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Abstract

The paper presents a novel analysis specifically investigating as to whether stocks associated
with leading blockchain patent-developments influence the price volatility of Bitcoin across multiple
time frequencies. It is important to further develop our understanding of the inter-dynamics be-
tween this relatively youthful financial product and pricing sensitivities associated with corporate
technological advancement. Several interesting results are presented. First, Bitcoin is identified as
a volatility receiver instead of a transmitter across all of the time frequencies considered during
periods of patent development. Secondly, Microsoft, Mastercard, Intel and Visa contribute the
largest volatility spillovers to the Bitcoin market due to patent development. Finally, for most
of the companies considered, the calculated spillover effects towards Bitcoin markets are found to
increase from the short-term to the long-term. These results suggest the existence of an avenue
through which large corporations can influence cryptocurrency prices through their announcements
of future technological intentions. The inherent risks incorporated with blockchain and cryptocur-
rency patent-development should be studied in detail, with particular warnings presented to those
companies with no evidence of prior exposure and market knowledge.

Keywords: Bitcoin; Cryptocurrency; Blockchain; Volatility; Spillovers; Contagion; Patents;
Intellectual Property.

1. Introduction

One of the most well-known and established features of Bitcoin price-dynamics surrounds the
exceptional levels of price volatility inherent across all exchanges on which the new digital currency
trades. Several studies have recently attempted to examine the return and volatility transmissions
between Bitcoin or other cryptocurrency and a variety of other financial assets (Symitsi and Chal-
vatzis [2018], Yi et al. [2018], Corbet et al. [2018a] and Koutmos [2018]). However, none of this
research to date has considered the associated volatility transmissions between the stock prices
of multinational companies who have submitted patents, and the subsequent interactions between

Preprint submitted to Journal of International Financial Markets, Institutions & Money May 26, 2021



such decision-making and the prices of cryptocurrencies. It is entirely possible that such intention
to further this growing technological market could be observed by the wider market to be a re-
affirming signal of future stability. However, companies that have announced their intentions to
enter blockchain and cryptocurrency markets, has also raised some elements of doubt as to the true
underlying intentions to further technological progress, which has in some cases been identified as
a somewhat cynical, and most likely to be taking advantage of recent cryptocurrency price appre-
ciation rather than further advancement of the developing sector (Corbet et al. [2019, 2020]). The
analysis of patent development within the blockchain and cryptocurrency sector provides a novel
mechanism through which we can identify new sectoral entrants. It is also of concern that the
incorporation of such new technological products can also manifest in substantially elevated corpo-
rate risks, particularly through the incorporation of digital currency risk to which such companies
could have little or no experience in hedging (Akhtaruzzaman et al. [2019], Corbet et al. [2019]).
Such intentions would be widely observed as a significant threat upon cryptocurrency markets, in
particular the largest cryptocurrency among them, namely Bitcoin.

The very use of patents to inherently protect the value of innovation is of the utmost importance,
providing protection of the corporate entity’s intellectual property, while providing the legal right
to exclude others from making, using, selling and importing an invention for a limited period of
time. While the decision of large multinational corporations to enter into development processes
within cryptocurrency markets is a strong signal of the continued development of the product, it is
important that they do so conditionally, and respectively, of the culminating risks that are inherent
in these products (Corbet et al. [2019]). The transfer of risk is one of the central issues that has
eroded trust in the development of cryptocurrencies to date, with illicit and questionable ethical
behaviour accounting for a number of broad concerns within these rapidly growing exchanges. The
inherent development of cybercriminality within cryptocurrency markets has generated substantial
concern. Gandal et al. [2018] identified the impact of suspicious trading activity on the Mt. Gox
Bitcoin currency exchange, in which approximately 600,000 Bitcoin were fraudulently acquired.
The research concludes through the condition that suspicious trading activity likely caused the
unprecedented spike in the USD-BTC exchange rate in late 2013, when the rate jumped from
around $150 to more than $1,000. Further, Foley et al. [2019] estimated that around 46% of Bitcoin
transaction were associated with illicit activity each year, suggesting that cryptocurrencies are
directly responsible for a rapid transformation of the black markets by enabling black e-commerce,
while Corbet et al. [2019] found that cryptocurrency cybercriminality events increase both the
price volatility of the targeted cryptocurrency and broad cross-cryptocurrency correlations. Wei
[2018a] identified that an increase in Tether trading following a subsequent decrease in Bitcoin
returns, while further identifying the generation of abnormal corporate returns. This sentiment is
echoed by Cahill et al. [2020] investigated the price reaction of 713 listed companies in response
to blockchain-related announcements, finding evidence of abnormal returns being directly linked to
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the performance of Bitcoin. Speculative announcements exhibit higher returns than non-speculative
announcements, while the authors hypothesise that investors have confused Bitcoin and blockchain,
and used the performance of bitcoin as an indicator of the expected success of the newly developed
blockchain technology. Further fears have surrounded the continued escalation of energy usage
in the mining processes of cryptocurrencies. Further, Corbet et al. [2019] identified a sharp and
sustained increase in both the share price and price volatility of Kodak after the KODAKCoin
announcement, which was the decision for Kodak to incorporate blockchain technology, leading to
an increased correlation between the price of Kodak shares and Bitcoin. Das and Dutta [2020]
reported a negative relationship between Bitcoin’s energy consumption and miner’s revenue using a
quantile and Markov regime switching regression, identifying that it would not be viable to sustain
the business unless cheap energy sources and efficient mining hardware are relied upon.

While considering the above effects that the erosion of trust has continued to play within cryp-
tocurrency markets, this research focuses on the provision of support through the growth in patents
and research by major corporations within the growing digital currency sector. The continued
provision of support by major corporations will further entice others to develop research through
direct reputational benefits and enhancement, but also the elevated threat of potential corporate
technological advancement, which, if competitors do not manage could lead to significant corporate
advancement. Specifically, this study explores volatility spillovers between Bitcoin prices and these
identified blockchain patent-related stocks using the time and frequency domains approaches of
Diebold and Yilmaz [2012] and Baruník and Křehlík [2018]. The paper attempts to answer the
following three questions: 1) is Bitcoin a volatility transmitter or receiver of such patent-related
volatility? 2) if Bitcoin is a volatility receiver, which stocks have been found to contribute the
most to the volatility of Bitcoin? and finally 3) do the volatility spillover effects vary from short
to long terms? Such an analysis bears substantial benefit for policy-makers and regulators. It is
very much of interest to develop our understanding of the mechanisms through which cryptocur-
rency volatility is sourced. Further, it is important to understand as to whether a market of such
rapidly development is both aware and exposed to the threat of new market entrants. This paper
explicitly contributes to the literature in three ways. First, we study, for the first time, the static
and dynamic volatility spillovers between top ranked blockchain patent-related stocks and Bitcoin
prices. Second, we investigate the role of volatility transmission among blockchain patent holders
for Bitcoin market at different time frequencies. Third, we explore as to which company plays the
most important role in driving the volatility of Bitcoin to its all-time high in December 2017.

The remainder of this paper is organised as follows. Section 2 outlines the key previous literature
associated the understanding and development of cryptocurrency risk, with emphasis on Bitcoin in
isolation. Section 3 describes the data and econometric methods. Section 4 presents the empirical
results and Section 5 concludes and discusses the implications.
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2. Previous Literature

While Corbet et al. [2019] provide a concise systematic analysis of the available literature on
cryptocurrency research to date, they note the distinct breadth of research on market volatility and
liquidity in comparison to the relatively coverage of sparse of associated regulatory and legislative
issues surrounding the rapid growth of these new financial products. Dwyer [2015] explained how
the use of these technologies and limitation of the quantity produced can create an equilibrium in
which a digital currency has a positive value. A substantial debate continues to surround as to
what exactly one Bitcoin represents when considering traditional financial assets. Baur et al. [2018]
found that the asset is mainly used as a speculative investment and not as an alternative currency
and medium of exchange. Further, Corbet et al. [2019] concluded that Bitcoin is a speculative asset
rather than a currency and is not altered by the introduction of futures trading, while Ammous
[2018] identified it’s sole potential to serve as a store of value, due to its strict commitment to
low supply growth, credibly backed by the network’s distributed protocol. Bohme et al. [2015]
considered some of the regulatory issues facing broad market participants, while Ahluwalia et al.
[2020] focused on sectoral start-up financing.

While many corporations with no previous history or experience with digital currency continue
to search for avenues of development in this new expanding technological sector, it is very much
of concern that such expansion could enable a pathway for risk and contagion effects to enter, to
which the company and its investors could be ill-equipped to manage. To this effect, is important
to consider research surrounding the stylised facts associated with cryptocurrency market volatility
and their broad relationship with other financial markets. Alexander and Dakos [2020], Celeste et al.
[2019] and Zhang et al. [2019] focused on the stylised facts and differentials based on high-frequency
cryptocurrency data while Chu et al. [2020] identified a momentum strategy to be used successfully
for cryptocurrency trading in a high frequency setting. Aharon and Qadan [2019] and Eross et al.
[2019] analysed intra-day and day-of-the-week pricing dynamics, while Alexander and Dakos [2020],
Ibikunle et al. [2020], Brandvold et al. [2015] and Zeng et al. [2019] focused on the price discovery
and information flow processes within cryptocurrency markets. Hu et al. [2019] investigated the
interaction between these markets and the efficient market hypothesis, identifying no empirical
support and concluding that there exists substantial market inefficiency in cryptocurrencies. Wei
[2018b] identified a strong relationship between the Hurst exponent and liquidity on a cross-sectional
basis, finding that liquidity plays a significant role in market efficiency and return predictability
of new cryptocurrencies, while Matkovskyy [2019] found that trading increases as prices decrease,
demonstrating participants’ lack of confidence and consensus in a price-jump period..

When focusing on cryptocurrency volatility and contagion dynamics, Katsiampa et al. [2019]
identified that when analysing cryptocurrency returns, that all conditional variances are significantly
affected by both previous squared errors and past conditional volatility, while Antonakakis et al.
[2019] find evidence that high cryptocurrency market uncertainty correspond to strong connected-
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ness and vice versa and Ciaian et al. [2018] identified that the Bitcoin-altcoin price relationship is
significantly stronger in the short-run than in the long-run. Alvarez-Ramirez et al. [2018] found
that Bitcoin-altcoin price relationship is significantly stronger in the short-run than in the long-run.
Ji et al. [2019] found that Litecoin and Bitcoin are at the centre of the connected network of returns
when analysing the dynamic connectedness of cryptocurrency markets. Further relationships have
been identified between cryptocurrencies and implied volatility (Akyildirim et al. [2019]; Corbet
et al. [2018b]), monetary policy decision-making (Meegan et al. [2018]; Corbet et al. [2020]), funda-
mental laws (Kristoufek [2019]), and futures and derivatives markets (Corbet et al. [2018]). With
regards to portfolio design, both Briere et al. [2015] and Akhtaruzzaman et al. [2019] identify lower
dynamic conditional correlations between Bitcoin and industry portfolios and bond index, allowing
an investment in Bitcoin to hedge the risk against industry portfolios and bonds.

Further evidence of the risks surrounding the decision to incorporate cryptocurrency and blockchain
into the corporate process surrounds that research that has focused on the bubble-dynamics in cryp-
tocurrency markets. Cheung et al. [2015] identified three large bubbles in the latter part of the
period 2011–2013 and during the demise of the Mt Gox exchange. This result was echoed by Chaim
and Laurini [2019], Geuder et al. [2019] and Cretarola and Figà-Talamanca [2019]. Further, Corbet
et al. [2018] similarly identified the presence of bubbles in Bitcoin markets again in the period after
that considered by Cheung et al. [2015]. Cagli [2019] investigated the explosive behaviour found
within cryptocurrency markets to find that other than NEM, all tested assets experienced explosive
behaviour and significant pairwise co-movement relationships. Xiong et al. [2019] attempted to
include the cost of production of cryptocurrency into such analysis of potential bubbles in Bitcoin
pricing, identifying a high-risk period in late-2020 as output declines. Cheng et al. [2019] identified
a sharp increase in the number of initial 8-K disclosures of Blockchain by firms as the price of the
assets began to appreciate substantially, which is found to be directly related to a positive investor
reaction within the following seven days, which subsequently reverses in the month thereafter. As
research continues to develop, it is still important to consider the early work of Cheah and Fry
[2015] who were amongst the first to identify a bubble in Bitcoin, but more alarmingly stated that
evidence at the time suggested that the fundamental price of Bitcoin was zero.

When analysing Bitcoin, Katsiampa [2017] found that the AR-CGARCH model was the optimal
conditional heteroskedasticity methodology when considering goodness-of-fit. Balcilar et al. [2017]
found using causality-in-quantiles testing that volume can predict returns with the exception of
Bitcoin during bear and bull market regimes. Yi et al. [2018] analysed fifty-two separate cryptocur-
rencies to find that the largest cryptocurrencies are more likely to propagate volatility shocks to
others. Further, Jin et al. [2019] use a multifractal detrended cross-correlation analysis (MF-DCCA)
to find that multifractality exists in the cross-correlations among the three hedging assets, namely
Bitcoin, oil and gold, where Bitcoin is found to be more susceptible to price fluctuations from gold
and crude oil markets. The DCC-MVGARCH methodology is found to indicate that the spillover
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effects from gold and crude oil markets to Bitcoin market are much stronger than other spillovers.
As observed, much research focused on the influence of cryptocurrency pricing on that of the cor-

porate entity. However, to date, no research has focused on the fundamental response of cryptocur-
rency markets to the most-likely positive news that a reputable, large market-capitalisation com-
pany has taken the decision to enter and attempt to further advance blockchain and cryptocurrency-
development. Such a development would most likely be observed as both reassuring and reaffirming
of the continued presence of blockchain and cryptocurrencies. The value of such development has
been central to the work of Chen et al. [2019], who used data on patent filings from 2003 to
2017, and applied machine learning to identify to classify innovations by their underlying technolo-
gies, indicating that most FinTech innovations yield substantial returns with blockchain being the
most rewarding. To raise capital for such ventures, Fisch [2019] found that technical white papers
and high-quality source codes increase the amount raised, while patents are not associated with
increased amounts of funding. Pan et al. [2018] examined how exploitative technological diversi-
fication (ETD) affects firm performance and what factors may moderate this relationship using
patent data for 1,569 Chinese listed firms with 7,555 observations from 2003 to 2014 to find that
the relationship between ETD and firm performance is inversely U-shaped. Lin [2015] found that
firms headquartered near a knowledge centre experience higher market-to-book ratios and higher
stock volatility. Vitt and Xiong [2016] analysed as to whether the relationship between the patent
activities of high-tech companies and the dynamics of their stock price movement. The results indi-
cate the presence of a significant impact of patent activity on stock movement and on its essential
statistical characteristics of drift and volatility. Bartram et al. [2012] found that stock volatility in
the United States is significantly higher as it increases with investor protection, stock market devel-
opment, new patents, and firm-level investment in R&D. Chow and Fung [2008] proposed a model
identifying stock price volatility and variations in innovation effort using a Multivariate GARCH
structure designed to extract information for risk prediction using patent data for US computer
firms.

3. Data and Methodology

3.1. Data

Primarily, we decided as to which blockchain patent-related share prices should be included in
our analysis. Based on the number of blockchain patents from three ranking lists, we select fourteen
publicly-listed firms including IBM, Intel, Bank of America (BofA), Mastercard, Visa, Microsoft,
Walmart, British Telecom (BT), Accenture, Ping An Insurance (Ping An), Baidu, Tencent, JD.com
(JD) and Alibaba.1. Both the US and China are world leaders in the development of blockchain

1We select the blockchain patent-related companies from three rankings: NASDAQ; Statista; and IPlytics

6



technologies and the above selected companies can be divided into two main groups: US firms
(IBM, Intel, BOfA, Mastercard, Visa, Microsoft and Walmart) and Chinese firms (Ping An, Baidu,
Tencent, JD, and Alibaba). In addition, Accenture is an Irish-domiciled multinational professional
services company that provides services in strategy, consulting, digital, technology and operations.

We next consider the starting date for these blockchain patent holding companies for our em-
pirical analysis. One selection mechanism surrounds the identification of the number of blockchain
patent applications, which is presented as Figure 1 for the period between 2008 and 2019. From
this figure, there is evidence of a sharp increase in the submitted applications in 2014. As the
application process takes some time, it is reasonable to believe that the effects on the performance
of the corresponding stocks are likely long-term. Hence, we decide to consider the performance of
blockchain patent-related stock prices over the last five years, selecting 2014 as the most effective
starting point to adequately reflect the major development in blockchain technologies. We then
proceed to obtain the daily high and low prices for each company from Thomson Reuters Datas-
tream between 10 November 2014 and 07 November 2019, presenting a robust dataset consisting
of 1,142 observations. In addition, we also use the daily high and low prices of Bitstamp’s Bitcoin
prices from the same source.

Insert Figure 1 about here

We then follow Diebold and Yilmaz [2012] to calculate volatility as Equation 2:

σ̃2
it = 0.361

[
ln (Pmax

it )− ln
(
P low
it
)]2

, (1)

σ̂it = 100
√

365σ̃2
it, (2)

where σ̃2
it is daily variance using daily high and low prices and σ̂it represents the corresponding

estimate of volatility of the annualised daily percent standard deviation (volatility).2

Insert Figure 2 about here

The volatilities calculated based on Equation 2 for Bitcoin and each company are presented
as Figure 2. First, as can be seen from this figure, Bitcoin had the largest volatility at the end
of March, 2016. Second, most companies experienced a large spike in volatility during the third
quarter of 2015 (e.g., Intel, BofA, Mastercard, Visa, Microsoft, Walmart, Accenture, Ping An,
Baidu, Tencent, JD and Alibaba). We also present descriptive statistics for the volatility data in

2As Bitcoin market is open 24/7, it is not suitable to estimate volatility using the open and close prices. Therefore,
we use the high and low prices to estimate volatility.
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Table 1. Among all volatility series, Bitcoin has the highest mean and maximum. Three Chinese
firms (e.g., Ping An, Baidu and Alibaba) have relatively high means compared with those of other
companies except Bitcoin.

Insert Table 1 about here

3.2. Methodology

We apply a spillover measure based on forecast error variance decompositions from a generalized
VAR framework of Diebold and Yilmaz [2012] and a frequency-dependent measure based on a
spectral representation of variance decomposition approach of Baruník and Křehlík [2018] to study
the strength of spillovers for the variables of interest. In this paper, we refer to the Diebold and
Yilmaz [2012] and Baruník and Křehlík [2018] approaches as DY12 and BK18. The DY12 approach
measures total, directional, net and pairwise spillover indexes while the BK18 procedure further
provides a measure of these spillover indexes in short-, medium-, and long-term frequency by taking
into account the different strengths of the shocks to economic variables at different frequencies. The
following section aligns with Baruník and Křehlík [2018]. Let us consider a covariance stationary
N -variable VAR(p), xt = (xt,1, . . . , xt,N ), by a VAR model of order p as:

xt = Φ1xt−1 + Φ2xt−2 + · · ·+ Φpxt−p + εt, (3)

where Φ1, . . . ,Φp are coefficient matrices and εt is a white noise covariance matrix Σ. Or we can
re-write Equation 3 as:

xt = Ψ(L)εt, (4)

where Ψ(L) = is an infinite N ×N matrix lag-polynomial.
Variance decomposition provide useful information about how much of the future uncertainty

of variable j is due to shocks in variable k. The identification approach of Cholesky factorization
depends on the order of the variables. The generalized VAR identification scheme of Pesaran and
Shin [1998] produces variance decompositions invariant to the orders of the variables.

The generalized variance decompositions can be written as follows:

(θH)j,k =
σ−1kk

∑H
h=0(ΨhΣ)j,k)2∑H

h=0

(
ΨhΣΨ

′
h

)
j,j

(5)

where Ψh is a (N × N) matrix of coefficients at lag h and σkk = (Σ)k,k. The generalized variance
decomposition (θH)j,k denotes the contribution of the kth variable to the variable of forecast error
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of the element j. The rows of the variance decomposition matrix θH) is not necessarily sum to one,
each entry can be standardised by the row sum as:

(θ̃H)j,k =
(θH)j,k

ΣN
k=1(θH)j,k

, (6)

where ΣN
k=1(θH)j,k = 1 and the sum of all elements in θ̃H is equal to N . The standardised (θ̃H)j,k

measures the pairwise connectedness from j to k at horizon H, which can be aggregated to estimate
the total connectedness of the system. The connectedness measure is, therefore, calculated as the
share of variance in the forecasts contributed by errors other than own errors or as the ratio of the
sum of the off-diagonal elements to the sum of the entire matrix [Diebold and Yilmaz, 2012].

CH = 100× Σj 6=k(θ̃H)j,k

Σθ̃H
= 100×

1−
Tr
{
θ̃
}

Σθ̃H

 (7)

where Tr {.} is the trace operator. The connectedness measure CH is the relative contribution
to the forecast variances from the other variables in the system. The spectral representation of
variance decompositions is used for measuring the frequency dynamics of the connectedness. The
spectral density of xt at frequency ω maybe defined as:

Sx(ω) =

∞∑
h=−∞

E(xtx
′

t−h)e−iωh = Ψ(e−iω)ΣΨ
′
(e+iω) (8)

where Sx(ω) describes how the variance the xt is distributed over the frequency components ω.
The generalised causation spectrum over frequencies ω ∈ (−π, π) is defined as:

(f(ω))j,k =
σ−1kk

∣∣(Ψ(e−iω)Σ)j,k
∣∣2

(Ψ(e−iω)ΣΨ′(e−iω))j,j
, (9)

where Ψ(e−iω) =
∑
h e
−iωhΨh is the Fourier transform of the impulse response Ψh. It is important

to note that (f(ω))j,k represents the portion of the spectrum of the ith variable at a given frequency
ω due to shocks in the kth variable. The weighting function is defined as:

Γj(ω) =
(Ψ(e−iω)ΣΨ

′
(e−iω))j,j

1
2π

∫ π
−π(Ψ(e−iω)ΣΨ′(e−iω))j,jdλ

, (10)

which represents the power of jth variable at a given frequency. The generalised variance decom-
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positions on frequency band d, d = (a, b) : a, b ∈ (−π, π), are defined as:

(θd)j,k =
1

2π

∫
d

Γj(ω)(f(ω))j,kdω. (11)

The scaled generalised variance decomposition on the frequency band d, d = (a, b) : a, b ∈
(−π, π), a < b, is defined as:

(θ̃d)j,k = (θd)j,k/
∑
k

(θ∞)j,k, (12)

where θd is defined as Equation 11 and (θ∞)j,k =
∑
ds∈D(θds)j,k. The within connectedness on

the frequency band d is defined as:

CWd = 100

(
1− Tr(θ̃d)∑

(θ̃d)

)
. (13)

Further, the frequency connectedness on the frequency band d is defined as:

CFd = 100

( ∑
θ̃d∑
θ̃∞
− Tr(θ̃d)∑

(θ̃d)

)
= CWd

∑
θ̃d∑
θ̃∞

. (14)

The within connectedness measures the connectedness effect that occurs within the frequency
band and is weighted by the power of the series on the given frequency band, while the frequency
connectedness decomposes the overall connectedness into distinct parts.

4. Results

To ensure the stationarity of the volatility data required by the VAR model, we apply the ADF,
PP and KPSS tests to check the stationarity of the volatility data and the results confirm the
stationarity of all variables.3 In this paper, a VAR model is used with two lags including a constant
to examine volatility spillovers.4 The static and time-varying results are presented in Sections 4.1
and 4.2, respectively.

3Unit root test results are available upon request.
4A 100-day ahead forecasting horizon for variance decomposition is used in our empirical analysis. This choice

of forecasting horizon is based on Baruník and Křehlík [2018], who suggest to set the forecasting horizon to be
sufficiently high. In particular, the BK18 approaches may not work well if the forecasting horizon is less than 100. In
addition, we also carry out robustness checks using the 10-day forecasting horizon for both DY and BK approaches,
and the corresponding static and time-varying results remain quantitatively unchanged.
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4.1. Static results

The key focus of this paper is to explore evidence of volatility spillovers between Bitcoin and
blockchain patent-related stocks. Hence, after completing multiple robustness checks and compar-
ative analyses, the net spillover of Bitcoin is identified as a more accurate measure of volatility
transmission for our specific research questions. The net volatility spillover shows how much each
market contributes to the volatility in other market in net terms. As we are not interested in
exploring the dynamics of volatility spillovers across the fourteen stocks analysed, the net volatility
spillover for each company is not reported.5 The net volatility spillover for Bitcoin is reported in Ta-
ble 2, which is defined as the volatility shocks transmitted from Bitcoin to blockchain patent-related
stocks minus the volatility shocks received by Bitcoin from all the stocks.

The net volatility spillover for Bitcoin is -0.187% based on the DY12 approach and this number is
further decomposed into -0.052%, -0.088% and -0.047% at three different frequencies using the BK18
approach. In other words, the gross volatility shocks transmitted from Bitcoin to blockchain patent-
related stocks is smaller than those received from blockchain related stocks, indicating volatility
spillovers from the share prices of blockchain-related companies to Bitcoin play a dominant role.
Based on the time-domain approach of DY12 and frequency-dependent approach of BK18, we find
that blockchain patent holding companies influence Bitcoin volatility in general. Therefore, Bitcoin
is a volatility receiver rather than a transmitter when all the companies are considered together. The
net volatility spillover for Bitcoin tells us the result is a net one by taking into account the impacts
from and towards all the companies rather than the individual net volatility spillover associated
with only one company. However, it is not necessarily the case that the spillover from one company
to Bitcoin is always stronger than the other way around.

Insert Table 2 about here

Next we consider the net pairwise volatility spillovers obtained from the DY12 approach for each
company in Table 3. We report the net pairwise spillover as the effect of volatility shocks transmitted
by Bitcoin to each blockchain patent-related company minus the volatility shocks received by Bitcoin
from each company. For example, the pairwise spillover is -0.056% for Bitcoin-Microsoft. The sum
of the individual pairwise spillovers is equal to the net volatility spillover for Bitcoin (-0.187%).6

As can be seen, the pairwise spillover is negative for all of the companies except Walmart, British
Telecom and Ping An. A negative pairwise spillover would indicate that volatility shocks received by
Bitcoin from a blockchain patent-related company dominate in the volatility transmission process.
In other words, the volatility shocks received by Bitcoin from a company have a stronger impact

5The same applies to total and directional spillover indexes.
6This is a useful check to ensure you would interpret results correctly.
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than those transmitted from Bitcoin to that company. Similarly, a positive pairwise spillover would
indicate that a volatility shock transmitted from Bitcoin to a blockchain patent related company was
larger than those the other way around. For example, volatility shocks from Bitcoin to Walmart,
British Telecom and Ping An are larger than the reverse volatility shocks given a positive pairwise
spillover. The message here is that Bitcoin substantively influences the performance of Walmart,
British Telecom and Ping An.

Further, we calculate the ratio of negative pairwise spillovers to the sum of negative pairwise
spillovers to see the proportion of contributions of each company to the volatility spillover to Bitcoin
in lower panel of Table 3. As the pairwise spillovers for Walmart, British Telecom and Ping An are
positive, they are excluded in this calculation. We identify the top three companies contributing to
the volatility spillover to Bitcoin as: Microsoft (0.254 or 25.364%), Mastercard (22.120%) and Intel
(14.318%). The above three identified US firms contribute a total of 61.802% to the sum of negative
pairwise spillovers to Bitcoin, highlighting the importance in driving Bitcoin risk. Moreover, we find
that Baidu has the largest contribution to volatility spillovers (8.17%) to Bitcoin among the Chinese
firms followed by Alibaba (4.09%), JD (2.21%) and Tencent (1.13%). In sum, the contributions
made by the Chinese firms to the volatility spillover to Bitcoin are small. Overall, the calculated
spillover effects on Bitcoin from the US companies are larger than the other companies.

Insert Tables 3 and 4 about here

We now apply the BK18 approach to decompose the net pairwise volatility spillovers to see if
the results would change at different frequencies. Table 4 presents net pairwise volatility spillovers
using the BK18 approach. Similarly, we also calculate the ratio of negative pairwise spillovers to
the sum of negative pairwise spillovers in Table 4 at three frequencies to take into account short,
medium and long term shocks.

The short term (frequency one) results are presented in the upper panel of Table 4. As can be
seen, the pairwise spillovers for most companies are negative with the exception of British Telecom
and Ping An. Those companies with a negative pairwise spillover would indicate that volatility
shocks received by Bitcoin from a blockchain patent related company possess a higher effect vice
versa, suggesting that the performance of these companies substantively influences Bitcoin risk.
As we can see from the calculated spillovers to Bitcoin, the proportion of contributions made by
each company to the volatility spillover to Bitcoin are different. The top 3 companies contributing
the volatility spillover to Bitcoin are Visa (0.1750 or 17.50%), Microsoft (14.66%) and Mastercard
(13.97%). In addition, Accenture is the fourth ranked contributor with a spillover effect of 12.32%.
Baidu contributes approximately 7.12% of the calculated spillovers to Bitcoin. The spillover effect
to Bitcoin from Baidu is similar to those of IBM (8.09%) and BofA (7.72%).

The medium term effects (frequency two) are shown as the middle panel of the table. The
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pairwise spillovers are negative for the majority companies except Walmart, British Telecom and
Ping An. The calculated spillovers to Bitcoin provide us information about the contributions from
each company to Bitcoin between 5 and 10 days. Microsoft (25.08%), Mastercard (21.50%) and
Intel (12.65%) are found to play a more important role in driving up the volatility of Bitcoin.
Moreover, we notice that the calculated spillover effects from Accenture towards Bitcoin decrease
sharply from 12.32% in the short term to 4.40% in the medium term. Compared with results in
Table 3, the calculated spillovers from Accenture (4.851%) based on the DY12 approach is mainly
driven by the medium term spillovers of the BK18 approach. Similarly, the calculated spillovers for
IBM also drop sharply from 8.09% in the short term to 1.94% in the medium term.

In the long term (frequency three), the pairwise spillovers are negative except IBM, Walmart,
Accenture, Ping An and Tencent. At the longer horizon, we observe that Bitcoin dominates in
the volatility transmission process towards IBM, Walmart, Accenture, Ping An and Tencent while
the remainder of the blockchain companies dominate in the volatility transmission process towards
Bitcoin. Of particular interest is that the pairwise spillovers for IBM, Accenture and Tencent
are becoming positive at the frequency three only. At frequency three, the calculated spillovers
to Bitcoin provide us information about the contributions from each company to Bitcoin in the
long term (>10 days). The top 3 contributors remain the same as those of companies at the
frequency two including Microsoft (30.62%), Mastercard (26.21%) and Intel (21.04%). These three
companies together contribute to a combination spillover of 77.87% towards Bitcoin at frequency
three compared with the counterpart of 59.23% at frequency two, indicating that these three leading
blockchain patent holders have more influences on Bitcoin risk especially in the long term.

In general, the share prices of US-based Microsoft, Mastercard, Intel and Visa play a critical
role in contributing to the volatility of Bitcoin. These results are, in general, consistent with those
reported in Table 3 using the DY12 approach. Of particular interest is that the frequency-domain
approach of BK18 offers more insights in measuring the connectedness at different frequencies.
In addition to the above, there are several interesting findings. When we look at the calculated
spillovers to Bitcoin across three frequencies, the calculated spillover effects to Bitcoin from Intel,
Microsoft and Mastercard increase from short- to long-term. On the other hand, the calculated
spillover effects towards Bitcoin for BofA and Visa decrease from the short- to long-term. Ping
An remains the only company with positive pairwise spillovers across three different frequencies,
indicating that Bitcoin is a volatility transmitter for Ping An. BT has a positive pairwise spillover
in the short- and medium term while Walmart has a positive pairwise spillover in the medium and
long-term only.

4.2. Time-varying results

We use the rolling window approach to capture the time-varying features of net spillovers and
pairwise spillovers from blockchain-patent companies to Bitcoin over a two hundred day period at
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the time of each announcement as presented in Figure 3. As observed, the net spillovers for Bitcoin
remain negative for the majority of the time. There are substantial changes in the estimates of the
net spillovers for Bitcoin across the sample period and they are highly volatile based on the two
approaches. The time-varying net spillovers for Bitcoin based on the DY12 approach are shown
as Figure 3a and the corresponding estimates based on BK18 approach at short-, medium and
long-term are displayed as Figures 3b to 3d, respectively. When we look at time-varying DY12
net spillovers for Bitcoin in Figure 3a, the net spillovers reach the largest magnitude in early 2018.
Such a pattern is also observed in Figure 3d using the BK approach for the long term (frequency
3). Overall, the time-varying based evidence favours volatility spillovers transmitted from the
blockchain patent-related share prices to the Bitcoin market, which are dominant in the volatility
transmission process. Table 5 also shows the maxima, minima, means and standard deviations of
the spillover estimates. These estimates are also consistent with the movements of the time-varying
spillover effects in Figure 3.

Insert Figure 3 about here

We further analyse which company has the largest recorded volatility transmission to Bitcoin by
focusing on the time-varying pairwise spillovers. The maxima, minima, means and standard devia-
tions of the pairwise spillovers estimates are presented in Tables 6 and 7 based on both approaches.
In particular for the estimates based on the BK18 approach, moving from high frequency (fre-
quency one) to low frequency (frequency three), the mean pairwise spillovers of twelve of fourteen
companies monotonically increase in size except Walmart and Ping An.

Insert Tables 6 through 7 about here

Figure 4 presents the time-varying pairwise spillovers results for DY12, where there are three
interesting empirical findings. First, the rolling window based estimates show time-varying spillover
effects for each company. Second, the pairwise volatility spillovers are negative for most of the time
except British Telecom and Ping An. During the sample period in 2017-18, the pairwise spillovers
between Bitcoin and Ping An increased sharply in size and remained negative for most of the
time. After early 2018, the pairwise spillovers became positive, indicating that Bitcoin had more
influences on the volatility transmission towards Ping An. For BT, the corresponding estimates
show some different results, where its pairwise spillovers remain positive from 2017 until the mid
2018. This result suggests that the volatility spillovers from Bitcoin to BT are stronger than the
opposite direction. Third, the volatility spillovers from Intel, Mastercard, Visa and Microsoft to
Bitcoin increased dramatically in size from 2017 to early 2018, corresponding to a dramatic rise and
sharp fall of Bitcoin prices during this period. The rolling window based DY12 evidence provides
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more insights into the connectedness in contrast with those of the static DY12 results reported in
Section 4.1.

Insert Figure 4 about here

Figures 5 to 6 illustrate results based on BK18 for the short-, medium- and long-term respec-
tively. Firstly, the movements of the time-varying pairwise volatility spillovers exhibit oscillations
below zero across most of the sample period for all the companies except British Telecom, Ping An
and Tencent. This result is evident across all three time frequencies analysed.

Insert Figures 5 to 6 about here

Secondly, in the short term, Bitcoin shocks influence the risk levels of Mastercard, Visa and
Alibaba as the corresponding pairwise spillovers are positive during the development phase of
blockchain patent application between mid-2016 and early 2017. Thirdly, in both the medium-
and long-term, we observe that the pairwise volatility spillovers from at least eight out of the
fourteen blockchain-patent-related companies to Bitcoin have increased in size during the period
from mid-2017 to early 2018. These eight companies include IBM, Intel, BofA, Mastercard, Visa,
Microsoft, JD and Alibaba. This is particularly evident when comparing the pairwise volatility
spillovers on the y-axis from frequency one (1-4 days) through frequency three (>10 days). This
particular period of time is often described (Corbet et al. [2018]) as the ‘Bitcoin bubble’, where the
Bitcoin price reached its all time high of approximately US$20,000 in December 2017. Our results
show that, at that time, the long-term shocks from these companies had a larger effect on Bitcoin
volatility than the short-term counterparts.

Finally, during the Bitcoin bubble, we observe that there was a sharp negative spike, of around
-0.3%, of pairwise volatility spillovers at frequency three to Bitcoin from four companies: Intel, Mas-
tercard, Visa and Microsoft. These results suggest that announcements from these four companies
played a critical role in driving the volatility of Bitcoin.

5. Conclusion

Our research sheds light on the connectedness between blockchain patent related stock prices
and Bitcoin prices using the time-domain and frequency-domain approaches of Diebold and Yilmaz
[2012] and Baruník and Křehlík [2018]. We present both static and time-varying results in this
paper, where the rolling window based results, in particular, allow us to provide more insights into
the connectedness in contrast to those based on the static formulation. Specifically, we find that
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volatility spillovers from blockchain patent related stock prices to Bitcoin are more intensive than
that calculated in the opposite direction. Among the blockchain patent holders, our results suggest
that several companies play a critical role influencing the volatility of Bitcoin, especially for the pe-
riod between mid-2017 to early 2018. Not all, the blockchain patent-related stock prices contribute
equally to Bitcoin during that period, but these results suggest an avenue through which large cor-
poration can influence cryptocurrency prices through their announcements of future technological
intentions. Among the blockchain patent holders, our results suggest that several companies played
a substantial role when adding to the already substantial volatility of Bitcoin markets, especially
for the period from mid-2007 throughout early 2018. Evidence suggests that not all the blockchain
patent-related companies analysed contribute equally to Bitcoin during that period. However, the
decision of a number of very large companies as ranked by market capitalisation appear to have had
a re-affirming effect on cryptocurrency traders, with positive signals generated in the decision for
these companies to enter this developing markets. However, the inherent risks incorporated with
blockchain and cryptocurrency patent-development appears to have been passed to unsuspecting
investors in some cases as contagion effects increase. Such contagion merits further investigation as
particular warnings should perhaps not only be presented to those companies with no evidence of
prior exposure and market knowledge, but also to the investors who provide their financing of the
true risks that they are now exposed through such directions of technological development.

The findings in this paper have important policy implications. Firstly, our results clearly suggest
that the performance of FinTech companies have a strong impact on the risk level of the Bitcoin
market. For regulatory authorities, special attention may need to be paid to the blockchain related
companies as they substantially contribute to the volatility of Bitcoin. Secondly, we show for the
first time in the literature that the performance of several patent development companies contributes
to the all-time high for Bitcoin in the period 2017 through 2018. Overall, the findings presented
here contribute to our understanding of the pricing of Bitcoin and hence volatility of Bitcoin.
However, when considering the breadth of research that continues to identify issues surrounding
exceptional levels of volatility, contagion and potential irrational exuberance, such corporate entities
that partake in FinTech and cryptocurrency patent development must take care to assess these new
risks that they are incorporating into their corporate structure.
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Figure 1: Number of blockchain patent applications worldwide (as of April 2019)

Note: The above figure is based on data obtained from https://www.statista.com/
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Figure 2: Time series plot of volatility data

Note: The above figure presents the data for the period between 10 November 2014 through 07 November 2019.
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Figure 3: Rolling window estimates for net spillovers of Bitcoin using the Diebold and Yilmaz [2012] and Baruník
and Křehlík [2018] methodologies
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(c) BK18 (frequency 2)
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(d) BK18 (frequency 3)
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Note: The above figure presents the rolling window estimates for spillovers between Bitcoin (BTC) and the stated
blockchain patent-related stocks across multiple time frequencies using the approach developed by both Diebold and
Yilmaz [2012] (DY12) and Baruník and Křehlík [2018] (BK18).
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Figure 4: Rolling window estimates for pairwise spillovers using the Diebold and Yilmaz [2012] approach.
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(f) Microsoft
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(h) BT
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(i) Accenture

2016 2017 2018 2019 2020

−
0.

25
−

0.
20

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05

Date

B
itc

oi
n_

A
cc

en
tu

re

Pairwise spillovers

(j) Ping An
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(k) Baidu
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(m) JD
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Note: The above figure presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated blockchain patent-related stocks
across multiple time frequencies using the approach developed by Diebold and Yilmaz [2012] (DY12).

24



Figure 5: Rolling window estimates for pairwise spillovers using the Baruník and Křehlík [2018] approach over frequency 1 (1-4 days)
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(b) Intel
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(e) Visa
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(f) Microsoft

2016 2017 2018 2019 2020

−
0.

14
−

0.
12

−
0.

10
−

0.
08

−
0.

06
−

0.
04

−
0.

02
0.

00

Date

B
itc

oi
n_

M
ic

ro
so

ft

Pairwise spillovers on band: 3.14 to 0.79.

(g) Walmart
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Pairwise spillovers on band: 3.14 to 0.79.
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Pairwise spillovers on band: 3.14 to 0.79.
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Pairwise spillovers on band: 3.14 to 0.79.

(j) Ping An
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Pairwise spillovers on band: 3.14 to 0.79.
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Pairwise spillovers on band: 3.14 to 0.79.

(l) Tencent
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Pairwise spillovers on band: 3.14 to 0.79.
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Pairwise spillovers on band: 3.14 to 0.79.

(n) Alibaba
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Pairwise spillovers on band: 3.14 to 0.79.

Note: The above table presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated blockchain patent-related stocks
across the selected first frequency (1-4 days) using the approach developed by Baruník and Křehlík [2018] (BK18).

25



Figure 6: Rolling window estimates for pairwise spillovers using the Baruník and Křehlík [2018] approach over frequency 2 (5-10 days)
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Pairwise spillovers on band: 0.79 to 0.31.
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Pairwise spillovers on band: 0.79 to 0.31.
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Pairwise spillovers on band: 0.79 to 0.31.
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Pairwise spillovers on band: 0.79 to 0.31.
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Pairwise spillovers on band: 0.79 to 0.31.

(f) Microsoft

2016 2017 2018 2019 2020

−
0.

10
−

0.
08

−
0.

06
−

0.
04

−
0.

02
0.

00

Date

B
itc

oi
n_

M
ic

ro
so

ft

Pairwise spillovers on band: 0.79 to 0.31.
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Pairwise spillovers on band: 0.79 to 0.31.
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Pairwise spillovers on band: 0.79 to 0.31.

(i) Accenture
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Pairwise spillovers on band: 0.79 to 0.31.

(j) Ping An
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Pairwise spillovers on band: 0.79 to 0.31.

(k) Baidu
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Pairwise spillovers on band: 0.79 to 0.31.

(l) Tencent
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Pairwise spillovers on band: 0.79 to 0.31.

(m) JD
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Pairwise spillovers on band: 0.79 to 0.31.

(n) Alibaba
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Pairwise spillovers on band: 0.79 to 0.31.

Note: The above table presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated blockchain patent-related stocks
across the selected second frequency (5-10 days) using the approach developed by Baruník and Křehlík [2018] (BK18).
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Figure 7: Rolling window estimates for pairwise spillovers using the Baruník and Křehlík [2018] approach over frequency 3 (>10 days)

(a) IBM

2016 2017 2018 2019 2020

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

Date

B
itc

oi
n_

IB
M

Pairwise spillovers on band: 0.31 to 0.00.
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Pairwise spillovers on band: 0.31 to 0.00.
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Pairwise spillovers on band: 0.31 to 0.00.
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Pairwise spillovers on band: 0.31 to 0.00.
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Pairwise spillovers on band: 0.31 to 0.00.

(f) Microsoft
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Pairwise spillovers on band: 0.31 to 0.00.

(g) Walmart
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Pairwise spillovers on band: 0.31 to 0.00.
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Pairwise spillovers on band: 0.31 to 0.00.

(i) Accenture
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Pairwise spillovers on band: 0.31 to 0.00.

(j) Ping An
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Pairwise spillovers on band: 0.31 to 0.00.

(k) Baidu
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Pairwise spillovers on band: 0.31 to 0.00.

(l) Tencent
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Pairwise spillovers on band: 0.31 to 0.00.

(m) JD
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Pairwise spillovers on band: 0.31 to 0.00.

(n) Alibaba
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Pairwise spillovers on band: 0.31 to 0.00.

Note: The above table presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated blockchain patent-related stocks
across the selected third frequency (>10 days) using the approach developed by Baruník and Křehlík [2018] (BK18).
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Table 1: Descriptive statistics of the volatility data.

BTC IBM Intel BofA Mastercard
Mean 66.0938 16.5404 21.8621 22.5808 19.2077
Median 48.6289 14.1721 18.9739 19.75949 15.8361
Max 1181.4870 63.6680 120.8037 106.3586 222.2631
Min 0.0000 4.2794 6.1265 4.9916 4.7018
Std.Dev. 64.67318 8.7295 11.3210 11.5251 12.8424

Visa Microsoft Walmart BT Accenture
Mean 17.9414 19.5560 16.5041 24.6974 16.6956
Median 15.0480 16.8037 14.4016 21.3067 14.3884
Max 194.2000 99.3254 142.4465 169.1068 93.08655
Min 3.8148 4.7353 4.2485 6.6745 4.6148
Std.Dev. 11.5879 10.9960 8.9060 14.0959 8.8279

Ping An Baidu Tencent JD Alibaba
Mean 30.1852 30.6696 24.7598 38.8952 28.5799
Median 25.2857 27.2316 21.8294 34.9638 24.8271
Max 218.6643 441.8481 124.2227 189.5500 173.7770
Min 3.6123 7.0749 5.6472 6.2359 6.6230
Std.Dev. 20.7851 18.3469 12.1954 20.0459 15.2220

Table 2: Net volatility spillovers of Bitcoin.

Net volatility spillovers of Bitcoin in %
DY12 BK18

Freq. 1 Freq. 2 Freq. 3
(1-4 days) (5-10 days) (>10 days)

-0.1873 -0.0524 -0.0879 -0.0469

Note: The above table presents the rolling window estimates for volatility spillovers from Bitcoin (BTC) across multiple
time frequencies using the approach developed by Diebold and Yilmaz [2012] (DY12).

Table 3: Pairwise spillovers using the approach developed by Diebold and Yilmaz [2012] (DY12)

Pairwise spillovers using DY12 in %

BTC-IBM BTC-Intel BTC-BofA BTC-Mastercard BTC-Visa
-0.0036 -0.0318 -0.0104 -0.0491 -0.0255

BTC-Microsoft BTC-Walmart BTC-BT BTC-Accenture BTC-Ping An
-0.0564 0.0082 0.0069 -0.0108 0.0198

BTC-Baidu BTC-Tencent BTC-JD BTC-Alibaba
∑

Pairwise spillovers
-0.0181 -0.0025 -0.0049 -0.0091 = -0.1873

Spillovers to BTC*
IBM Intel BofA Mastercard Visa
0.0160 0.1432 0.0470 0.2212 0.1146

Microsoft Walmart BT Accenture Ping An
0.2536 NA NA 0.0485 NA
Baidu Tencent JD Alibaba
0.0817 0.0113 0.0221 0.0409

Note: The top 3 contributors to the volatility of Bitcoin are highlighted in bold. *Spillovers to Bitcoin are calculated as:
Negative pairwise spillovers∑Negative pairwise spillovers
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Table 4: Pairwise spillovers using the approach developed by Baruník and Křehlík [2018] (BK18)

Pairwise spillovers using BK18 in %
Freq. 1 BTC-IBM BTC-Intel BTC-BofA BTC-Mastercard BTC-Visa
(1-4 days) -0.0050 -0.0037 -0.0048 -0.0087 -0.0108

BTC-Microsoft BTC-Walmart BTC-BT BTC-Accenture BTC-Ping An
-0.0091 -0.0039 0.0079 -0.0076 0.0016

BTC-Baidu BTC-Tencent BTC-JD BTC-Alibaba
∑

Pairwise spillovers
-0.0044 -0.0012 -0.0007 -0.0020 =-0.0524

Spillovers to BTC* IBM Intel BofA Mastercard Visa
0.0809 0.0599 0.0772 0.1397 0.1750

Microsoft Walmart BT Accenture Ping An
0.1466 0.0633 NA 0.1232 NA
Baidu Tencent JD Alibaba
0.0712 0.0195 0.0110 0.0325

Freq. 2 BTC-IBM BTC-Intel BTC-BofA BTC-Mastercard BTC-Visa
(5-10 days) -0.0019 -0.0121 -0.0050 -0.0206 -0.0100

BTC-Microsoft BTC-Walmart BTC-BT BTC-Accenture BTC-Ping An
-0.0240 0.0034 0.0007 -0.0042 0.0037

BTC-Baidu BTC-Tencent BTC-JD BTC-Alibaba
∑

Pairwise spillovers
-0.0092 -0.0028 -0.0021 -0.0039 = -0.0880

Spillovers to BTC* IBM Intel BofA Mastercard Visa
0.0194 0.1265 0.0523 0.2150 0.1039

Microsoft Walmart BT Accenture Ping An
0.2508 NA NA 0.0440 NA
Baidu Tencent JD Alibaba
0.0956 0.0293 0.0226 0.0407

Freq. 3 BTC-IBM BTC-Intel BTC-BofA BTC-Mastercard BTC-Visa
(>10 days) 0.0033 -0.0160 -0.0007 -0.0199 -0.0047

BTC-Microsoft BTC-Walmart BTC-BT BTC-Accenture BTC-Ping An
-0.0233 0.0087 -0.0017 0.0011 0.0145

BTC-Baidu BTC-Tencent BTC-JD BTC-Alibaba
∑

Pairwise spillovers
-0.0046 0.0015 -0.0021 -0.0032 =-0.0470

Spillovers to BTC* IBM Intel BofA Mastercard Visa
NA 0.2104 0.0087 0.2621 0.0615

Microsoft Walmart BT Accenture Ping An
0.3062 NA 0.0221 NA NA
Baidu Tencent JD Alibaba
0.0601 NA 0.0272 0.0417

Note: The top 3 contributors to the volatility of Bitcoin are highlighted in bold. *Spillovers to Bitcoin are calculated as:
Negative pairwise spillovers∑Negative pairwise spillovers

Table 5: Rolling window estimates for net volatility spillovers of Bitcoin.

Rolling window estimates for net volatility spillovers of Bitcoin in %
DY12 BK18

Freq. 1 Freq. 2 Freq. 3
(1-4 days) (5-10 days) (>10 days)

Max 0.9852 0.1254 0.0874 0.1931
Min -2.4039 -0.5572 -0.7742 -2.0648
Mean -0.7578 -0.1422 -0.2068 -0.2850
S.D. 0.4624 0.1257 0.1918 0.3381

Note: The above table presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated
blockchain patent-related stocks across multiple time frequencies using the approach developed by both Diebold and
Yilmaz [2012] (DY12) and Baruník and Křehlík [2018] (BK18).

29



Table 6: Rolling window estimates for pairwise spillovers between Bitcoin and blockchain patent-related stocks.

Rolling window estimates for pairwise spillovers in %
DY12 BK18

Freq. 1 Freq. 2 Freq. 3
(1-4 days) (5-10 days) (>10 days)

IBM Max 0.1827 0.0205 0.0223 0.0442
Min -0.3510 -0.0971 -0.0680 -0.1927
Mean -0.0415 -0.0170 -0.0090 -0.0113
S.D. 0.0596 0.0239 0.0152 0.0264

Intel Max 0.0787 0.0191 0.0168 0.0259
Min -0.5006 -0.0919 -0.1377 -0.3248
Mean -0.0854 -0.0117 -0.0194 -0.0271
S.D. 0.0992 0.0160 0.0248 0.0419

BofA Max 0.1410 0.0467 0.0234 0.0351
Min -0.5803 -0.0561 -0.0775 -0.2230
Mean -0.0719 -0.0086 -0.0141 -0.0224
S.D. 0.0972 0.0136 0.0220 0.0391

Mastercard Max 0.1294 0.0327 0.0254 0.0270
Min -0.6457 -0.1637 -0.1303 -0.3498
Mean -0.1493 -0.0299 -0.0414 -0.0528
S.D. 0.1671 0.0432 0.0454 0.0646

Visa Max 0.1458 0.0706 0.0295 0.0219
Min -0.3992 -0.1113 -0.1722 -0.2976
Mean -0.0995 -0.0232 -0.0362 -0.0464
S.D. 0.1064 0.0373 0.0404 0.0577

Microsoft Max 0.0965 0.0066 0.0084 0.0069
Min -0.4045 -0.1348 -0.1031 -0.2930
Mean -0.1331 -0.0245 -0.0306 -0.0380
S.D. 0.0953 0.0249 0.0292 0.0415

Walmart Max 0.2729 0.0279 0.0567 0.0868
Min -0.1932 -0.1027 -0.0880 -0.1715
Mean -0.0374 -0.0096 -0.0062 -0.0060
S.D. 0.0598 0.0221 0.0193 0.0235

Note: The above table presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated
blockchain patent-related stocks across multiple time frequencies using the approach developed by both Diebold and
Yilmaz [2012] (DY12) and Baruník and Křehlík [2018] (BK18).
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Table 7: Rolling window estimates for pairwise spillovers between Bitcoin and blockchain patent-related stocks.

Rolling window estimates for pairwise spillovers in %
DY12 BK18

Freq. 1 Freq. 2 Freq. 3
(1-4 days) (5-10 days) (>10 days)

BT Max 0.2457 0.0633 0.0783 0.0797
Min -0.2401 -0.0477 -0.0457 -0.0955
Mean 0.0304 0.0018 -0.0023 -0.0065
S.D. 0.0617 0.0151 0.0165 0.0239

Accenture Max 0.0495 0.0165 0.0107 0.0125
Min -0.2663 -0.0781 -0.1662 -0.2102
Mean -0.0717 -0.0168 -0.0239 -0.0279
S.D. 0.0595 0.0176 0.0275 0.0310

Ping An Max 0.4513 0.1833 0.1729 0.1847
Min -0.3135 -0.0368 -0.0798 -0.0805
Mean 0.0664 0.0227 0.0312 0.0298
S.D. 0.1630 0.0364 0.0511 0.0517

Baidu Max 0.0671 0.0218 0.0220 0.0301
Min -0.4988 -0.0814 -0.2470 -0.3129
Mean -0.0711 -0.0158 -0.0271 -0.0332
S.D. 0.1142 0.0213 0.0583 0.0762

Tencent Max 0.2326 0.0609 0.0391 0.0632
Min -0.4160 -0.0372 -0.0510 -0.0694
Mean -0.0255 0.0040 -0.0022 -0.0043
S.D. 0.0769 0.0121 0.0151 0.0196

JD Max 0.3719 0.0260 0.0232 0.0382
Min -0.2371 -0.0567 -0.0630 -0.1276
Mean -0.0308 -0.0058 -0.0112 -0.0161
S.D. 0.0625 0.0138 0.0193 0.0286

Alibaba Max 0.2291 0.0127 0.0136 0.0223
Min -0.2111 -0.0587 -0.0915 -0.1536
Mean -0.0374 -0.0080 -0.0146 -0.0228
S.D. 0.0509 0.0140 0.0211 0.0337

Note: The above table presents the rolling window estimates for pairwise spillovers between Bitcoin (BTC) and the stated
blockchain patent-related stocks across multiple time frequencies using the approach developed by both Diebold and
Yilmaz [2012] (DY12) and Baruník and Křehlík [2018] (BK18).
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