
 1 

Accepted for publication in Journal of Reinforced Plastics and 

Composites 

Published in December, 2015 

DOI: 10.1177/0731684415614087 

 
Mechanical and abrasion wear properties of hydrogenated nitrile 

butadiene rubber of identical hardness filled with carbon 

black and silica  

 

E. Padenko1, P. Berki2, B. Wetzel1 and J. Karger-Kocsis2,3* 

 

1- Institut für Verbundwerkstoffe GmbH (Institute for Composite Materials), 

Kaiserslautern University of Technology, D-67663 Kaiserslautern, Germany 

2- Department of Polymer Engineering, Budapest University of Technology and 

Economics, Muegyetem rkp. 3, H-1111 Budapest, Hungary 

3- MTA–BME Research Group for Composite Science and Technology, 

Muegyetem rkp. 3., H-1111 Budapest, Hungary 

 

* author to whom correspondence should be addressed (E-mail:karger@pt.bme.hu) 

Submitted to JRPC, Sept. 2015 

 

Abstract 

The mechanical and abrasive wear properties of a hydrogenated nitrile rubber 

(HNBR) filled with 35 part per hundred rubber (phr) carbon black (CB) or silica with 

and without silane surface treatment (SI-si and SI, respectively), were investigated. 

Specimens were subjected to dynamic mechanical thermal analysis (DMTA – also to 

study the Payne effect), mechanical (hardness, tensile modulus, ultimate tensile 

strength and strain, Mullins effect and tear strength), and fracture mechanical (J-

integral) tests. The abrasive coefficient of friction (COF) and wear (specific wear rate, 

Ws) of the HNBRs of identical hardness were measured against abrasive papers of 

different grit sizes (P600-P5000).The worn surface of the HNBR systems was 

inspected in scanning electron microscopy (SEM) and the typical wear mechanisms 

deduced and discussed. COF did not change with the grit size by contrast to Ws 

which was markedly reduced with decreasing surface roughness of the abrasive 
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paper. Ws of the compounds did not vary when wearing against P3000 and P5000 

abrasive papers, representing mean surface values of 7 and 5 μm, respectively. This 

was attributed to a change from abrasion to sliding type wear. HNBR-CB 

outperformed the silica filled versions with respect to Ws though exhibited the highest 

COF. No definite correlation could be found between the abrasive wear and the 

studied DMTA and (fracture) mechanical properties. 

Keywords: rubber; filler; abrasive fiction and wear;  mechanical properties;  J-

integral;  silane treatment 

 

Introduction 

 

Friction and wear properties of polymers are key parameters for many tribological 

applications. The wear of polymers is a complex phenomenon that can be classified 

differently, such as according to the type of the polymers, interaction scale between 

the wearing counterparts and origin of the wear process (e.g. abrasive. sliding, 

fretting...) [1]. Rubbers are usually tested under abrasive and sliding conditions. This 

preference is due to the traditional applications fields of rubbers. For tyres, track 

pads, rubber coating of pumps and mills for example abrasive, whereas for seals and 

bushing sliding wear characteristics are critical issues. 

Hydrogenated acrylonitrile butadiene rubber (HNBR) exhibits excellent mechanical 

properties combined with superior heat- and oil resistance [2]. As a consequence, 

HNBR is widely used in mechanical and automotive engineering. Metal parts, 

subjected to dry or wet abrasive media are usually covered by rubbers, which 

necessitates the testing of non-tyre rubber compounds under abrasive conditions, as 

well. Reports on the sliding and rolling friction and wear of various HNBR-based 

compounds are already available [3-6]. By contrast, little information is available on 

the abrasive performance of HNBR gums [7-8].  

Albeit wear is considered as a system instead of a material property, efforts have 

always been in progress to find correlations between wear and mechanical 

properties. It is well documented in the literature that the hardness of rubbers is 

inversely proportional with the specific wear rate ([9] and references therein). 

Therefore, different rubbers of identical hardness should be tested first in order to find 

possible correlations between the mechanical and wear properties. Following this 

strategy, the abrasive wear performance oh HNBR compounds containing various 
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fillers but showing the same hardness was the topic of this study. The fillers selected 

were carbon black (CB) and silica (SI) with (SI-si) and without additional silanization 

that occurred during compounding. To guarantee the same hardness of the resulting 

gums the above nanoscale fillers had similar specific surface areas. To get deeper 

understanding in the wear mechanisms and in their changes, the compounds were 

abraded against abrasive papers of very different main asperities (grit size). This 

study covered also the assessment of the mechanical, fracture mechanical and 

viscoelastic behaviors of the rubbers. 

 

Experimental 

 

Materials 

The composition of the peroxide curable HNBR was the following: HNBR (Therban® 

3407 of Lanxess, Leverkusen, Germany; acrylonitrile content: 34 ± 1 %, residual 

double bonds: ≤ 0.9%, Mooney viscosity ML(1+4)100°=70 ± 7) – 100 part; zinc-

containing mercapto-benzimidazole compound (Vulcanox® ZMB 2/C5 of Lanxess) -

0.5 part, t-butylperoxy-diisopropyl benzene (Perkadox 14-40 of Akzo-Nobel, Düren, 

Germany; active peroxide content: 40%) - 7 part, MgO -2 part, triallyl isocyanurate 

(TAIC 70 of Kettlitz-Chemie, Rennertshofen, Germany; active compound: 70%)-2.1 

part and diphenylamine-based thermostabilizer (Luvomaxx CDPA of Lehmann & 

Voss, Hamburg, Germany) – 1.5 part. In this mix 35 part per hundred rubber (phr) 

carbon black (CB – high abrasive furnace, type N330, BET surface area: 70-99 m²/g) 

or silica (Vulkasil A1 of Lanxess; precipitated sodium aluminum silicate with a 

medium reinforcing effect, BET surface area: 50 - 80 m²/g). Silica, abbreviated further 

by SI, was also in situ silanized (SI-si) by vinyltrimethoxysilane (Evonik Industries, 

Essen, Germany) added in the recipe at 2 phr during compounding. The above 

recipe formulations were crosslinked at T=180 oC for 12 min into sheets of about 2 

mm thickness. Specimens for the investigations listed below were cut/punched from 

these sheets.   

 

Testing 

Dynamic-mechanical thermal analysis (DMTA) 

DMTA spectra were recorded on rectangular specimens (length x width x thickness = 

20 x 10 x ca. 2 mm³) in tension mode as a function of temperature (from -100 °C to 
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+100 °C) and a frequency of 10 Hz using a Q800 device of TA Instruments (New 

Castle, DE, USA). Tests were run at a constant strain (0.1%) with a heating rate of 2 

oC/min. DMTA served also to determine the Payne effect caused by the fillers. It was 

investigated also in tensile mode, however, at 30°C using 10 Hz frequency with a 

strain sweep from 0.01 to 10% strain (denoted as M0.01 and M10, respectively). 

 

Mechanical properties  

The Shore A hardness of the rubbers, determined according to ISO 868 using a 

hardness measuring device of Zwick (Ulm, Germany) were: HNBR-CB:63o, HNBR-

SI:62o and HNBR-SI-si:63o. This was in line with our aim to produce and test 

formulations of identical hardness. Recall that this was achieved by selecting 

reinforcing fillers of similar BET surface areas. 

Tensile tests were carried out dumbbells (type: S1 according to DIN 53504) on a 

Zwick Z250 (Ulm, Germany) universal testing machine at a deformation rate of 500 

mm/min. From the related stress-strain curves apart from the ultimate properties, the 

stress values at 100, 200 and 300% elongations, termed M-100, M-200 and M300, 

respectively, were also read (ISO 37). To determine the tear strength at 500 mm/min 

deformation rate the recommendation of the ISO 34-1 standard (angle-type specimen 

with cut) was followed. To assess the Mullins effect (strain softening) the same 

specimen was subjected to loading (to 50, 100, 150 ad 200%, respectively)/complete 

unloading cycles successively. Each of above tests was done on five parallel 

specimens. 

 

Fracture mechanical tests 

Fracture mechanical tests were performed on single edge-notched tensile loaded 

(SEN-T) and trouser tear specimens. SEN-T specimens of 100 x 25 x 2 mm 

dimension (length x width x thickness) with 10 mm initial notch length were loaded 

with 10 mm/min crosshead speed on the above mentioned universal testing machine. 

The crack tip opening displacement (CTOD) has been followed by visual inspection 

using a CCD camera. The camera was positioned in front of the crack in order to 

focus on the internal surfaces of the blunting and growing crack. The crack surfaces 

were coated by talc for contrasting purpose. By analyzing the videotaped sequence 

the point where fracture started to propagate could be detected, and the 

corresponding J-integral value determined. J-integral tests were also performed on 
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specimens which were loaded up to 100% deformation at 200 mm/min crosshead 

speed in five cycles in order to eliminate the Mullins effect. Further details to this test 

can be taken from refs. [10-11]. The fracture energy from trouser tear (Jtrouser) was 

determined on 100 x 30 x 2 mm specimens (length x width x thickness) with an initial 

notch length of 40 mm at 100 mm/min deformation rate. Like the mechanical, also the 

fracture mechanical tests were run on five parallel specimens. 

Abrasive tests 

The abrasion behavior of the samples was investigated by means of a custom-built 

scratch machine (Surface Machine Systems, College Station, TX, USA). A cylindrical 

flat rubber specimen with diameter of 5 mm was pressed and moved in the y-

direction against an abrasive SiC-paper (Matador waterproof) thereby measuring the 

friction force continuously with a suitable load cell. The normal load was set to 8.4 N 

which is equivalent to a nominal pressure of 0.43 MPa, and the velocity was 5 mm/s. 

The sample was tested in a single pass mode, i.e. it was always in contact with the 

virgin surface of the abrasive paper (Figure 1). The grit size of the abrasive papers 

was varied using P600 (grit size: 25.8±1 μm), P1200 (grit size: 15.3±1 μm), P2500 

(grit size: 8.4±0.5μm), P3000 (grit size: 7μm), and P5000 (grit size: 5μm) types, 

respectively. All tests were run at room temperature. The coefficient of friction (COF) 

was measured online and after the tests the specific wear rate was calculated 

according to Equation 1: 

LF

m
Ws







      (1) 

where m  is the mass loss of the specimen measured gravimetrically,   is the 

density, determined by the buoyancy method in water, F is the normal force (i.e. 8.4 

N) and L is the overall sliding distance ( 0.5 m). 
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Figure 1: Rig for abrasion testing  

 

Wear mechanisms 

The worn surfaces of the specimens were inspected by a scanning electron 

microscope (Supra 40 Zeiss, Oberkochen, Germany). Prior to SEM investigations the 

specimens were sputtered with ultra-thin layer of Au/Pd alloy. 

 

Results and Discussion 

HNBR characteristics 

Based on the storage modulus vs. temperature (E’ vs T) traces there is no difference 

between the HNBR rubbers in the glassy state. In the rubber state the HNBR-CB and 

HNBR-SI show similar plateau values by contrast to HNBR-SI-si lying below them 

(Figure 2a). Judging about the reinforcing actions of the fillers considering the 

decrease of the mechanical loss peak (tan δ) the ranking is: CB>SI>SI-si (cf. Figure 

2b). The glass transition temperature (Tg) was not influenced by the type of the fillers 

used irrespective whether the loss modulus (not given here) or the tan δ vs. T traces 

(Figure 2b) were considered. According to the rubber elasticity theory the inverse of 

the plateau modulus (1/Epl) at a given temperature above Tg correlates with the mean 

molecular mass between crosslinks (Mc): 
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3. .
c

pl

RT
M

E


      (2) 

where Epl is the modulus at T= 296 K, ρ is the density, R is the universal gas 

constant (8.314 J/(K.mol), and T is the absolute temperature (i.e. T=296 K). It has to 

be underlined that Mc is an apparent value because it implies not only the 

crosslinking but also the rubber-filler and filler-filler interactions. The Mc data for 

HNBR-CB, -Si and SI-si were 676, 771 and 1014 g/mol, respectively. 
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Figure 2: a) Storage modulus (E’) vs temperature (T) and b) mechanical loss factor 

(tanδ) vs T traces for the HNBR rubbers studied 

 

The Payne effect was the most and least pronounced for CB and Si-si nanofillers, as 

expected (cf. Figure 3). It was quantified by the difference M0.01-M10.  
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Figure 3: E’ vs. tensile strain traces for the HNBR rubbers measured at T=30 oC 

 

Mechanical tests 

The tensile tests results are tabulated in Table 1. Different tendencies can be 

observed for strength- and ductility-related parameters as a function of the fillers’ 

type. Nonetheless, CB outperformed the silica fillers with respect to tensile strength 

data. Silane treatment of the silica enhanced prominently the moduli at different 

strains compared to the untreated one but did not affect the ultimate tensile strength. 

Silane treatment was associated with a reduction in the ultimate tensile strain (cf. 

Figure 4 and Table 1). Interestingly, the highest tear strength exhibited HBNR-SI 

followed by HNBR-CB and HNBR-SI-si. 
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Figure 4: Moduli at different strain values for the HNBRs tested 

 

Figure 5 informs us about the Mullins effect in the rubbers.  In this Figure the first and 

fifth cycles of stress-strain curves up to 150% of the compounds which were previous 

loaded up to 100% strain are depicted. For comparison purpose the stress-strain 

curves of the rubbers at the first monotonic loading are also indicated. The Mullins 

effect has been quantified by considering the force ratio of the cyclic (F1..F5) and 

separate monotonic loading (F0) of the specimens at a given strain as a function of 

the loading cycles (1 to 5). Change in the dissipated energy (Ediss) has been 

considered in a similar way as that of the force (cf. Figure 5). The corresponding data 

are also listed in Table 1. 

 

 



 11 

0 50 100 150

0

50

100

150

200

250

300

F
o
rc

e
 [
N

]

Strain [mm]

 HNBR - CB

 HNBR - SI

 HNBR - SI-si

0 50 100 150 200 250

Strain [%]

0 50 100 150
0

50

100

150

200

250

300

Ediss, 150, 5

Ediss, 150, 1

F
150

Fmax, 150, 5

F
o
rc

e
 [
N

]

Strain [mm]

F
max,  150, 1

 

Figure 5: Mullins effect in the first and fifth cycles of loading up to 150 mm strain of 

the HNBR specimens subjected previously to five cycles up to each 50 and 100 mm 

strains, respectively 

 

Fracture mechanical results 

 

The J-integral vs. CTOD traces of the specimens with and without cyclic preloading 

are summarized in Figure 6. These traces could well be approximated by the 

function:  

CTODJ a b c         (3) 

where a, b and c are fitting constants and the value of c is always below 1. Equation 

3 can be reasoned by the fact that the value of “a” agreed reasonably with the 

measured J-integral upon full specimen separation (Jtotal). 
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Figure 6: J vs. CTOD traces for the HNBR specimens with and without cyclic 

preloading 

 

Results in Figure 6 indicate that cyclic preloading resulted in slightly lower J-integral 

values in the related resistance curves. The critical value of the J-integral, assigned 

to the onset of crack growth, has been read at CTOD=0.5 mm. This was 

recommended by the group of Riccò [10,11].  Figure 7 shows that practically identical 

Jc values have been found for the HNBR rubbers tested. Cyclic preloading slightly 

reduced the Jc data suggesting some effect of Mullins strain softening. The only 

exception was SI-si filler for which the lowest Mullins and Payne effects were found. 

The largest scatter in Jc was noticed for HNBR-CB reflecting the most pronounced 

filler-filler interactions between the CB particles in this mix. 
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Figure 7: Comparison of the Jc data for the HNBR specimens with and without cyclic 

preloading 

 

Jtrouser was determined by the following Equation [12]: 

 
2 tear

trouser

F
J

t


       (4) 

where Ftear is the mean force during stable tearing and t is the specimen thickness. 

Values of Jtrouser are in between Jc and Jtotal, closer to the latter, as expected based on 

the fact that it represents a steady crack growth. In order to complete the toughness 

determination the absorbed energy during monotonic tensile loading was also 

calculated. For that purpose the surface below the strength vs. deformation curve 

was integrated.  

 

Abrasive friction and wear 

Figure 8 summarizes the effects of filler types and grit size of the abrasive paper on 

the COF. One can recognize that the COF does not depend on the type (grit size) of 

the abrasive paper. On the other hand, the fillers do influence the COF. The COF 

was decreasing according to the range: CB>SI-si>SI. Unexpectedly, the COFs of 



 14 

HNBR-SI was slightly below those of HNBR-CB and HNBR-SI-si, the reason of which 

is not known by the authors. It is usually accepted that the COF may depend on the 

hardness of the polymer [13]. This is, however, not the case in this work because 

attention was paid to use HNBR gums of the same hardness (cf. Table 1). 

 

 

Figure 8: Comparison of the COF values for the HNBRs worn against abrasive 

papers of different grit sizes (Note: the grit size and thus the surface roughness of the 

abrasive papers decreases with increasing P numbers – see “Abrasive test” section)  

 

One may suppose that the specific wear rate of the rubbers follows a similar trend as 

COF, i.e. the lower the COF the lower the specific wear rate is. The results do not 

substantiate this prediction. The ranking when considering lowest abrasion loss (i.e. 

highest resistance to abrasion) against all the abrasive surfaces is: CB > SI-si > SI 

(Figure 9). As expected, the specific wear rate decreases with reduction of the 

surface roughness (grit size) of the abrasive paper. The specific wear rate of the 

HNBR compounds did not change when the grit size of the abrasive papers was 

reduced from 7 to 5 μm. This was a common feature for all HNBR compounds tested 

(Figure 9). Considering the fact that the surface roughness of the counterpart under 

dry sliding conditions is at about 1 μm [3-6], the observed change can be assigned to 

a transition from abrasive toward sliding wear. 
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Figure 9: Comparison of the specific wear rates for the HNBRs worn against abrasive 

papers of different grit sizes. For note cf. Figure 9. 

 

Wear mechanisms 

The worn tracks of the HNBR compounds were inspected in SEM (cf. Figures 10-12). 

Figure 10 compares the surfaces of the HNBRs worn against the coarsest abrasive 

paper. One can clearly see the grooves, scratches on the worn surfaces caused by 

the grits. On the other hand, no ridges, lying perpendicular to the abrasion direction 

could be detected. The latter was often observed during abrasion wear [14-15]. Note 

that in the first approximation the roughness of the worn surface inversely correlates 

with the wear resistance of the materials. Accordingly, based on the apparent 

roughness of the worn surfaces in Figure 10 the following ranking can be deduced for 

the specific wear rate: HNBR-CB < HNBR-SI-si < HNBR-SI. This is in full agreement 

with the results (cf. Ws data against P600 in Figure 9). 
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(a) HNBR-CB 

 

(b) HNBR-SI 
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(c) HNBR-SI-si 

 

Figure 10: SEM pictures taken from the wear tracks after the abrasive tests (a) 

HNBR-CB, (b) HNBR-SI, and (c) HNBR-SI-si against P600 abrasive paper. Note: 

arrow indicates the sliding direction  

 

Comparing the worn tracks of HNBRs with the best and poorest abrasion resistances 

further insight in the wear mechanisms can be revealed (Figure 11).The debris are 

obviously formed by ploughing and chipping when the rubbers were worn against 

P600 paper.  
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(a) HNBR-CB 

 

(b) HNBR-SI 

Figure 11: SEM pictures taken from the wear tracks after the abrasive tests against 

P600 type abrasive paper. Designations: (a) HNBR-CB and (b) HNBR-SI. Note: 

sliding direction is indicated by arrow 
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Recall that with decreasing grit size the abrasive wear is highly reduced (cf. Figure 

9). In order to show the changes in the wear mechanisms the worn surfaces of 

HNBR-CB and HNBR-SI, respectively, are compared after abrasion against P2500 

type paper in Figure 12. 

 

(a) HNBR-CB 

 

(b) HNBR-SI 
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Figure 12: SEM pictures taken from the surfaces abraded against P2500 type 

abrasive paper. Designations: (a) HNBR-CB and (b) HNBR-SI. Note: sliding direction 

is indicate by arrow 

 

By contrast to HNBR-CB showing small particulates, rolled debris appear on the 

abraded surface of HNBR-SI. The latter are oriented transverse to the abrasion 

direction. On the other hand, no clear Schallamach-type wavy pattern, which is often 

observed during dry sliding wear of rubbers [16], is present in Figure 12b. 

Abrasion against the finest abrasive paper (P5000) resulted in the lowest specific 

wear rates measured. HNBR-CB performed better than the silica filled versions under 

this abrasion condition, too. On the other hand, the specific wear rates of HNBR-SI 

and HNBR-SI-si were practically the same (cf. Figure 10). This suggests that the 

same wear mechanisms were at work. In fact, this is well documented by SEM 

pictures taken from the abraded surfaces in Figure 13. 

 

 

(a) HNBR-CB 
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(b) HNBR-SI 

 

(c) HNBR-SI-si 

Figure 13: SEM pictures taken from the surfaces of the rubbers abraded against 

P5000 abrasive paper. Designations: (a) HNBR-CB, (b) HNBR-SI, and (c) HNBR-SI-

si. Note: sliding direction is indicated by arrow 
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The particulate debris in HNBR-CB were formed by pitting. This mechanism was 

even more effective in the silicate-filled gums. The pitted particles on the worn 

surfaces of HNBR-SI and HNBR-SI-si agglomerated in microrolls. These microrolls 

were more “rubberized” for HNBR-SI-si than for HNBR-SI (cf. Figure 13b and c). This 

hints that the silane compound introduced acted for the filler/matrix adhesion 

properly. 

 

Possible correlations with wear rate  

According to the above wear mechanisms, discussed in connection with Figures 10-

13, one gets the impression that there should be some correlation between the wear 

resistance and some structure-, viscoelasticity-related or (fracture) mechanical 

properties. As the wear mechanisms alter as a function of the abrasive counterface 

(cf. Figures 11 and 13) the correlating properties, if any, may also change. The SEM 

results suggest that toughness-related parameter may govern the wear rate for highly 

abrasive, while viscoelasticity-related ones the wear at less abrasive (i.e. sliding-type) 

conditions. Nevertheless, the resistance to abrasive wear of the studied compounds 

follows the ranking: HNBR-CB > HNBR-SI-si > HNBR-SI (cf. Figure 9). Constructing 

a correlation matrix in which all the measured properties are listed and ranked, 

however, we do not get any clear correlation between the wear resistance and 

measured properties. This may be linked with one or more of the following 

arguments. First, wear is a system property, as often quoted and thus correlation with 

material properties is per se excluded. Second, possible correlation may exist when 

wear is treated as a function of combined terms of rubber-related properties. This 

was, however, beyond the scope of this contribution. Third, the rubbers involved, 

though carefully chosen, show similar wear performance. Note that the specific wear 

rates changed by a factor of 2 which is much too low in usual tribological tests to 

deduce reliable correlations. Forth, the number of rubber compounds in this work was 

too low and far more of them have to be tested in order to generate a suitable 

database. Nonetheless, the authors are convinced that eventual correlation with the 

wear performance can only be deduced when considering the properties, including 

their change as a function of frequency and temperature, studied.        
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Conclusion 

This study was devoted to investigate the mechanical and abrasive wear properties 

of a peroxide cured HNBRs having the same Shore A hardness (62-63o) set by 

incorporating different fillers, viz. carbon black (CB), silica (SI) and silanized SI (SI-

si). The rubbers were worn against abrasive papers of different grit sizes (P600-

P5000). Attempt was made to find correlation between the mechanical and abrasive 

wear properties. Based on this work the following conclusions can be drawn: 

1. The fillers selected yielded compounds with identical Shore hardness. Based 

on the DMTA response CB provided the best reinforcement followed by SI and 

SI-si. This ranking did not hold for the tensile and tear strength data. In situ 

silanization enhanced the moduli at different strains, reduced the ultimate 

elongation but not affected the ultimate tensile strength. Silanization was 

helpful to reduce the Payne- and Mullins-effects, as well. The critical J-integral, 

linked with crack initiation, was practically the same for the HNBRs. The J-

values deduced from trouser tear and full separation of the SEN-T specimens 

were closer to one another and followed the same tendency, i.e. HNBR-SI-si < 

HNBR-CB < HNBR-SI. Cyclic preloading of the related specimens, to avoid 

the Mullins-effect, yielded somewhat lower J-data.   

2. Values of the coefficient of friction (COF) did not depend on the grit size of the 

abrasive paper. On the other hand, its value depended on the filler type. The 

specific wear rate was markedly lowered with reduced grit size of the abrasive 

paper. The specific wear rate was not further reduced when the mean grit size 

changed from 7 μm (P3000) to 5 μm (P5000). The wear mechanism changed 

with decreasing grit size from ploughing, tearing, chipping to pitting associated 

with roll formation. 

3. Between the determined properties and the wear resistance of the 

investigated HNBRs (viz. HNBR-CB > HNBR-SI-si > HNBR-SI) no definite 

correlation could be traced. Possible reasons behind this finding were 

summarized.  
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Tables 

 

Table 1 

Property [unit] HNBR-CB HNBR-SI HNBR-SI-si 

Shore A [°] 63 62 63 

Density [g/cm3] 1.120 1.146 1.149 

Mc [g/mol] 676 771 1014 

tan δ at Tg  [1] 1.06 1.11 1.24 

Payne effect, M0.01-M10 [MPa] 3.49 3.19 1.89 

M-50 [MPa] 1.9±0.0 1.5±0.0 1.7±0.0 

M-100 [MPa] 3.9±0.0 2.2±0.0 3.4±0.1 

M-200 [MPa] 13.1±0.6 4.5±0.0 10.6±0.2 

M-300 [MPa] 24.9±0.4 8.6±1.2 - 

Tensile strength [MPa] 28.9±2.4 18.6±0.8 18.4±1.6 

Tensile strain [%] 335±24 467±11 277±17 

Tear strength [kN/m] 16.5±0.9 18.1±1.4 11.3±1.6 

Mullins-effect [%] 
Fmax, 50, 1 88±4 91±2 75±1 

Fmax, 50, 5 79±4 84±2 69±1 
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Fmax, 150, 1 92±2 94±2 81±1 

Fmax, 150, 5 69±1 78±1 66±1 

Ediss, 50, 1 26±3 29±2 21±0 

Ediss, 50, 5 13±0 13±1 10±0 

Ediss, 150, 1 42±1 32±1 37±1 

Ediss, 150, 5 8±0 13±3 5±2 

Jcritical, CTOD*=0.5mm [kJ/m2] 2.94±0.61 3.18±0.34 3.00±0.10 

Jcritical, CTOD*=0.5mm, cyclically preloaded [kJ/m2] 2.40±0.61 2.84±0.13 2.99±0.17 

Jtotal [kJ/m2] 17.88±1.65 28.20±8.38 10.52±2.94 

Jtotal, cyclically preloaded [kJ/m2] 15.85±5.99 26.96±9.06 10.58±1.78 

Absorbed energy in tensile test [kJ/m2] 2719 2008 1396 

Jtrouser [kJ/m2] 9.05±0.91 14.34±1.81 7.59±0.58 

 

 

 


