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Invalidity of the Ehrenfest theorem in the computation of high-order-harmonic generation
within the strong-field approximation
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It is known that the strong-field approximations commonly used in models for computing high-order-harmonic
generation invalidate the Ehrenfest theorem. Therefore, the time derivative of the atomic dipole or of the dipole
velocity does not correspond to the dipole acceleration. We study the consequences of this invalidation for the
quantitative evaluation of high-order-harmonic spectra in hydrogen at different wavelengths and intensities. As
a main result, we propose a form for the time derivative of the kinetic momentum that allows a quantitatively
accurate computation of the acceleration spectra using the dipole-velocity matrix elements.
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I. INTRODUCTION

Intense-laser—matter interaction provides a privileged play-
ground to test our understanding of quantum dynamics
beyond the perturbative regime. The continuous developments
in Chirped pulse amplification (CPA) amplification during
recent decades have led to a mature technology available
worldwide, permitting experiments with intense lasers in
small laboratories and with moderate investment. Therefore,
this field provides a scenario in which theory and exper-
iments can be contrasted routinely. From the theoretical
viewpoint, intense-laser—matter interaction is an attractive
field as the form of the interaction Hamiltonian is simple,
as a result of the dipole approximation. The simplicity of
the interaction permits a focus on the problem of solving
the nonperturbative dynamics, the derivation of models,
and the gaining of intuition into the fundamental processes
involved.

There are two main strategies for solving the dynamics
of electrons, initially bounded in an atom or molecule and
interacting with an intense laser field: the exact numerical
solution of the time-dependent Schrodinger equation (TDSE)
and the use of approximated models. In many cases, as when
studying harmonic generation, the fundamental processes
involve a single active electron. In this situation, although
the exact integration of the TDSE is feasible in medium-sized
computers, models play a fundamental role in speeding up
calculations and providing the physical background of the
processes involved. Among them, some of the most successful
approaches are based on the Keldysh-Faisal-Reiss theory [1,3],
which in this regime is equivalent to the strong-field approx-
imation (SFA). Some refinements for high-order-harmonic
generation (HHG) include also ionization rates computed with
other approaches, such as, for instance, Perelomov, Popov
and Terentiev theory (PPT theory) [4]. In this theory [5,6],
the atomic electron is first tunnel-ionized from the atom,
dwells in the continuum acquiring kinetic energy from the
electromagnetic field, and finally releases it in the form of
high-energy radiation upon rescattering with the parent ion.
SFA models are known to provide reasonable predictions
of the details of high-order-harmonic generation [7] and
therefore they are extensively used with a combination of
propagation codes to describe the radiation response of
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macroscopic targets, in order to reproduce typical experimental
situations.

The coherent emission of the quantum atomic dipole can
be computed according to the classical Larmor formula [8]
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where ¢ is the electron charge, c is the velocity of light, and
(a(r)) is the mean value of the acceleration. Since, assuming the
dipole approximation a(r) = (q/m)[—V V. + E@®)] [9], this
quantity requires a precise knowledge of the electron’s binding
potential V.. Therefore, it can be evaluated exactly only for the
case of hydrogen. For many-electron atoms, and especially for
molecules, the approximated forms for the gradient of the ionic
potential are expressions from which it is not always possible
to compute the matrix elements analytically. In these cases, it
is common to resort to the Ehrenfest theorem and to compute
the dipole acceleration as the first derivative of the dipole’s
velocity or the second derivative of the dipole moment, i.e.,
using the equivalence of

a" =~ Ly i, 4 Lr@), @
m m
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where E(¢) is the driving field, p is the kinetic momentum
and f the charge’s coordinate. However, we shall demonstrate
that this equivalence does not hold in the frame of the SFA,
as the validity of the Ehrenfest theorem is affected by this
approximation.

II. GENERAL EXPRESSION FOR THE MEAN VALUE
OF THE DIPOLE OPERATORS IN THE STRONG-FIELD
APPROXIMATION

The evaluation of the mean values of the different dipole
operators (acceleration, velocity, or dipole moment) in the
SFA follows the same route; therefore we will address it
for a general odd-parity operator O, representing any of the
particular choices in Egs. (2)-(4).
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Assuming a single active electron, we shall take as a starting
point the integral solution of the Schrodinger equation [10]

[ (@) = [Ya@®) + (YD), (5)
with
1Y) = iG5(1,10)0), (6)

1
[Yi1(0) = %/ di,GT(t,0)Vi(t) A1), (7
fo
associated with the splitting of the Hamiltonian into two
parts H(t) = Hy + Vi(¢t), Hy being the field-free atomic
Hamiltonian, and V;(¢) describing the interaction with an
electromagnetic wave. Here G*(¢,¢,) and GX(t,tl) correspond
to the propagators for the Coulomb-free and field-free cases,
respectively. The ket |¢) represents the initial state, which is
assumed to be a bound eigenstate of H,. Therefore, |4 (1))
corresponds to the field-free evolution of the system and
| (2)) describes the perturbation by the driving field.
According to (5), the mean value of O can be written as

(0) = (Y0P (1)) = [(Ya®)|OYr (1)) + c.c.]
+ (W1 ()01 (1)), (8)

where the additional term (wA(t)|0|wA(t)> is zero due to
symmetry considerations. The SFA approximates (7) as

t
Y% = % / diGLE.)Vie)lya). )
fo

where G is the propagator associated with the free-electron
Hamiltonian Hz (1) = P2 /2m + Vi(¢), P being the canonical
momentum. Within this approximation, the perturbed wave
function |y;(¢))SFA corresponds to a free electron moving
under the sole influence of the electromagnetic field (i.e.,
neglecting the interaction with the residual ion). Accordingly,
for the evaluation of the high-order-harmonic spectra, the
term (wl(t)|0|1p1(t)) in Eq. (8) is commonly neglected as
it describes the contribution of the free-free couplings to the
mean dipole acceleration [11].

Combining Eqgs. (6), (7) with (8), we obtain the SFA form of
Eq. (8) to be used to compute high-order-harmonic generation:

<0)SFA — l

: / dt] (WA OG HE Vi) pa(t)) + c.c.

Iy

(10)

III. COMPARISON OF HARMONIC SPECTRA

It is well known that the SFA breaks gauge invariance
[12,13]. Therefore, to demonstrate the violation of the
Ehrenfest theorem it is necessary to test it at least in the two
most frequent gauges: length and velocity. Note that, for the
reasons given below, a?V is the common choice in the velocity
gauge, while a“" is most used in the length gauge. Therefore,
we shall compare a¥" with a? or with a“" depending on
the working gauge.

A. Velocity gauge

In the velocity gauge, the canonical momentum is a constant
of motion for the free electron; therefore its eigenfunctions
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form a time-independent basis {|K)}, i.e.,
PIK) = 7iK|K), (11)

He(1)|K) = e(K,1)[K), (12)

with e(K,1) = (7%/2m)K>+V;(K,t) and V;(K,1) = —(gh/mc)
A(t) - K + (g?/2mc?®)A%(t). Using this eigenbasis, and insert-
ing the completeness relation de|K) (K| = 1in Eq. (10), we
reach

—7 t N . ot
<O>SFA _ 71 / dK/ dt] <¢O|O|K)67(l/h).lfl [e(K,T)—€oldT
1o

vel —
x Vi(K,)¢o(K) + c.c., (13)

where ¢o(K) = (K|¢o), € is the ground-state energy, and we
have used

[Ya(t)) = e /M=l (14)

iGHELMIK) = e M KK, (1s)

The SFA form of Eq. (2) can be written substituting O by
VYV, in Eq. (13), giving

] 4 . t
)
xVi(K,t1)¢o(K) +c.c., (16)

with W.(K) = —(¢/m)(K|V V,|¢) the matrix element of the
Coulomb acceleration (we have dropped the term proportional
to the fundamental field as it does not affect the high-order
spectrum). On the other hand, the SFA form of Eq. (3) can be
rewritten as
0
=T (BN + LTEO). a”
where we have expressed the kinetic momentum in terms of
the canonical, p = P (g/m)A(z).
The convenience of using a?’ in the velocity gauge is clear
since O = P, and the matrix element (¢|O|K) in Eq. (13)
has the simple form Ke¢y(K)*; thus

, . -
(PYSEA — —%/dK/ dyRe M K 0—colde
4]

x Vi(K,1)|¢o(K)|> + c.c. (18)

Equations (16) and (18) can be integrated exactly using a
Runge-Kutta algorithm [14].

Figure 1 plots the resulting spectra for the hydrogen atom
computed in the velocity gauge, for a sin?> envelope field of
four cycles (3.75 fs full width at half maximum) of a linearly
polarized field of 1.57 x 10'* W/cm? and wavelength 800
nm. Although the compared spectra can be considered to
have a remarkable qualitative agreement, there is a significant
quantitative disagreement of more than one order of magnitude
in the harmonic yields (a factor of 37 at the cutoff frequency).
Note that we show results for an ultrashort pulse to have smooth
spectra that will ease the comparison. Results for longer pulses
follow a very similar behavior.
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FIG. 1. (Color online) Comparison of SFA harmonic spectra
computed in the velocity gauge for the hydrogen atom using Eq. (17),
labeled as V'V, (red, lower line), and Eq. (16), labeled as dv (blue,
upper line). The fundamental field is a sin> 800 nm pulse of four

cycles (total width) and intensity 1.57 x 10'* W/cm?. The black
[P.Hal

dashed line corresponds to the partially corrected spectrum of a,;

derived in Sec. IV.

In order to show that the quantitative disagreement is not a
mere constant factor, we have performed the same computa-
tions but for different wavelength and intensity. Figure 2 shows
the comparisons of a‘vlé’l and avve{/" for a wavelength of 1600 nm
and for two different intensities. The scale factors at the cutoff
are 50 and 128, respectively. We find the dependence on the
intensity of the mismatch introduced in using a?¥ particularly
relevant, as in a computation of harmonic generation from a
macroscopic target, the driving field has a spatial profile with
different intensities at the different target points.
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FIG. 2. (Color online) Comparison of SFA harmonic spectra
computed in the velocity gauge for the hydrogen atom interacting
with a four-cycle pulse (total width) 1600 nm laser field, for intensities
(a) 5.6 x 10" W/cm? and (b) 1.57 x 10'* W/cm?. Labels refer to
Eq. (17), labeled as V'V, (red, lower line) and Eq. (16), labeled as dv
(blue, upper line).
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FIG. 3. (Color online) Harmonic spectra computed using the
length gauge: result of Egs. (4) and (20) is labeled as ddr (blue,
upper line), and that of Eq. (19) is labeled as V'V, (red, lower line).
The fundamental field parameters are the same as in Fig. 1.

B. Length gauge

The same type of derivation as in the preceding section
leads us, in the length gauge, to

A1) = 7 / "K[ dny W [k(r)] e~ M tealdn
0
x E(n) - d k()] +cc., (19)

with k() = K — (¢/Aam)A(¢) and d(k) = (k|gT|¢o) the matrix
element of the dipole momentum. Also we have

. ' . .
rlength(t) = ql_h/dK/ dtld*[k(t)]e*(t/h)fq[G(K,t)feo]dr
to

x E(#)) - d[k(#))] + c.c. (20)

to be used in Eq. (4) to evaluate ajé‘é’gth.

The comparison between these two forms for the acceler-
ation is found in Fig. 3, for the same parameters as in Fig. 1.
We stress that the integration of Egs. (19) and (20) is done
exactly in this paper, as we have avoided the use of a saddle-
point method in order to perform our calculations as exactly
as possible. We point out, anyway, that our checks of the
saddle-point approximation using the present laser parameters
have been positive. The conclusion for the length gauge is
the same as previously: there is a considerable quantitative
disagreement between the two forms of the acceleration.

IV. DISCUSSION

The overriding of the Ehrenfest theorem when implement-
ing the SFA has already been noticed by some authors.
For instance, in Ref. [15] it is recognized that the time
differentiation of the SFA wave function is not a proper
procedure. Also, for the case of molecules, the structure itself
of the harmonic spectrum is different if the acceleration is
computed using (4), (3), or (2) [16—-18]. On the other hand,
it is also known that the HHG yields computed from the
SFA have to be corrected to approach quantitatively the exact
results of the Schrodinger equation. However, some recent
SFA treatments [ 14] demonstrate that a simple extension to the
standard SFA treatment leads to quantitatively accurate results
for the harmonic yields computed using al}/‘. Therefore it
is clear that, if one wants to retain quantitative accuracy and
has no exact information about the nature of the Coulomb
potential, the question of whether the simpler forms (4) or (3)
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can be used within the SFA as a substitution for (2) constitutes
a central issue.

The above results confirm the conclusions of the studies
mentioned above, i.e., the inconsistency of the Ehrenfest
theorem in the SFA. The main aim of this paper is, therefore, to
propose a form for the time derivative of the kinetic momentum
that should be of help in developing quantitative SFA HHG
computations without a precise knowledge of the form of the
Coulomb potential of the residual ion.

We shall now concentrate on the velocity gauge, and derive

an alternative expression to af:jl that better approximates

Vel . The interest of this form is that it retains the same
51mphc1ty in implementation as a?, as it depends only on the
matrix elements of the momentum operator, while noticeably
improving the agreement. To do this, we shall start from aVVe}/"
in Eq. (2) and substitute —V V. by the equivalent conmutator
1/ ih)[f’,I-AI 4]- Assuming the SFA, we define the acceleration
as
[P HA](t)

Ayl

<[P HaDS™ + E(r) (21)

Using (5) and (8) in the SFA, we have

([P, Hs1)S™ = (WaOI[P, Hallv (1)5™ + cec.

= (YaOI(T — )Py ()™ +cc.,  (22)

where T = P2/2m. Note that Ha |y, (1)) = T |y, (1))5A as
|7 (2))SFA corresponds to a free electron. Upon substitution in

Eq. (13), the final form for a[VlZiH"](t) is the same as a..

Eq. (2), but with the corresponding matrix elements of VV,
replaced by those of the conmutator (22); therefore

1 . ot
AP Hil() = / JK f 46, C(K)e M 0 0—arlar
1o

Agel

vel n

x Vi(K,t)¢o(K) +c.c., (23)

with C(K) = (1/ih)(K%/2m — ep)K.

The results for the spectrum of a[Vl;iHA] compared to and aVel

and avV ' have already been shown in Fig. 1. Note that, besides

a slight improvement of the quahtatlve agreement a[ Hal

also quantitatively closer to a * than is Vel However as

the disagreement is still large 1t is also apparent that the

substitution of the time derivative leading to a[VIZiHA] solves

the problem only partially. This is not entirely a surprise, since
a term similar to C(K) has already been proposed in Ref. [15]
as an alternative to the time derivative, although in the length
gauge, giving a quantitative mismatch of the same order as
here. In fact, we have found that the remaining inaccuracy of

LI;H"' (as shown in Fig. 1) can be traced back to the SFA,
as it neglects the ionic potential and, therefore, the change in
kinetic energy when the electron is near the ion, where the
recombination occurs.

Let us develop a correction to this, based on a simplified
picture. To do this, we shall consider two spatial regions
(see Fig. 4): region I close to the ion and region II far from
the ion. In region I we shall assume the Coulomb potential
the relevant interaction, with the simplified form of a square
potential well with depth (V.). The potential-well states can
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FIG. 4. (Color online) Scheme of the two spatial regions consid-
ered. Region I encloses electrons near the ion, where the Coulomb
potential dominates, and region II electrons far from the ion, where
the field force dominates.

be approximated by plane waves |K’) with energy

hZK/Z
Ey = . 24)
2m

On the other hand, in region II, the field is the relevant
interaction, and therefore we will assume free electrons |K)
with time-averaged energies

U, — (Vo) (25)

where U, is the ponderomotive energy acquired from the field
and the term —(V,) appears as we take the energy origin at the
bottom of the potential well.
Setting (24) equal to (25), we have the following relation
of the momentum of the plane waves of each region:
hZ K/Z h2 KZ
= U, —(V.). 26
o o T U (Ve) (26)

We now define a projection operator that describes the wave
function in region II in the basis of region I,

M:/|K’)(K|dK:/|K’)(K|n(K)dK/, (27)

where n(K) = K /K’ appears because the volume element in
the |K) space, K2d K d<2, does not coincide with that in |K'),
K?dK'dQ, due to (26). Using (26) and taking (V) as the
mean value of the Coulomb potential in the atomic ground
state, —2|€p|, we have

n(K) = (1 +

We can, therefore, consider replacement of the momentum
in Eq. (22) by the transformed form

Gy

R’K2/2m

P =M"PM, (29)

which leads to a modified rescattering coefficient that takes
into account the Coulomb correction,

C'(K) = (1/ih)(K*/2m — 9)K'n*(K)
= (1/ih)(K*/2m — €0)Kn(K). (30)
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FIG. 5. (Color online) Comparison between the harmonic spectra
using Eq. (31), labeled as [P, H4] ,corr (blue dashed line), and (16),
labeled as V'V, (red line), for the same parameters used in (a) Fig. 1
and (b) Fig. 2(b).

Therefore, the corrected form of (23) reads

o t . 1
a[P,HA],corr(t) — /dK/ dl‘]C/(K)e_(l/h)f’l [e(K,T)—€pldT
fo

vel
x Vi(K,1)|go(K)|* + c.c. (31)

VVe
vel > we plot

[13,HA |,corr

To test our proposal (31) as an alternative to a

in Fig. 5(a) the high-order harmonic spectra for a,; and
v VC
a

vl for the same laser parameters as in Fig 1. In addition,
Fig. 5(b) shows the same comparison but for a different
wavelength, corresponding to the case plotted in Fig 2(b).
The quantitative agreement is notable, which is certainly
remarkable in view of the simplicity in the derivation of the
model we have employed. We should note also that the above
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correction has been proven to work solely in the velocity
gauge. The trivial extension to the length gauge, which would
consist in the replacement of the canonical momentum by the
time-dependent kinetic momentum, leads to dipole-derived
harmonic spectra that differ considerably from those calculated
from the acceleration, both quantitatively and qualitatively.

V. CONCLUSION

It is widely recognized that the strong-field approximation
is an invaluable tool for developing simplified models for the
intense-field—atom interaction. However, it is also known that
the model description depends on the particular implementa-
tion of the SFA, for instance on the gauge employed. In accor-
dance with previous work, in this paper we have demonstrated
that the SFA also affects the validity of the Ehrenfest theorem
and, therefore, that the description of high-order-harmonic
generation is not equivalent if computed through the direct
calculation of the mean acceleration or from the time derivative
of the dipole velocity or of the dipole moment. However,
the computation of these two latter quantities is often more
accessible and, hence, they are widely used. In this paper we
have identified the source of the problem as twofold: on one
hand, the time-derivative operator in the SFA seems to be less
accurate than its Ehrenfest equivalent, the commutator with the
Hamiltonian; on the other hand, it is necessary to implement a
Coulomb correction to the momentum operator, to compensate
the information loss in approximating the continuum states as
plane waves. Accordingly, we propose a corrected form for the
SFA acceleration that uses the momentum matrix elements and
that reproduces with quantitative accuracy the result obtained
using the acceleration matrix elements.
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