (e.g. 

Fröhlich et al. 2012). Investigations with high sensitivity analytical methods such as micro-XRF are 

missing for BCF. 

The present study deals with the identification of mineral phases responsible for the uranium uptake in 

micrometer scale in two mineralogically different blocks, i.e. Gorica (G) Block and W-Mecsek 

Anticline (WMA) Block of BCF. For each block a representative drilling core section was selected for 

the present research based on detailed study on all available cores from the existing boreholes. The 

major objective is to understand the geochemical processes, which affect the retardation capacity of 

BCF. The study aims to identify whether the two blocks have different behaviour in uranium uptake 

that could influence their suitability for host rock of HLW repository.  

 

Geological background 

The Upper Permian sedimentary sequence of the BCF is located in W-Mecsek Mountains, southern 

Transdanubia (South Hungary) (Fig. 1). BCF is known in an area of 150 km
2
 of which 15 km

2
 can be 

found on the surface (Fig. 1). This formation has been selected for future HLW repository due to its 

low porosity, appropriate hydraulic conductivity and absence of organic residues (Boisson 2005). 

Two distribution areas of BCF are known, the perianticlinal structure of the WMA Block and the G 

Block. These sites have been selected as the most appropriate candidates for host rock of the 

repository.  Outcrop of BCF at G Block is not known and only one borehole (Ib-4) recovered the 

complete sequence of BCF (approx. 200 m). On the basis of the deep drillings, total thickness of BCF 

is estimated to be about 700-900 m in WMA Block, whereas its thickness is smaller about 350 m in 

the G Block. The sediments of the BCF are dominantly red and reddish brown in colour, reflecting the 

dominantly oxidizing nature of the depositional and early diagenetic environments (Jámbor 1964; 

Barabás and Barabás-Stuhl 1998; Máthé 1998; Árkai et al. 2000; Varga et al. 2005; Lázár and Máthé 

2012). The BCF was deposited in a shallow-water salt lake environment surrounded by dry to saline 

mudflat, under semi-arid to arid climatic conditions (Barabás and Barabás-Stuhl 1998; Máthé 1998; 

Árkai et al. 2000; Varga et al. 2005; Máthé and Varga 2012) (Fig. 2).  

In WMA Block the main rock-forming minerals of the BCF are clay minerals (mainly illite and 

chlorite), authigenic albite, detrital quartz, carbonate minerals (calcite and dolomite) and hematite 

(Máthé 1998; Árkai et al. 2000; Varga et al. 2005; Varga et al. 2006). In addition to the major 

minerals, barite, anhydrite, authigenic K-feldspar and detrital constituents were also identified in trace 

amounts. The authigenic albite is present as albite cement, albite and carbonate-lined disseminated 

irregular white voids and albite replacement of detrital feldspars in sandstone beds (Máthé 1998; Árkai 

et al. 2000; Varga et al. 2006). In addition to albite, carbonate minerals (fine-grained calcite and 

euhedral-rhombohedral dolomite) and authigenic K-feldspar are present in these voids. On the basis of 

their morphology, these albite-, carbonate- and K-feldspar-lined voids are replacements of the 

previous halite crystals (Máthé and Varga 2012). The BCF recovered by borehole Ib-4 (G Block) 

differs in its mineralogical composition. This succession of BCF contains abundant analcime in 

addition to the above mentioned minerals (Sipos et al. 2010; Lázár and Máthé 2012). Similarly to the 

authigenic albite, the analcime is present as analcime cement and pore infillings. The dominant rock 

type of the formation is albitic claystone in the WMA Block and albite- and analcime-bearing 

claystone in the G Block (Konrád 2010). 



3 

 

 
Fig. 1 Pre-Cenozoic geological map of Mecsek Mts and locations of studied objects marked by red rectangles 

(boreholes: Ib-4 and D-11 in the Alfa tunnels) 

 

 
Fig. 2 Idealized lithologic column of Boda Claystone Formation (Lázár and Máthé 2012) 
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Materials and methods 

Samples 

Based on their depth and representativeness for BCF, a ca. 20 cm long clay rich core sample of the 

two boreholes, IB-4 at a depth of 540 m, representing Gorica Block, and D-11 from the Alfa tunnels 

(Fig. 1) at a depth of ca. 1000 m, representing W-Mecsek Anticline Block, were selected for detailed 

sorption study.  

The results of the powder X-ray diffraction (XRD) analyses of the two selected samples are presented 

in Table 1. The results revealed that BCF in WMA Block (sample D-11) has lower illite and quartz 

content than those in the G Block (sample Ib-4). Sample D-11 has high albite content and contains 

ankerite, too, whereas sample Ib-4 has lower albite content, and contains analcime however no 

ankerite was identified. 

The albite and ankerite are present in the clayey matrix, and as fracture and vug infilling (Fig. 3). 

Euhedral dolomites are such grains connected to or in the fractures. In sample D-11 dolomites are 

zoned and have ankerite rims (Fig. 3 left). Based on the previous electron probe microanalysis 

(EPMA) results, calcites and dolomites contain low amount of Mn and Fe (< 1 wt. % MnO and FeO in 

calcite and 0.3 wt. % FeO and ca. 2 wt. % MnO in dolomite) (Németh 2011). The pore water 

composition is in accordance with the shallow-water salt lake environment of the deposition of BCF, 

the chemical composition corresponding to the Ib-4 sample is shown in Table 2. 

 
Table 1 Semi-quantitative mineral composition (wt. %) of the bulk samples, measured by XRD 

Sample 

(Depth)  

Illite 

(wt. %)  

Albite  

(wt. %)  

Analcime 

(wt. %) 

Quartz  

(wt. %)  

Calcite/dolomite  

(wt. %)  

Hematite  

(wt. %)  

Ankerite  

(wt. %)  

D-11 

(Ca. 1000 m) 
38  45  

 
0.5  3  6  6  

IB-4 

(540 m) 
50 17 10 8 8 6 0 

 

60 µm

Mg Fe

D-11

100 µm

Al Na

100 µm

Fe Ca Mg

Ib-4 Ib-4

 
 

Fig. 3 X-ray maps of Mg and Fe in a fracture filling zoned dolomite and calcite surrounded by argillaceous 

matrix in sample D-11 (WMA Block) and Fe, Ca, Mg, Al and Na in a similar structural feature composed by 

calcite, dolomite, analcime and clayey matrix in sample Ib-4 (G Block) 

 

Table 2 Chemical composition of BCF pore water from G Block (Ib-4) 

Element Ib-4 (modelled) 

(mol/L) 

Ib-4 (original) 

(mol/L) 

Na 1.7 × 10
-2 

1.7 × 10
-2

 

K 1.8 × 10
-4

 1.8 × 10
-4

 

Mg 2.4 × 10
-3

 6.8 × 10
-5

 

Ca 3.1 × 10
-3

 8.0 × 10
-5

 

Sr 1.5 × 10
-5

 1.5 × 10
-6

 

Cl 2.3 × 10
-2

 7.0 × 10
-4

 

SO4 1.9 × 10
-3

 1.9 × 10
-3

 

HCO3/CO3 6.1 × 10
-4

 1.3 × 10
-2

 

Ionic strength 3.3 × 10
-2

 1.9 × 10
-2

 

pH 8.0 8.7 
#
pH / pCO2  8.2 / 10

-2.3
 bar 
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Methods 

Four thin sections (ca. 50 µm thick and 1 cm
2
 surface) were prepared from the two core samples by 

mounting them on high-purity Si wafers. Prior to the uptake experiments by immersing the thin 

sections in UO2
2+

 containing solutions, sorption modelling calculations were carried out to determine 

the maximum UO2
2+

 concentrations in the porewater and the corresponding uranium loadings on the 

BCF. The 2 Site Protolysis Non Electrostatic Surface Complexation and Cation Exchange (2SPNE 

SC/CE) sorption model (Bradbury and Baeyens, 2009) was used for these calculations. The procedure 

was to calculate the sorption on illite in the corresponding porewater with the surface complexation 

constants given in Bradbury and Baeyens (2009) and the results were then scaled to the 40 wt. % clay 

content of BCF (see Table 1). These scooping calculations indicated that it was not possible without 

avoiding precipitation to obtain sufficiently high uranium loadings of ca. 50 µg/g on the BCF for the 

micro-XRF analyses. The procedure followed was to use a simple background electrolyte (0.1 M 

NaCl) at a maximum UO2
2+

 concentration of 2×10
-6

 M at pH 6.8. Under these circumstances no 

precipitation should be occurring. However, it should be realized that dissolution of mineral phases 

cannot be avoided. To minimise these effects the thin sections were exposed for only 72-hour to the 

UO2
2+

 solution in 0.1 M NaCl at pH 6.8. UO2
2+

 was added to the NaCl solution in the form of ICP 

standard (1000 µg/L U in 2% HNO3 solution; Ultra Scientific, RI, USA) and the pH was set to 6.8 

using NaOH. The excess solution containing UO2
2+

 was removed from the sample surface using quick 

rinsing with distilled water. Under these conditions the samples could be prepared for the microscopic 

observations at sufficient high concentrations without precipitation.  

The spatial distribution of U on the treated thin sections was measured using micro-XRF at the FLUO 

beamline at the ANKA storage ring (Karlsruhe, Germany). Synchrotron radiation (SR) micro-XRF 

was applied for this study because this technique is sufficiently sensitive to examine trace amounts of 

uranium and has a high spatial resolution. In order to excite the L3 edge of uranium, white beam of a 

bending magnet was monochromatized to 17.5 keV by a W/Si multilayer double monochromator. A 

compound refractive lens was employed for focusing a beam down to 3×5 μm
2
, resulting in a beam 

footprint of 3 µm (V) × 8 µm (H) on the sample due to the 45°/45° geometry. The fluorescence yield 

was detected using an energy-dispersive silicon-drift detector. Micro-XRF maps were recorded from 

pre-selected areas of the samples such as clayey matrix and fracture- and vug-fillings, using a step size 

of 5 µm and 10 s counting time per pixel. In order to resolve overlapping, characteristic X-ray peaks 

such as Rb-Kα and U-Lα, full X-ray spectra were collected at each pixel and were processed using the 

AXIL software (Vekemans et al. 1994). Elemental distribution maps were recorded for the adsorbed 

element (U) and for the major and minor elements of the rock (e.g. K, Ca, Fe, Rb, Sr) using the 

resulting net characteristic X-ray intensities. In addition to visualization of the spatial distributions, the 

elemental maps served as a basis for examination of inter-elemental correlations. A detection limit of 

as low as 10 μg/g could be obtained for uranium using a 10 s counting time, which can be expressed as 

4×10
–5

 mol/kg U sorbed, allowing investigation of the spatial distribution of the sorbed uranium at the 

microscale. 

The proportion of phases having different uranium retention capacity was calculated by analysing the 

distribution of U-Lα intensities (I) over the areas scanned by micro-XRF. If only a single phase is 

responsible for the uptake, a single lognormal distribution is expected. However, when two major 

phases have different uptake capacity, the overall distribution of U-Lα intensities can only be 

described by superposition of multiple lognormal distributions. If the distribution function I.(dN/dlogI) 

is plotted over logI, the proportion can simply be calculated as the ratio of the integrals of the 

lognormal distributions fitted to the experimental data (N is the number of pixels having U-Lα 

intensity I) (see Fig. 9). 

The mineralogy and structural characterisation of the areas selected was studied using a Nikon Eclipse 

E600 Pol polarization microscope and FEI Quanta 3D scanning electron microscope (SEM) at Eötvös 

University Budapest, Hungary. In order to preserve the vacuum-sensitive clay fraction for further 

analyses, the SEM was operated at 110 Pa H2O atmosphere at low vacuum mode. Energy-dispersive 

X-ray (EDX) microanalysis was performed using a 20 kV accelerating voltage in order to excite the L3 

edge of uranium. 
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Results and discussion 

Although several areas were measured from three thin sections prepared from each of the samples, 

results of two typical areas are to be discussed below in detail. These areas are representing general 

rock composition since they contain clayey matrix and fracture and cavity fillings as well (Fig. 4). The 

similarity of structures in the samples from the two sites (i.e. fracture filling surrounded with 

argillaceous matrix) allows us to compare the effect of mineralogical differences of the two studied 

blocks of BCF on their UO2
2+

 uptake. 

Based on the SR micro-XRF mapping performed on the selected areas (Fig. 4), the spatial distribution 

of U in sample D-11, derived from WMA Block, is different from that of Ib-4 sample collected from 

Gorica Block (Fig. 5). On the sample Ib-4, where a calcite, dolomite and analcime filled fracture and 

clayey matrix were studied (Fig. 5), U distribution shows strong correlation with K and Fe as it can be 

seen on the scatter plot (Fig. 6). In contrast, on the sample D-11 where a K-feldspar, albite, calcite and 

ankerite-rimmed dolomite filled fracture and the adjacent argillaceous matrix was selected for the 

mapping (Fig. 4), the UO2
2+

 uptake onto the Fe- and K rich clayey matrix is less significant (Fig. 6), 

however, around the dolomite rhombohedra with ankerite rim U- and Fe-rich rings are visible (Fig. 5). 

 

2 mm 2 mm

a b

 
 

Fig. 4 Microscopic images of sample D-11 from WMA Block (a) and Ib-4 from G Block under reflected light 

(b). The black rectangles indicate areas of which µ-XRF mapping results are discussed 

 

 
 

Fig. 5 SR micro-XRF  maps of K. Fe, Ca and U in the areas marked by black rectangles on Fig. 4 in sample Ib-4 

from G Block (a) and D-11 from WMA Block (b). The white rectangle shows the area where polarization 

microscopy and scanning electron microscopy was performed 
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Fig. 6 Scatter plots of characteristic X-ray intensities of U and K as well as U and Fe measured using SR micro-

XRF on the areas selected in samples Ib-4 from G Block and in samples D-11 from WMA Block (Fig. 4 and 5) 

 

 
 

Fig. 7 Polarization microscopic (a) and secondary electron images (b, c) of zoned dolomite grains (dol) 

surrounded with argillaceous matrix in BCF sample D-11 from WMA Block (the images were collected from the 

area marked with white rectangle on Fig 5 (b), uranium elemental map). The higher magnification image (c) 

corresponds to the area marked with a white rectangle in (b). The reddish colour of the rim on the polarization 

microscopic image (a) (reflected light) indicates newly formed FeOOH minerals. Secondary electron images (b 

and c) show the spongy structure of the mineralization formed around and on ankerite rims of dolomite grains 

 

In order to explain the significant differences in uptake of UO2
2+

 in the two samples investigated, 

detailed mineralogical study was performed by use of polarization and scanning electron microscope. 

In the sample D-11 (WMA Block) where U- and Fe-rich rims were formed replacing ankerite rims, the 

polarization microscopic study revealed that these newly formed phases are 2-10 microns thick and 

have reddish colour under reflected light (Fig. 7a). On the scanning electron microscopic images it can 

be seen that the newly formed rim has spongy structure, which indicates formation of acicular or lens-

shaped precipitation (Fig. 7b). The reddish colour (Fig. 7a), the local maximum of Fe intensity (Fig. 

5b), furthermore the acicular shape of the newly formed phase indicate secondary FeOOH formation. 

Similarly structured secondary FeOOH formation was described by Antunes et al. (2003) and Castaño 

et al. (2010) in corrosion products on steels. Since ankerite contains Fe as Fe
2+

, the formation of 

FeOOH requires oxidation of Fe. One of the processes of Fe oxidation is due to reduction of U
6+

.  

The significant role of these surface-bound Fe
2+

→Fe
3+

/U
6+

→U
4+

 redox systems for the fixing of 

uranium onto rock surfaces was investigated in details by Liger et al. (1999), their findings were in full 

correspondence with the previous work of Stumm and Sulzberger (1992). As an indirect proof of Fe
2+
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oxidation induced by U
6+

 reduction, the uptake experiments were repeated on fresh D-11 thin sections 

with structures similar to the original ones. The control experiments were carried out on the one hand 

at pH 8.0, and on the other hand at pH 6.8 but using Ni
2+

 instead of UO2
2+

 in the solution. After both of 

these experiments, no reddish coloured rims (see Fig. 7c) were observable on ankerite by optical 

microscopy. Thus the correlation between surface-sorbed U and ankerite rims is explained by the 

reduction of U
6+

 by insoluble U
4+

. The suspected FeOOH species are attributed to the local oxidation 

of Fe
2+

 present in the ankerite. The pH conditions were also favourable to the solid forms of the ionic 

forms of both elements. 

Although, in the sample Ib-4 (Gorica Block) the vug and veinlet infilling calcite and Fe
2+

-bearing 

dolomite (Fig. 8a and b) are affected by leaching as it is indicated by the corroded surface (Fig. 8c), no 

spongy structured rims were formed in contrast to the sample D-11. 

Polarization microscopy and SEM/EDX investigations of untreated thin sections of D-11 and Ib-4 

were performed in order to confirm the origin of FeOOH, that is, whether the weathering and the 

formation of reddish FeOOH phase occurred already during rock formation or it was initiated by the 

sorption experiment itself. Polarization microscopy does not show the reddish colour in the position of 

the ankerite rims on the D-11 thin sections and no signs of weathering were observed for thin sections 

of both D-11 and Ib-4. Therefore this assessment confirmed that the weathering of ankerite and 

dolomite phases and the formation of the FeOOH minerals took place during the uptake experiment. 

During the sorption experiment the pH shifted from 6.8 to 7.1 and 7.3 in case of sample D-11 and Ib-

4, respectively, due to the solution-rock interaction. The larger increase in the latter one can be 

attributed to the larger surface area of the thin section. Furthermore, within this sample the slightly 

acidic pH caused weak weathering indicated by the corroded surface that was not sufficient to dissolve 

the veinlets infilling calcite and dolomite totally. 
 

 
 

Fig. 8 Microscopic (a) and backscattered electron images (b, c) of analcime (an) and calcite (cal) filled veinlet in 

BCF sample Ib-4 from G Block. The electron image (b) was recorded from the area marked with black rectangle 

in (a). The higher magnification image (c) corresponds to the area marked with a white rectangle in (b), indicates 

weathering of calcite 

 

Since the revealed U-bearing rings were formed only in sample D-11, where dolomites have ankerite 

rim, and these U-rings connect to the newly formed FeOOH phase, which replaced the ankerite, the 

contribution of ankerite is clear in the process.  

Due to the replacement of Mg
2+

 with Fe
2+

, which caused structural distortion (Mg has a slightly larger 

ion radius than Fe
2+

, 0.83 and 0.78 Å, respectively) in octahedral position of carbonate structure, the 

solubility of ankerite is higher than that of dolomite (Rosenberg and Foit Jr 1979). Therefore, the 6.8 

pH was acidic enough to dissolve the ankerite rims of dolomite in the sample D-11. The high Fe
2+

 

content (ca. 20 wt. % FeO) supports the FeOOH formation after ankerite dissolution. Although, in 

sample Ib-4 dolomites and calcites contain some FeO (< 1 wt. %), due to the low Fe
2+

 content and 

lower solubility of dolomite, no FeOOH was formed.  

Although the extensive absorptive feature of clay minerals had already been revealed (Bradbury and 

Baeyens 2011; Joseph et al. 2011; Hartmann et al. 2008), it was found in the present study that a 

significant portion of the immobilized uranium is sorbed onto FeOOH, with a percentage much higher 

than the chemical concentration of the sorbent. 
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The proportion of the newly formed phase in uranium uptake was calculated based on the distribution 

of the U-Lα X-ray intensities (I) over the areas selected on samples D-11 and Ib-4 (Fig. 5). Since the U 

content can only have nonnegative value in any pixel and its expected value is small compared to the 

standard deviation (variation over the measured area), it should follow lognormal distribution. For this 

reason the measured distribution expressed as I.(dN/dlogI) was plotted in equidistant intervals in log I 

(Fig. 9), where N denotes the number of pixels corresponding to intensity I. As the uranium uptake 

capacity of the clayey matrix and that of the newly formed FeOOH rings is different, the measured 

distribution can only be described using two lognormal distributions with different parameters. The 

two lognormal distributions used for the fit represent the uptake by the clayey matrix (peaking at log I 

= 0.475) and by the U-rich rings (peaking at log I = 1.089; see Fig. 9a). The contribution of the U-rich 

rings in the total U content of the selected area was calculated using the integral of the fitted 

distributions. Based on the calculations, the newly formed FeOOH phase is responsible for 25 % of the 

total UO2
2+

 uptake, whereas the clayey matrix is responsible for the remaining 75 %. For sample Ib-4, 

the distribution of the U-Lα X-ray intensities over the selected area could be described using a single 

lognormal distribution, indicating that mostly the clayey matrix is responsible for the uptake (Fig. 9b). 

As introduced above, the probable explanation for the observed iron- and uranium-rich rings, replacing 

ankerite, is the redox reaction followed by uranium precipitation. Similar findings were published by 

Krawczyk-Bärsch et al. (2004) who pointed out that UO2
2+

 preferably adsorbs on chlorites which have 

higher Fe content and hence secondary Fe-oxyhydroxides were formed. These FeOOH particles 

provided additional surface area and additional surface binding sites for UO2
2+

 complexation 

(Krawczyk-Bärsch et al. 2004), which is a common mechanism described by others in soils and rocks 

(e.g. Koons et al. 1980; De Putter et al. 1999; Arnold et al. 2001). Zheng et al. (2003) concluded that 

ferrihydrite-like complexes have even larger importance in UO2
2+

 uptake than clay minerals in soil 

systems.  

 

Concluding remarks  

The information on uptake is essential to understand the behaviour of uranium, which can be released 

by dissolution from HLW and to identify the differences between the two candidate geological sites in 

their uptake capacity for the precise site selection. Such an extensive and detailed study on BCF has 

not been performed so far. 

The observed U-bearing rings formed only in sample from WMA Block (sample D-11), where 

dolomites have ankerite rim and these U-rings connect to the newly formed FeOOH, which replaced 

the ankerite as a result of surface oxidation. Although in G Block (sample Ib-4) dolomites are not 

zoned, they have some minor Fe
2+

 content. However, this amount of Fe
2+

 was insufficient to form new 

mineral phases during the sorption experiment. Around the dolomites, which have ankerite rim the 

dissolution of ankerite is followed by FeOOH formation resulted from oxidation of Fe
2+

 by U
6+

 

reduction, which phase easily binds uranium due to the process described above. Furthermore, this 

effect is also enhanced by the increase of the specific surface area. As a result about 25% of the total 

bound U was present in this form on the sample from the BCF in WMA Block.  

The above-mentioned difference in mineralogy could influence significantly the U retention capacity 

of the BCF in the two studied blocks in conditions of a hypothetical release scenario from a 

radioactive waste repository, when dissolved UO2
2+

 can interact with the rock.  

The weathering of ankerite and the formation of FeOOH phases using a slightly acidic pH during 

sorption experiments pointed out that the appropriate design of experimental conditions is very 

important in order to model the sorption when the rock-pore water system is in equilibrium. 
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Fig. 9 Distribution of U-Lα X-ray intensities (I) on the areas selected in the samples D-11 from WMA Block (a) 

and Ib-4 from G Block (b), plotted as a distribution function (I dN/d log I) in equidistant intervals in log I. For 

sample D-11, two lognormal distributions were fitted to the measured points representing the clayey matrix and 

the U-rich rings, resulting in a 25 % contribution of U-rich rings in the total U content of the selected area shown 

in Fig. 5b. For sample Ib-4, a single lognormal distribution could be fitted indicating the exclusive role of the 

clayey matrix in the U uptake. 
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