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High-order harmonic generation (HHG) has been recently proven to produce extreme-ultraviolet (XUV)
vortices from the nonlinear conversion of infrared twisted beams. Previous works have demonstrated a
linear scaling law of the vortex charge with the harmonic order. We demonstrate that this simple law hides
an unexpectedly rich scenario for the buildup of orbital angular momentum (OAM) due to the
nonperturbative behavior of HHG. The complexity of these twisted XUV beams appears only when
HHG is driven by nonpure vortex modes, where the XUV OAM content is dramatically increased. We
explore the underlying mechanisms for this diversity and derive a general conservation rule for the
nonperturbative OAM buildup. The simple scaling found in previous works corresponds to the collapse of
this scenario for the particular case of pure (single-mode) OAM driving fields.
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High-order harmonic generation (HHG) [1-3] represents
one of the most fascinating processes in strong-field physics,
occurring during the interaction of intense lasers with matter.
In contrast to low-order harmonic generation, HHG cannot
be explained using perturbative physics. However, it can be
understood with simple semiclassical arguments [4,5]: dur-
ing the interaction with the laser pulse, a wave packet is
tunnel ionized from an atom or molecule and then accelerated
and driven back to the parent ion during the field oscillation.
Upon recollision, the energy acquired from the laser field is
released in the form of high frequency harmonics. The
detected HHG radiation is subjected to the phase matching
of the coherent emission from different radiators in the target
[6,7]. In contrast to the perturbative case, where the intensity
of subsequent harmonics of the driving field decays expo-
nentially [8], the HHG spectrum presents a plateau of
harmonics extending to high frequencies with nearly con-
stant intensity. As a result, from the spectral point of view,
HHG provides a unique source of radiation extending from
the extreme ultraviolet (XUV) to the soft x rays [9,10].
Temporally, high harmonics can be synthesized into pulses of
attosecond duration [11-14], a unique feature that has
triggered a revolutionary metrological tool for the temporal
characterization of ultrafast processes at the atomic and
molecular scale [15-17].

The coherent nature of the HHG process conveys the
possibility of mapping properties of the driving field into
the shorter-wavelength radiation, thus providing a precise
degree of control of the generated field through adequate
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modifications of the driver. In this context, the generation
of XUV vortices, i.e., XUV beams carrying orbital angular
momentum (OAM), has been recently reported using an
infrared (IR) driver with OAM [18-20]. The Fourier
synthesis of these XUV harmonic vortices results in the
emission of helical attosecond beams with unprecedented
spatiotemporal properties, predicted in Ref. [19] and
recently observed in Ref. [21]. This promising scenario
circumvents the limitations of other approaches that
directly imprint OAM into the XUV field using spatial
light modulators or holographic plates, whose efficiency is
compromised at those wavelengths.

Optical vortices, i.e., twisted beams carrying OAM, add
a supplementary degree of freedom to light-matter inter-
actions [22-25], conveying additional information about
the fundamental processes involved. For instance, it has
been demonstrated that the dipole selection rules of single-
photon ionization must be extended to include the interplay
between angular momentum and energy conservation [26].
Most strikingly, HHG driven by an OAM beam with a
unique topological charge Z, studied first theoretically [19]
and later experimentally [20], leads to the simple scaling
£y =qt¢ (¢, being the topological charge of the gth
harmonic). This simple rule follows the energy conserva-
tion of the harmonic conversion process w, = g (@ being
the frequency of the fundamental), also found in perturba-
tive harmonic generation [27-30]. However, this simple
scaling, which is well understood as a consequence of the
symmetry of the field, disguises the nonperturbative nature
of HHG, where the number of photons involved in the
process is not well defined [20].

In this Letter, we present a theoretical study of HHG driven
by nonpure vortex beams, carrying different OAM contri-
butions, to reveal the XUV OAM buildup due to the
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nonperturbative behavior of HHG. We perform advanced
quantum simulations of OAM HHG and develop a simple
model, the thin slab model, which allows us to obtain a clear
insight of the underlying physics. We show that the use of
nonpure vortex drivers increases dramatically the OAM
content of the harmonics, mainly due to the nonperturbative
intrinsic phase of the HHG process. We derive a general
conservation rule for the OAM buildup in HHG that is more
generic than the simple linear law governing perturbative
harmonic generation and HHG driven by pure (single OAM
mode) IR vortices. Our results are found very relevant for
vortex drivers with only a fractional modal contamination
and thus essential for the understanding of realistic OAM
HHG experiments, where non-100% pure vortices are used.

The physical scenario of our OAM HHG study is
sketched in Fig. 1(a). An IR pulse, resulting from the super-
position of two well-defined OAM beams [see Fig. 1(b)] of
the same wavelength 4, is focused into an argon gas jet.
Each atom interacting with the IR field emits XUV or
soft x-ray radiation that is detected in the far field. The
spatial structure of each vortex is represented as a Laguerre-
Gaussian beam propagating in the z direction and
expressed as LG, ,(p, ¢, z; ko)e'*o* (see Ref. [31]), where
ko = 2m/Ay, and the indexes £ and p correspond to the
topological charge and the number of nonaxial radial nodes
of the mode, respectively.

In Fig. 2(a), we show the intensity profile of the 21st
harmonic, resulting from the interaction with a 4, =0.8 um
linearly polarized driving pulse, with a sin?> envelope
of 5.8 cycles (154 fs) FWHM and peak intensity
Iy =1.4x10" W/cm?. The driving field amplitudes
(Ey of 0.075 and 0.087 a.u.) and waists (wy of 30 and
21.4 ym) of the LG,y and LG, modes, respectively, are
chosen to give the same maximum intensity at the same
radius for each mode at the focal plane, as depicted in
Fig. 1(b). An argon gas jet is aimed perpendicularly to the
IR laser and modeled with a transverse Gaussian profile
(width 50 ym). Our HHG calculations, including propa-
gation [37], are based on the numerical integration of the
time-dependent Schrodinger equation using the strong-field
approximation (SFA) at each atom out of a random sample
of > 10° atoms, distributed in the interaction region. In
contrast to semiclassical SFA approaches, our method [38]
retains the full quantum description of the interaction. The
harmonic field radiated by each atom is propagated to the
far-field detector using the integral solution of Maxwell
equations. Details of this method are given in our previous
studies of OAM HHG [19,39].

The upper panel in Fig. 2(a) represents the far-field
spatial intensity distribution of the 21st harmonic as a
function of the divergence f and azimuth ¢. The lower
panel shows the OAM spectrum as a function of the
divergence f, obtained after performing the Fourier trans-
form of the harmonic field along ¢. Note that these are
interpolated pictures; the OAM must be interpreted in
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FIG. 1. (a) Schematic view of HHG driven by a combination of
two vortex beams. An intense IR OAM pulse is focused into a gas
jet with transverse coordinates (p, ¢), where each atom emits
harmonic radiation that, upon propagation, results in the far-field
emission of XUV vortices with some divergence and azimuth
(B, @). (b) The IR driving beam is composed by a combination of
LG,y and LG, , with parameters chosen so the amplitude and
radii at the ring maximum are the same.

discrete units. In contrast to HHG driven by a pure
OAM vortex of charge ¢ [19,39], where each harmonic
has a well-defined topological charge 7, = g7, the super-
position of two vortices leads to a very rich composition of
OAM for each harmonic order. As we discuss below, the
nonperturbative character of HHG is the main thing
responsible for the generation of new OAM contributions.

We have previously resorted to a thin slab model (TSM)
[39] in order to gain insight on the physics of XUV
vortices generated via HHG. In this simplified description,
the target is represented by a thin (2D) slab perpendicular
to the laser direction, located at the position of the gas jet.
The harmonic field at the slab is approximated by an
analytic SFA representation, first used in Ref. [40]. In this
representation, the amplitude of the gth harmonic is
proportional to the pth power of the fundamental field
amplitude U(r)?, where p < g reflects the nonperturba-
tive behavior of HHG, being approximately constant for
the harmonics in the plateau region. In our case, we use
p = 3.4 (see Ref. [31]). On the other hand, the phase of
the gth harmonic is known to scale as g times the phase of
the driving field ¢®(r) and to have an additional term
(intrinsic phase) aj|U(r)|?, where af are strong-field
parameters that depend on the electron quantum path
(j) [41-43]. The intrinsic phase has a main role in HHG
and phase matching. As it is well known, every half cycle,
two different electron quantum paths contribute to the
same harmonic, the so-called short and long trajectories
[41,44]. The contribution to HHG of each trajectory type
is mainly through the different intrinsic phases, described

by the coefficients o. In particular, the j quantum path
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FIG. 2. Nonperturbative OAM generation in the 21st harmonic vortex beam. The upper row represents the far-field spatial intensity
distribution (logarithmic scale), and the lower row shows the OAM spectrum (logarithmic scale). The results were obtained through
(a) quantum SFA simulations and (b)—(f) different versions of the TSM, where we have considered (b) perturbative (gth power, no
intrinsic phase), (c) nonperturbative pth power (no intrinsic phase), and full nonperturbative (intrinsic phase included) with (d) short,
(e) long, and (f) short + long trajectory contributions. The excellent agreement between (a) and (f) supports the use of the TSM to
understand the nonperturbative OAM contributions in the quantum calculation.

(short or long) to the gth harmonic emitted at a slab
located at the beam focus (z = 0) can be written as

) C\ 3/2 ) i
Ay(p.¢) = <§> U(p, p)|Peia®ed)eialUpdF (1)

where C is a constant and 7/ is the excursion time
associated with the j quantum path [45], affecting the
efficiency of HHG due to the quantum diffusion of
the electron wave packet. In our case, U(r) =
LGy o(r. ky) + LG, o(r, ko), as depicted in Fig. 1(b). Our
TSM approach evaluates the far-field harmonic integrat-
ing Aé(p, @) over the slab surface, using the Fraunhofer
diffraction formula

. ) 2r X ) ‘
Fi(B.9) A /0 pdpdpAl(p, §)e~itkortanfeosio=¢),

(2)
The TSM neglects the longitudinal phase matching, thus
focusing the discussion on the transverse phase matching
[46], which is then relevant, due to the unique transverse
structure of OAM beams [39]. Figures 2(b)-2(f) show the
TSM results in comparison with the quantum SFA simu-
lations discussed above. In order to disentangle the non-
perturbative effects in OAM HHG, we first show the results
obtained as if the process was perturbative; i.e., the intrinsic

phase is neglected (a; = 0) and the amplitude of the
harmonic field scales with the gth power (p = g = 21)
[Fig. 2(b)]. Note that even in the perturbative case, the
OAM spectra of the harmonic radiation is already more
involved than using a pure vortex. This can be understood
as different photon absorption channels (¢ —n, n), n
ranging from O to ¢, associated with the two OAM modes
of the driving field. Note that this interpretation in terms of

absorption channels is analogous to that performed when
driving HHG by noncollinear [47-49] or by bicircular
fields [50]. Each channel (¢ — n, n) has a weight propor-
tional to the binomial probability distribution associated
with the photon number combinations of absorbing g — n
photons from mode #; and n photons from mode 7,.
Thus, the perturbative OAM conservation rule reads
as £, = (q —n)t, + nt,.

Figure 2(c) shows the role of the nonperturbative pth
power scaling by using p = 3.4 < ¢ (the intrinsic phase
remains neglected orél = 0). Now, the OAM spectra narrows
around the central channel, n ranging from (g — p)/2 to
(¢ + p)/2. This channel suppression is further analyzed in
Fig. 3(a), where we show the f-integrated OAM spectrum of
the 21st harmonic using the gth power (dark blue) and the pth
power (light blue, p = 3.4) harmonic scaling. A nonpertur-
bative channel reduction towards channels n = 9 (£,; = 30)
ton =12 (£5; = 33) is observed.

Figures 2(d) and 2(e) show the result of the TSM,
including the pth power scaling and the intrinsic phase term,
for the short and long trajectories (respectively), leading to
the 21st harmonic. We use a3, = 3.83 x 107'% ¢cm?/W and
ak, =2.128 x 1071% ecm?/W for the short and long trajec-
tories, respectively [31]. First, we note that long trajectories
present a more irregular radial profile than the short ones, as
already mentioned in Ref. [39]. Second, in both cases, and
especially in the later one, we observe a dramatic broadening
of the OAM spectrum. According to Eq. (2), the spatial
variations in the driving field intensity profile are imprinted
as local modifications of the intrinsic phase of the harmonics.
For periodic azimuthal variations of the intensity, as those
arising from the superposition of different OAM beams [see
Fig. 1(b)], the situation is analogous to applying a phase
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FIG. 3. p-integrated OAM spectrum (logarithmic scale) of the
21st harmonic vortex, obtained with the TSM using (a) the
perturbative gth power [dark blue, Fig. 2(b)] and the non-
perturbative pth power scaling [light blue, Fig. 2(c)]; (b),(c) non-
perturbative channels n = 10 and n = 11, respectively, including
the intrinsic phase of short (purple) and long (green) trajectories;
and (d) all nonperturbative channel contributions [corresponding
to Fig. 2(f)]. The arrows indicate the maximum OAM interval
given by the conservation rules for the short (purple) and long
(green) trajectory contributions.

diffraction grating along the azimuthal coordinate. Thus, new
OAM contributions are produced, as phase diffraction
gratings produce multiple diffraction orders. The nonpertur-
bative OAM broadening is shown in detail in Figs. 3(b)
and 3(c) for the n = 10 and n = 11 channels, respectively,
and for the short (purple) and long (green) trajectory
contributions. The OAM content of each channel is dramati-
cally increased due to the intrinsic phase, from a single to a
wide range of OAM values.

Figure 2(f) shows the complete nonperturbative profile
for the 21st harmonic, resulting from the superposition of
the short and long trajectory contributions. The excellent
agreement between Figs. 2(f) and 2(a) confirms the validity
of the TSM. The short and long trajectory contributions can
be disentangled in the quantum SFA calculations through
time-frequency analysis (see Ref. [31]).

The azimuthal integration in Eq. (2) leads to the
derivation of a general conservation rule for the non-
perturbative OAM buildup (¢,) of the gth harmonic (see
details in Ref. [31]):

fq:(q—n)fl-l—nfz—l—m(fz—fl), (3)

n labeling the HHG channel [ranging from (g — p)/2 to
(g4 p)/2]. The index m is limited approximately by
|m| < ajly(p)/2 (see Ref. [31]). It represents the azimuthal
diffraction order induced by the intrinsic phase modulation,

which has an upper bound, or cutoff, given by the maximum
driving field intensity at each particular radius /(p). Note
that this conservation rule collapses to the perturbative case
when p — ¢ and m = 0, and to the linear scaling found with
pure vortex drivings when ¢ = ¢, = ¢ [19,20]. Figure 3(d)
shows the full nonperturbative, -integrated, OAM spectrum
of the 21st harmonic. The arrows indicate the maximum
OAM intervals given by Eq. (3) for the short (purple) and
long (green) trajectory contributions, validating the non-
perturbative OAM conservation rules obtained. Additional
results for other harmonic orders and vortex combinations
are presented in Ref. [31].

OAM contributions of a complex vortex beam can be
successfully separated in the visible region [51,52]. The rich
OAM composition of the harmonic vortices presented here
may stimulate the extension of such techniques to the XUV
region, opening a fascinating scenario for the production of
XUV OAM tunable beams directly from the HHG process.

We finally address the scenario of a nonpure vortex
driver as a realistic approach to an experiment. In OAM
HHG [18,20,21], and also in nonlinear propagation experi-
ments [53,54], the intense driver vortex beam might present
imperfections, arising from the mechanism used to generate
ultrashort, broadband vortex beams (typically, wave plates
or diffractive elements are used [55-57]). In fact, in the
nonlinear propagation studies, such imperfections must be
introduced in the theoretical models to mimic the exper-
imental observations [53,54]. To study the effect of these
imperfections in OAM HHG, we compare the OAM
harmonic spectrum driven by a pure LG, ; mode [Fig. 4(a)]
and quasipure LG, ; modes [Figs. 4(b) and 4(c)] (having a
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FIG. 4. Quantum SFA simulations of the 21st-harmonic vortex
structure driven by (a) a pure £ = 1 mode, and nonpure OAM
beams, with combination of (b) 95% ¢, = 1 and 5% ¢, = 2, and
(©)90% ¢, = 1 and 10% ¢, = 2. The beam waists are the same as
in Fig. 1b. The top row represents the harmonic intensity profiles,
which are found to be similar. In the bottom row, the OAM spectra
of 21st-harmonic are shown, presenting a clear broadening around
the single-vortex value £,; = 21 from (a) to (c).
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contribution of a 5% and 10% of an LG, mode, respec-
tively). Surprisingly, although the spatial intensity distri-
bution is similar, the nonpure cases present a clear
broadening of the 21st harmonic OAM content around
the single-vortex value #,; = 21. Interestingly, in Fig. 4(c),
the efficiency of this channel is diminished in favor of the
mixture of 20 photons of the #; mode and 1 photon of ¢»,
accordingly to the weights given by the binomial proba-
bility distribution. We, therefore, demonstrate that the
nonperturbative nature of OAM HHG is also relevant when
dealing with quasipure vortices, which is a common
experimental situation. Our results open the route to use
the generated OAM spectra in HHG as an additional tool to
characterize ultrashort optical vortex pulses [58].

In conclusion, we demonstrate that the nonperturbative
nature of HHG encloses a rich scenario for the generation
of XUV vortices. We derive the conservation rule for the
OAM buildup, which predicts a strong twist of the XUV
vortices due mainly to the intrinsic HHG phase. Our results
show that the laser-matter coupling with OAM beams is a
very sensitive probe of the nonperturbative aspects of
strong-field interactions, paving the route for the next
generation of high-resolution XUV or x-ray diagnostic
tools for fundamental studies and applications. Our model
predictions demonstrate the correlation of the generated
XUV vortex beams with the driving field parameters.
Therefore, HHG can be used as a controlled, straightfor-
ward mechanism for the generation of complex vortex
beams at different wavelengths.
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