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Abstract
MicroRNAs (miRNAs) are small non-coding RNAs 
that regulate multiple physiological and pathological 
functions through the modulation of gene expression 
at the post-transcriptional level. Accumulating evidence 
has established a role for miRNAs in the development 
and pathogenesis of liver disease. Specifically, a large 
number of studies have assessed the role of miRNAs 
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in alcoholic liver disease (ALD) and non-alcoholic fatty 
liver disease (NAFLD), two diseases that share common 
underlying mechanisms and pathological characteristics. 
The purpose of the current review is to summarize 
and update the body of literature investigating the role 
of miRNAs in liver disease. In addition, the potential 
use of miRNAs as biomarkers and/or therapeutic 
targets is discussed. Among all miRNAs analyzed, miR-
34a, miR-122 and miR-155 are most involved in the 
pathogenesis of NAFLD. Of note, these three miRNAs 
have also been implicated in ALD, reinforcing a common 
disease mechanism between these two entities and 
the pleiotropic effects of specific miRNAs. Currently, no 
single miRNA or panel of miRNAs has been identified 
for the detection of, or staging of ALD or NAFLD. 
While promising results have been shown in murine 
models, no therapeutic based-miRNA agents have been 
developed for use in humans with liver disease. 

Key words: Alcohol use disorder; Alcoholic liver disease; 
Non-alcoholic fatty liver disease; Steatosis; Obesity; 
miRNA; Biomarkers

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: MicroRNAs (miRNAs) are small RNAs that 
regulate gene expression at a post-transcriptional level. 
Altered miRNA expression has been found in a variety 
of liver diseases, including non-alcoholic fatty liver 
disease and alcoholic liver disease. A group of miRNAs 
(miR-155, miR-122 and miR-34a) contributes to the 
pathogenesis of these two diseases and these miRNAs 
have potential use as biomarkers or therapeutic targets. 
Several technical limitations and a lack of clinical 
studies, however, preclude their clinical use.

Torres JL, Novo-Veleiro I, Manzanedo L, Alvela-Suárez L, 
Macías R, Laso FJ, Marcos M. Role of microRNAs in alcohol-
induced liver disorders and non-alcoholic fatty liver disease. 
World J Gastroenterol 2018; 24(36): 4104-4118  Available from: 
URL: http://www.wjgnet.com/1007-9327/full/v24/i36/4104.htm  
DOI: http://dx.doi.org/10.3748/wjg.v24.i36.4104

INTRODUCTION
MicroRNAs (miRNAs), small non-coding RNAs, can 
modulate gene expression at the post-transcriptional 
level by targeting messenger RNAs and inhibiting their 
translation or promoting their degradation[1,2]. Since the 
discovery of the first miRNA in 1993, lin-4[3], more than 
2000 miRNAs have been described in humans and they 
are believed to regulate up to 60% of protein-coding 
genes in the human genome[4].

Human miRNAs are involved in virtually all physi-
ological and pathological processes, including cell 
differentiation and proliferation, signal transduction, 
inflammation and immune response, metabolism, viral-

host interaction, and oncogenesis[1,2]. The expression 
of a wide variety of miRNAs is potentially regulated by 
many factors, such as alcohol, but also diet, cigarette 
smoking and other drugs[5]. Therefore, it is not surprising 
that miRNAs have been increasingly recognized as key 
actors in the pathogenesis of a variety of diseases and 
as potential biomarkers for diagnosis or therapeutic 
targets[2]. The role of miRNAs in liver inflammation, 
fibrosis and cirrhosis has been widely described in the last 
twenty years[6-8]. The current paper reviews the existing 
literature pertaining to miRNA alteration, function, 
and the potential clinical application of miRNAs in 
alcoholic liver disease (ALD) and non-alcoholic fatty liver 
disease (NAFLD). While ALD and NAFLD differ in some 
aspects, they also share common features, including 
underlying mechanisms and clinical and histopathological 
characteristics[9]. Given the rapid expansion of research in 
miRNAs in recent years, an updated review on the topic 
will first be presented, followed by a summary of miRNA 
alterations that are common to both ALD and NAFLD.

ROLE OF MIRNAS IN ALD
Pathogenic role of miRNAs in ALD
The development of the different forms of ALD (steatosis, 
alcoholic hepatitis and cirrhosis) requires prolonged and 
heavy alcohol consumption along with susceptibility 
to the disease. Pathophysiological mechanisms of ALD 
are based both on the direct toxic effect of alcohol and 
also on ethanol-induced alterations in the inflammatory 
response[10]. A variety of enzymes, such as alcohol 
dehydrogenase (ADH) and the cytochrome P450 2E1 
(CYP2E1), contribute to alcohol metabolism[11], leading 
to oxygen free radicals, nitric oxide and acetaldehyde, 
which ultimately can cause cellular damage and 
liver inflammation[12]. In addition, the toxic effect of 
acetaldehyde increases intestinal permeability to bacterial 
lipopolysaccharide (LPS)[13], which binds to toll-like 
receptors 4 (TLR4) and activates Kupffer and stellate cells 
through pro-inflammatory cytokines, such as tumour 
necrosis factor (TNF)-α, production[14]. This inflammatory 
signal is transmitted via the nuclear factor-κB (NF-κB) 
pathway, ultimately leading to liver damage[14].

While most immune mechanisms involved in ALD 
development are related to the TLR4-NF-κB pathway, the 
activation of TLR4 also triggers the transmission of pro-
inflammatory stimuli through other signaling pathways, 
such us mitogen-activated protein kinases (MAPK) or 
TIR-domain-containing adapter-inducing interferon-β 
(TRIF)[14]. miRNAs can regulate this complex interplay 
between inflammatory signals via the regulation of 
cytokines and other components of the pathways[15]. 
Oxidative stress and free oxygen radicals generation 
involved in ALD development are also regulated by 
miRNAs through different pathways like Kelch-like ECH-
associated protein 1 Kelch-like ECH-associated protein 
1 (Keap1) / Nuclear factor-erythroid-2-related factor 2 
(Nrf2) pathway[16-20]. In addition to this, miRNAs have also 
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been shown to exert an important modulatory function 
on macrophage activation and differentiation[21,22]. 
Moreover, recent studies have shown even broader 
effects of miRNAs in ALD development, including a role in 
intercellular communication, in secretion in exosomes[23], 
in the expression of enzymes directly linked to alcohol 
metabolism (e.g., regulation of CYP2E1 by miR-214[24]) 
and in the modulation of pro-inflammatory pathways 
such as the B-cell translocation gene 2/Yin-yang 1 (BTG2/
YY1) signaling pathway by miR-497[25]. Finally, alcohol 
consumption, with or without concurrent ALD, has also 
been linked to altered expression of several miRNAs[5,26]. 

Numerous studies, therefore, have addressed the 
relationship between ALD development and miRNAs. 
While animal models have been used in the majority of 
these studies, there is an increasing number of studies 
in human cells, tissues and serum, confirming the key 

role of miRNAs in ALD[27-30]. A summary of all available 
studies is shown in Table 1. In addition, a summary of 
the regulatory actions of miRNAs in the inflammatory 
response according to the different cell types involved, 
is displayed in Figure 1.

Hepatocytes: Some miRNAs (e.g., miR-34a and miR-
200a) are responsible for the induction of hepatocytic 
apoptosis during ALD development[29,31]. In addition, 
secretion of miRNAs in exosomes (e.g., miR-122) 
can cause an increase in inflammatory response by 
targeting monocyte/macrophage cells[32], ultimately 
leading to hepatocytic injury. MiRNAs action and 
pleiotropic effects could be different depending on the 
cell in which they act; thus, miR-122 could have a 
protective role inside the hepatocyte during alcohol-
induced liver damage[33]. Increase in oxidative stress 
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Table 1  MicroRNA targets involved in alcoholic liver disease pathogenesis

miRNA Source of sample miRNA target

let-7[27] Animal models Lin28, HMGA2
Human HSCs

miR-19b[28] Animal models TGFβRII, Col1α2, MeCP2
Human HSCs

miR-21[36,37] Animal models FASLG, DR5, Crebl2
miR-26a[35] Animal models DUSP4, DUSP5
miR-27a[44,52] Animal models Sprouty2, CD206

HMC
Humans (plasma)

miR-34a[29,43] Animal models SIRT1, CASP2
Human HSCs

NHH
HiBECs

Humans (liver biopsy)
miR-103 and miR-107[53] Humans (liver biopsy) Caveolin-1
miR-122[32,124,125] Animal models P4HA1, HO-1, Cyclin G1, Bcl-w, HIF-1α
miR-155[38,39,97,126,127] Animal models TNFα, SHIP1, SOCS1, IRAKM, C/EBPβ
miR-181b-3p[40] Animal models Importin α1
miR-182[30] Animal models SLC1A1, Cofilin 1, CCL20, CXCL1, IL-8, Cyclin D1, IL-6

Humans (serum samples and liver biopsy)
miR-199[128] Animal models ET-1, ET-BR
miR-200a[31] Animal models ZEB-2
miR-212[46] Caco-2 cells ZO-1

Humans (colon biopsy)
miR-214[24,34] Animal models POR, GSR, CYP2E1

HHCs
miR-217[41] Animal models SIRT-1
miR-223[45] Animal models p47phox, IL-6

Humans (serum)
miR-291b[42] Animal models Tollip

HPBMs
miR-378[59] Animal models Gli-3
miR-497[25] Animal models Btg2, Yy1

HSCs: Hepatic stellate cells; HMGA2: High mobility group AT-hook 2; TGFβRII: Transforming growth factor β receptor II; Col1α2: Collagen type I α 2 
chain; MeCP2: Methyl-CpG binding protein 2; FASLG: Fas ligand; DR5: Death receptor 5; Crebl2: cAMP responsive element binding protein like 2; DUSP: 
Dual specificity phosphatase; HMC: Human Monocyte Cells; NHH: Normal Human Hepatocytes; HiBECs: Human intrahepatic Biliary Epithelial Cells; 
SIRT1: sirtuin 1; CASP2: caspase 2; P4HA1: prolyl 4-hydroxylase subunit α 1; HO-1: heme oxygenase-1; BCL-W: Bcl-2-like protein 2; HIF-1α: Hypoxia 
inducible factor 1 α; TNFα: Tumor necrosis factor α; SHIP1: Src homology 2 domain-containing inositol phosphatase 1; SOCS1: Suppressor of cytokine 
signaling 1; IRAKM: Interleukin 1 receptor associated kinase 3; C/EBPβ: CCAAT/enhancer binding protein β; SLC1A1: Solute carrier family 1 member 
1; CCL20: C-C motif chemokine ligand 20; CXCL1: C-X-C motif chemokine ligand 1; IL: Interleukin; ET-1: Endothelin-1; ET-BR: Endothelin-B receptor; 
ZEB-2: Zinc finger E-box binding homeobox 2; ZO-1: Zonula occludens 1; HHCs: Human Hepatoma Cells; POR: Cytochrome P450 oxidoreductase; GSR: 
Glutathione reductase; CYP2E1: Cytochrome P450 2E1; p47phox: Neutrophil cytosolic factor 1-like; HPBMs: Human Peripheral Blood Monocytes; Tollip: 
Toll interacting protein; Gli3: GLI Family Zinc Finger 3; Btg2: B-cell translocation gene 2; YY1: Yin yang 1; miRNA: MicroRNA.
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more hepatic inflammation[41]. Toll Interacting Protein 
(Tollip), another down-regulator of the TLR4-NF-κB 
pathway, is inhibited by miR-291b[42]. 

Hepatic stellate cells (HSCs): HSCs, responsible 
for the development of liver fibrosis, are regulated by 
several miRNAs, including let-7. The downregulation of 
let-7 by LPS and alcohol use causes an increase in HSCs 
activation[27]. In addition, chronic alcohol consumption 
has been linked to an overexpression of miR-34a, 
which increases the expression of proteins such as 
transforming growth factor-β1 (TFG-β1), leading to a 
higher survival of HSCs through apoptosis inhibition[43]. 

Other cell types: In addition to the cell types described 
above, other cells involved in ALD development, such as 
circulating monocytes (by miR-27a[44]), and circulating 
neutrophils, (by miR-223[45]) are regulated by miRNAs. 
In addition, miR-212 has been shown to increase 
permeability to LPS by altering cells of the intestinal 
mucosa[46].

Due to the role of miRNAs in ALD and the modulatory 
effects of alcohol consumption on miRNA expression, 
it is plausible to hypothesize that genetic variations in 
certain miRNAs may lead to altered miRNA function and 

and alterations of enzymatic function in hepatocytes 
are also regulated by miRNAs[24,34]. Conversely, miRNAs 
may also have a protective role in ALD. For example 
miR-26a can increase autophagy[35] and miR-21 can 
inhibit alcohol-induced apoptosis[36,37].

Kupffer cells (KCs): miR-155, which is increased by 
chronic alcohol consumption through NF-κB induction, 
has been shown to be the main regulator of KC activation 
and function[38]. miR-155 inhibits the expression of 
multiple TLR4/NF-κB inhibitory regulators such as Src 
homology 2 domain-containing inositol phosphatase 
1 (SHIP1) and Suppressor of cytokine signaling 1 
(SOCS1)[38,39] leading to an increase in KC response to 
LPS and ultimately the development of liver fibrosis[39]. 
The Keap1/Nrf2 pathway could also be involved in 
miR-155 role in ALD development and KCs regulation[17]. 
Other miRNAs, such as miR-181b-3p, are also linked 
to increased LPS-sensitivity through the TLR4-NF-κB 
pathway[40]. In addition, miRNAs have been shown to 
regulate Sirtuin-1-Lipin-1, an inflammatory response 
mediator, leading to the down-regulation of the NF-
κB pathway via de-acetylation. Alcohol consumption 
increases miR-217 expression, which in turn down-
regulates sirtuin-1-Lipin-1[41], consequently leading to 

Ethanol

Monocyte

miR-27a

miR-122

miR-212 Gut

LPS

TLR4
miR-155

miR-181b-3p

miR-291b

miR-217

Kupffer's cell

TGF

miR-34a

Hepatic stellate cell

↓ miR-378a-3p

↓ let-7

Inflammation
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Figure 1  MicroRNAs involved in the pathogenesis of alcoholic liver disease. miRNAs preceded by a ↓ symbol are decreased in ALD or inhibit the development 
of ALD. The remainder of miRNAs promotes the development of ALD. TLR4: Toll-like receptor 4; TFG: Transforming growth factor; ALD: Alcoholic liver disease; ROS: 
Reactive oxygen species; NF-κB: Nuclear factor-κB. Figure adapted from Laso et al[10].

Torres JL et al . miRNAs in ALD and NAFLD



4108 September 28, 2018|Volume 24|Issue 36|WJG|www.wjgnet.com

an increased risk of liver damage. Consequently, we 
and others have analyzed the relationship of alcohol-
related diseases and polymorphisms within miRNA 
genes or miRNA targets[47,48]. Interestingly, the miR-
146a C>G rs2910164 variant is linked to a susceptibility 
to alcohol use disorder[47] and the pre-miR-27a A>G 
rs895819 polymorphism is linked to a higher alcohol 
intake[49], suggesting a potential relationship between 
these genetic variants and alcohol-related diseases. The 
lack of replication studies precludes any conclusions 
regarding these SNPs, and to date, only rs738409 
polymorphism within the PNPLA3 gene is clearly linked 
to a higher susceptibility to ALD[50].

miRNAs as a target for diagnosis and treatment of ALD
The clinical use of miRNAs as a diagnostic tool or 
therapeutic agent in ALD has not been well studied[51]. 
However, over the last years, an increasing number of 
miRNAs have been proposed as potential biomarkers 
of ALD. The following is a review of the most promising 
results. 

miR-192 and miR-30a: It has been shown that 
serum levels of miR-192 and miR-30a are significantly 
correlated with the diagnosis of alcoholic hepatitis. 
Therefore, these miRNAs may be useful in the 
diagnosis, staging, and monitoring of patients with this 
specific form of ALD[23]. 

miR-27a: miR-27a has been linked to monocyte 
differentiation and is increased in extracellular plasmatic 
vesicles of patients with alcoholic hepatitis, making it a 
potentially useful diagnostic tool[52].

miR-182: An elevated level of miR-182 has been linked 
to greater disease severity and liver injury in alcoholic 
hepatitis. The correlation between miR-182 and disease 
severity, however, has only been shown in liver biopsies, 
limiting its application as a diagnostic tool[30].

miR-103 and miR-107: A prior study found that 
miR-103 and miR-107 were increased in liver from 
patients with ALD and with NAFLD, but not in healthy 
livers or in subjects with viral hepatitis[53].

miR-155 and miR-122: Increased blood levels of 
miR-155[32,54] and miR-122[55] have been found in 
healthy individuals after binge drinking and in a murine 
model of liver damage. While these miRNAs could be 
potential biomarkers of alcohol intake or alcohol liver 
damage, they are increased in several types of liver 
disease and therefore are unlikely to be specific to 
ALD[54].

Therapeutic application of miRNAs in ALD
There are no studies to date supporting a therapeutic 
role for miRNAs in ALD. Available data, however, suggest 
a potential role for the inhibition or activation of some 

miRNAs in the treatment of liver disease. A recent study 
found that treatment with hyaluronic acid normalized 
miR-181b-3p and Importin α5 levels in ethanol-fed mice, 
protecting them from ethanol-induced liver and intestinal 
damage[40]. In addition, hyaluronic acid normalized the 
miR-291b/Tollip pathway, leading to a lower sensitization 
of monocytes/macrophages to ethanol-induced activation 
via TLR4[42]. While both studies were performed in animal 
models, taken together they suggest a potential role 
for hyaluronic acid as a therapeutic regulator of the KC 
response to ethanol via miRNA modulation.

The role of miR-155 in KC and miR-122 in hepato-
cytes suggest that these miRNAs may serve as potential 
targets for treatment of ALD. Miravirsen, an miR-122 
inhibitor, has shown promising results in chronic hepatitis 
C treatment[56,57], suggesting its potential usefulness 
in ALD. A recent study showed that the restoration 
of miR-122 in hepatocytes could have a protective 
role against ALD development[33]. These apparently 
contradictory results could reflect the ability of miRNAs 
to develop different actions in different cells and also 
its relevance in inter-cellular communications[32]. In this 
sense, the therapeutic action of Miravirsen over viral 
replication could be explained by the interruption of 
these communications[57]. In addition, other potential 
therapeutic miRNAs currently under development for 
other diseases, such as cardiac fibrosis and remodeling 
or vascular disease[58], could serve as potential targets 
for ALD. There is indirect data that inhibition of miR-155, 
may lead to decreased sensitivity of KC to LPS-mediated 
activation[39].

In addition to the inhibition of detrimental miRNAs, 
stimulation of protective miRNAs could also serve as 
a potential therapeutic target. For example, miR-21, 
which aids hepatocyte regeneration[36]; miR26a, which 
protects hepatocytes from fibrosis development[35]; 
miR-223, which inhibits neutrophil activation and 
liver infiltration[45]; and miR-378, which exerts a stop-
signaling action in HSC[59], are all potential targets for 
treatment. There are no clinical trials to date involving 
these miRNAs as therapeutic targets in ALD and further 
studies will be necessary before clinical application.

ROLE OF MIRNAS IN NAFLD
NAFLD is defined as the accumulation of fat in the 
liver in the absence of alcohol intake, viral infection or 
other specific causes of liver disease. NAFLD represents 
a spectrum of disorders ranging from the simple 
accumulation of triglycerides in hepatocytes (hepatic 
steatosis) to steatosis with inflammation [non-alcoholic 
steatohepatitis (NASH)], fibrosis and cirrhosis[60]. NAFLD 
and NASH have rapidly become the most common cause 
of chronic liver disease worldwide in recent decades. 
The prevalence of these diseases has been estimated 
between 25% to 45% of the general population[61] with 
a greater prevalence in patients with obesity, diabetes 
mellitus or metabolic syndrome, in which case, the 
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prevalence of NAFLD can reach 70% to 90%[62-64]. It is 
estimated that by 2020 cirrhosis related to NAFLD will be 
the first indication for liver transplantation[65]. 

Pathogenic role of miRNAs in NAFLD
The pathogenesis of NAFLD, along with the 
underlying mechanisms of progression from steatosis 
to steatohepatitis, has not been fully elucidated. 
Traditionally, the “two hit” theory[66] has been upheld. 
The “first hit”, which includes insulin resistance leading 
to the accumulation of fat in the liver, is followed by a 
“second hit”, consisting of the interaction of inflammatory 
cytokines, mitochondrial dysfunction and oxidative 
stress, leading to hepatocellular injury, inflammation 
and fibrosis[67]. However, more recently, multiple factors 
have been implicated in the pathogenesis of NAFLD, 
such that the “two hit” theory has been replaced 
by a “multiple-hit” hypothesis[68]. The “multiple-hit” 
theory includes the involvement of insulin resistance, 
adipose tissue dysfunction, mitochondrial dysfunction, 
endoplasmic reticulum stress, dietary factors, fatty acids, 
iron overload, inflammatory activation, LPS produced 
by gut microbiota, a chronic inflammatory state, and 
genetic and epigenetic factors in the pathogenesis and 
progression of NAFLD[68-70]. Accordingly, the following is 
a summary of the research implicating several miRNAs 
in the regulation of key targets in the development of 
NAFLD[8]. It is of special interest that recent studies 
have reported differences in miRNA expression between 
liver samples from patients with NAFLD and controls. 
Specifically, livers from patients with NAFLD express an 
upregulation of miR-31, miR-33a, miR-34a, miR-144, 
miR-146b, miR-150, miR-182, miR-183, miR-200a, 
miR-224, and miR-301a and a down regulation of 
miR-17, miR-122, miR-296, miR-373, miR-375 and miR-
378c[71-76]. Among these miRNAs, miR-34a, miR-122, 
and miR-155 have been most often associated with the 
pathogenesis of NAFLD and as such, the following is a 
review of these miRNAs in detail. Table 2 displays a list 
of all miRNAs that have been associated with NAFLD 
through February 2018.

miR-122: miR-122 is the most abundant miRNA in the 
liver and plays a fundamental role in liver physiology[77-79] 
and lipid metabolism[80]. miR-122 interacts with multiple 
important lipogenic factors in human NAFLD, such 
as acetyl coA carboxylase-2 (ACC2) and the sterol 
regulatory element binding protein (SREBP)[71,81,82]. 
miR-122 is decreased in liver samples[83-85] but increased 
in serum[84,86,87] from patients with NAFLD compared 
to healthy controls. Despite this somewhat paradoxical 
finding, the association of miR-122 with NAFLD 
pathogenesis is well established. Inhibition of miR-122 
in high-fat fed mice is associated with a significant 
reduction in hepatic steatosis and plasma cholesterol 
levels, which was associated with a reduction in hepatic 
sterol and fatty acid synthesis rates and stimulation of 
hepatic fatty-acid oxidation mediated by activation of 

adenosine 5’-monophosphate-activated protein kinase 
(AMPK)[80]. Moreover, the relationship of miR-122 with 
the development and progression of hepatic fibrosis has 
been demonstrated in vitro, through the regulation of 
HSC proliferation and production of collagen by targeting 
prolyl 4-hydroxylase subunit α-1 (P4HA1)[88]. 

miR-34a: miR-34a is overexpressed in both murine 
models of NAFLD (e.g., mice fed a high-fat diet) and 
liver and serum from patients with NAFLD[81,87,89,90]. 
The main target of miR-34a is Sirtuin 1 (SIRT1), 
which regulates energy homeostasis by activating 
transcription factors such as peroxisome proliferator 
activated receptors (PPAR) α and liver X receptor (LXR). 
In addition, SIRT1 inhibits the co-activator 1α of the 
PPAR-γ (PGC1-α), the SREBP-1c and the farnesoid X 
receptor (FXR). SIRT1 is downregulated in the liver of 
NAFLD patients[91] and the inhibition of miR-34a restores 
the expression of SIRT1 and PPAR-α, leading to the 
activation of AMP-activated protein kinase (AMPK) and 
several target genes of PPAR-α. These findings suggest 
a fundamental role for miR-34a in the dysregulation of 
lipid metabolism associated with NAFLD[92].

miR-155: miR-155 is an important regulator of immune 
cells in both humans and mice and is involved in several 
inflammatory processes, such as rheumatic diseases[93], 
lipid metabolism[94] and in ALD (as described above). 
In patients with NAFLD, miR-155 is dysregulated by 
adipogenic transcription factors CCAAT/enhancer binding 
protein (C/EBP)-α, C/EBP-β, PPAR-γ and LXRα[95,96], 
fibrosis targets platelet derived growth factor (PDGF), 
Smad3 and C/EBP-β[97], and a tumor suppressor in the 
liver, SOCS-1[90,98]. However, animal models of NAFLD 
show contradictory results. For example, miR-155 
deficient mice fed a high-fat diet showed a significant 
increase in hepatic steatosis[98], while miR-155 KO 
mice fed a methionine-choline-deficient diet showed a 
decrease in steatosis and expression of genes involved in 
fatty acid metabolism and fibrosis, with no concomitant 
liver injury or inflammation[97]. In addition, miR-155 may 
also be involved in hepatocarcinoma development[99]. 
These findings suggest that miR-155 may have different 
roles in fat storage and lipid accumulation in liver 
diseases and healthy subjects. However, additional 
research is warranted[97]. 

miRNAs as biomarkers in the diagnosis of NAFLD
As shown in Table 2, many miRNAs are differentially 
expressed in patients with NAFLD compared to healthy 
controls. These miRNAs may serve as potential 
biomarkers in the diagnosis and staging of NAFLD. 

miR-122: Several studies have found that miR-122 
is elevated in serum in NAFLD patients[81,86,100-102], 
even long before an alteration in transaminase levels 
occurs[103]. The diagnostic potential of miR-122 may 
extend to an indicator of disease severity and as a 
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Table 2  Summary of microRNAs associated with non-alcoholic fatty liver disease

miRNA Source of samples Change Main targets

miR-9[129] Human serum; Upregulated Onecut2; SIRT1
Human hepatocyte cell line

miR-10b[130] Human hepatocyte cell line Downregulated PPARα
miR-15b[131,132] Animal models Upregulated

Human serum
miR-16[104] Human serum Upregulated
miR-17[74] Human liver Downregulated
miR-19[84] Human serum Upregulated
miR-21[86,87,99,133-136] Animal models Upregulated PPARα; TGF-β

Human hepatocyte cell line PTEN
Human liver and serum

miR-21[85,89,137,138] Animal models Downregulated HMGCR; FABP7
Human liver

Human hepatocyte cell line
miR-24[139] Animal models Upregulated Insig1; SREBP

Human hepatocyte cell line
miR-26[140] Animal models Downregulated IL-6, IL-7
miR-27a[141] Animal models Downregulated
miR-27b[102] Human serum Upregulated
miR-29a[142,143] Animal models Downregulated HMGCR; LPL
miR-29c[85,89,90] Animal models Downregulated DNMT3A; DNMT3B
miR-30b[83] Human liver Downregulated ITGAX; FABP4

Human hepatocyte cell line
miR-30c[144] Human serum Upregulated
miR-31[74,89] Human liver Upregulated

Animal models
miR-33a[73,76] Human liver Upregulated ABCA1; ABCA2
miR-33a[85] Human liver Downregulated
MiR-34a[71,81,82,85,87,89,90,92,104,105,145-148] Animal models Upregulated SIRT1; HNF4α; PPARα

Human hepatocyte cell line
Human liver and serum

miR-99a[149] Human serum Downregulated
miR-101[150] Human hepatocyte cell line Upregulated ABCA1

Human monocyte cell line
miR-103[53,89,151] Animal models Upregulated Cav1

Human liver and serum
miR-103a[152] Human liver Upregulated

Human hepatocyte cell line
miR-106b[152] Human liver Upregulated
miR-107[53,89] Animal models Upregulated Cav1

Human liver
miR-122[81,84,86,87,101-104,106,153] Animal models Upregulated

Human Serum
miR-122[71,82-85,89,90,99,106,141,154,155] Animal models Downregulated ACC-2; HAMP; FAS; 

HMGCR; SREBF-1c
Human liver SREPBF-2; HIF-1α; 

Vimentin; MAP3K3
miR-125b[84] Human serum Upregulated
miR-125b[156] Animal models Downregulated FAS
miR-139-5p[83] Human liver Downregulated TNFα
miR-144[76] Human Liver Upregulated ABCA1
miR-144[157] Animal models Downregulated TLR-2
miR-146a[158] Animal models Upregulated

Human hepatocyte cell line
miR-146a[132] Animal models Downregulated Wnt1; Wnt5

Human hepatocyte cell line
Mir-146b[149,159] Animal models Downregulated IRAK1

Human serum TRAF6
Human hepatocyte cell line

miR-146b[71,83,158] Animal models Upregulated
Human liver

Human hepatocyte cell line
miR-149[160] Animal models Upregulated FGF-21

Human hepatocyte cell line
miR-150[74] Human liver Upregulated
miR-152[158] Animal models Upregulated

Human hepatocyte cell line
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predictor of hepatic fibrosis[82,84,87,104]. 

miR-34a: Similar to miR-122, miR-34a has also been 
shown to have potential as a biomarker of diagnosis and 

severity of NAFLD. Several studies have shown that miR-
34a is upregulated in the liver and serum of patients 
with NAFLD[71,81,82,104]. Additionally, elevated serum levels 
of miR-34a correlate with disease severity from simple 

miR-155[90,97-99,161,162] Animal models Upregulated SOCS1; C/EBP-Β; CES3; 
PDGF; SMAD3Human hepatocyte cell line

miR-155[96] Animal models Downregulated LXRα
Human liver and serum

miR-181a[82] Animal models Upregulated
miR-181d[149] Human serum Downregulated
miR-182[74] Human liver Upregulated FOXO3
miR-183[74] Human liver Upregulated
miR-192[84,90] Animal models Downregulated

Human liver
miR-192-5p[82,84,86,102,106] Animal models Upregulated

Human liver and serum
miR-194[89] Animal models Upregulated
miR-197[149] Human serum Downregulated
miR-199[163] Animal models Upregulated Cav1; PPARα

Human hepatocyte cell line
Human liver

miR-200a/b/c[74,82,89,90,141,158,162,164] Animal models Upregulated ZEB1; CDH1; EZH2; IRP1
Human hepatocyte cell line

miR-203[90,132] Animal models Downregulated
miR-212[165] Animal models Upregulated FGF-21

Human hepatocyte cell line
miR-214[71,166] Human liver Upregulated

Animal models
miR-216[167] Animal models Downregulated
miR-219a[74] Human liver Downregulated
miR-221[73] Human liver Downregulated
miR-221[89,90,99] Animal models Upregulated
miR-222[99] Animal models Upregulated
miR-223[86,164] Animals models Upregulated IRP1

Human serum
miR-224[73,74] Human liver Upregulated
miR-291b[168] Animal models Upregulated AMPKα1
miR-302a[167] Animals model Downregulated ELOVL6
miR-331[144] Human serum Upregulated
miR-335[89] Animal models Upregulated
miR-375[84] Human serum Upregulated
miR-378i[74] Human liver Downregulated
miR-421[169] Animal models Upregulated SIRT-3
miR-422a[83] Human liver Downregulated
miR-429[141] Animal models Upregulated
miR-451[87] Human Serum Upregulated
miR-451[89,141,170] Animal models Downregulated AMPK/AKT

Human liver
miR-467b[171] Animal models Downregulated LPL
miR-576[152] Human liver Downregulated RAC1

Human hepatocyte cell line
miR-590[74] Human liver Downregulated
miR-892a[152] Human liver Upregulated

Human hepatocyte cell line
miR-1290[102] Human serum Upregulated

Onecut2: One cut homeobox 2; SIRT: Sirtuin; PPARα: Peroxisome proliferator activated receptor α; TGF-β: Transforming growth factor β; PTEN: 
Phosphatase and tensin homolog; HMGCR: 3-hydroxy-3-methylglutaryl-CoA reductase; FABP: Fatty acid binding protein; Insig1: Insulin induced gene 
1; SREBP: Sterol regulatory element binding protein; IL: Interleukin; LPL: Lipoprotein lipase; DNMT: DNA methyltransferase; ITGAX: Integrin subunit α 
X; ABCA: ATP binding cassette subfamily A; HNF4α: Hepatocyte nuclear factor 4 α; Cav1: Caveolin 1; ACC-2: Acetyl-CoA carboxylase 2; SREBF: Sterol 
regulatory element binding transcription factor; HIF-1α: Hypoxia inducible factor 1 α; MAP3K3: Mitogen-activated protein kinase kinase kinase 3; FAS: 
Fatty acid synthase;  TNFα: Tumour necrosis factor α; TLR-2: Toll-like receptor 2; Wnt: Wnt family member; IRAK1: Interleukin 1 receptor associated kinase 
1; TRAF6: TNF receptor associated factor 6; FGF-21: Fibroblast growth factor 21; SOCS1: Suppressor of cytokine signaling 1; C/EBPβ: CCAAT/enhancer 
binding protein β; CES3: Carboxylesterase 3; PDGF: Platelet derived growth factor;  SMAD3: SMAD family member 3; LXRα: Liver X receptor; FOXO3: 
Forkhead box O3; ZEB-1: Zinc finger E-box binding homeobox 1; CDH1: Cadherin 1; EZH2: Enhancer of zeste 2 polycomb repressive complex 2; IRP1: Iron 
regulatory protein 1;  AMPKα1: AMPK: Adenosine monophosphate activated protein kinase α 1; ELOVL6: ELOVL fatty acid elongase 6; AMPK: Adenosine 
monophosphate activated protein kinase; AKT: AKT serine/threonine kinase 1; RAC1: Ras-related C3 botulinum toxin substrate 1
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steatosis to steatohepatitis, with liver enzyme levels, with 
fibrosis stage and with inflammation activity[82,104,105].

miR-192: Serum miR-192 levels are positively 
correlated with the severity of NAFLD-specific liver 
pathomorphological changes in mice fed a choline 
and folate deficient diet[82] and miR-192 upregulation 
in human serum has been demonstrated[82,84,86,102,106]. 
Interestingly, serum levels of miR-122 and mir-192 
have been shown to be strongly correlated[84,86]. 

Panels: In addition to individual miRNAs, a serum 
panel comprised of hsa-miR-122-5p, hsa-miR-1290, 
hsa-miR-27b-3p, and hsa-miR-192-5p has shown high 
NAFLD diagnostic accuracy, regardless of NAFLD activity 
score (NAS) status[102]. Another research group found 
that NAFLD was associated with an miRNA signature 
based on up-regulation of miR-122, miR-192, miR-19a, 
miR-19b, miR-125b, and miR-375[84]. 

It is important to mention that most studies have 
compared patients with NAFLD to healthy controls 
or patients with chronic viral hepatitis B[105] or C[104]. 
However, no comparisons have been performed, to our 
knowledge, between patients with NAFLD and patients 
with ALD.

Therapeutic application of miRNAs in NAFLD
As previously mentioned, miRNAs are involved in several 
stages of NAFLD development (from lipid metabolism 
or diabetes to liver inflammation), and are therefore 
potential therapeutic targets[7,107]. The expression of 
miR-103 and miR-107 is upregulated in obese mice[53,89]. 
Inactivation of miR-103/107 in murine adipocytes 
upregulates caveolin-1 (a critical mediator of the insulin 
receptor) leading to enhanced insulin signaling, decreased 
adipocyte size and enhanced insulin-stimulated glucose 
uptake[53,108]. An N-acetylgalactosamine (GalNAc)-
conjugated anti-miR-103/107 (RG-125/AZD4076, 
Regulus Therapeutics) has been developed for the 
treatment of NAFLD and type 2 diabetes or pre-
diabetes[108-110]. Currently, two clinical trials are registered 
using this drug in patients with NAFLD (ClinicalTrials.
gov Identifier: NCT02826525 and NCT02612662), 
although Regulus has acknowledged that AstraZeneca 
intends to terminate the clinical development of RG-125/
AZD4076[108,111].

miR-122 has also shown promising results as a 
treatment for NAFLD. There is a high concentration 
of miR-122 in liver tissue[112] and this miRNA plays an 
important role in liver development, differentiation, 
homeostasis and functioning[113]. Over-expression of 
miR-122 may affect the Ying Yan 1 and Farnesoid X 
Receptor (YY1-FXR-SHP) regulatory axis leading to 
a reduction in hepatic triglyceride levels, potentially 
serving as a target for NAFLD treatment[114]. miR-122 is 
also an essential host factor for hepatitis C virus (HCV) 
replication and anti-miR-122 efficiently reduces viral load 

in chronically infected HCV patients without detectable 
resistance[108]. The fact that miR-122 has protective 
effects on NAFLD, while imposing a deleterious impact 
on HCV infection, emphasizes the importance of cautious 
targeting of miRNAs therapy since the role of miRNAs 
can be highly context dependent[115].

circRNA_0046366 antagonizes miR-34a and 
normalizes PPARα signaling, leading to the amelioration 
of liver steatosis in a murine model[116]. However, a phase 
I study on the effects of a miR-34 mimic (MRX34) on 
primary liver cancer and advanced or metastatic cancer 
with liver involvement (ClinicalTrials.gov Identifier: 
NCT01829971) was prematurely terminated due to 
serious immune-related adverse events[108], highlighting 
the potential risks of miRNA based-therapies. 

CONCLUSION
All except four (miR-199, miR-212, miR-214 and 
miR-497) of the 21 miRNAs associated with ALD, listed 
in Table 1, are also related to NAFLD or lipid metabolism 
(although the four have been associated with other 
diseases, such as cancer[117]). Conversely, miRNAs that 
are related to the pathogenesis of NAFLD (miR-122, 
miR-34a and miR-155) are also clearly linked to ALD. 
These results reflect the common mechanisms between 
NAFLD and ALD and also the pleiotropic effects of any 
particular miRNA. 

Due to the lack of specificity of miRNAs, the 
development of a biomarker or treatment specific to ALD 
or NAFLD is difficult. It is more feasible that individual 
miRNAs or a panel of miRNAs would be useful in the 
staging of liver disease (e.g., distinguishing simple 
steatosis in ALD or NAFLD from steatohepatitis)[118]. 
miR-122 is the most promising candidate as a biomarker 
due to its liver specificity. It is clear however, that 
miR-122 is also a marker of liver damage regardless of 
etiology[119]. Technical limitations, such as standardization 
of techniques and potential costs, add to the difficulties 
inherent to the development of a validated diagnostic 
biomarker. Circulating miRNAs are promising as 
biomarkers due to their stability and potential ability to 
detect advanced liver disease without a biopsy. However, 
rigorously validated studied are needed before they can 
be brought to the clinic[119]. 

The development of miRNA-targeted interventions 
for ALD and NAFLD is an intriguing area of research. 
However, despite the success in animal models and the 
potential targets described in this review, to the best 
of our knowledge there are no current clinical trials for 
miRNA interventions in ALD or NAFLD. The few studies 
that are being conducted on miRNA treatment in other 
diseases are phase 1 studies in the field of cancer research 
(e.g., assessing the activity of miRNA-loaded minicells 
or TargomiRs in malignant pleural mesothelioma[120]). 
Theoretical miRNA-based therapies are pharmacologically 
complex and include miRNA inhibition (e.g., synthetic 
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anti-miRNAs) or miRNA replacement therapy (e.g., lipid 
vesicles or gold nanoparticles)[121]. One major challenge 
to the development of miRNA-based therapies is the 
improvement of drug delivery systems. Due to the 
biochemical instability of unmodified miRNAs and potential 
immunogenicity, specific delivery to target organs should 
be achieved. The high degree of redundancy among 
miRNAs and the multiple binding sites for any given 
miRNA must also be taken into account when designing 
efficacious and safe miRNA-based therapies[122].

To sum up, there is a large body of literature 
regarding miRNAs in NAFLD and ALD at various stages 
of the disease. These studies include expression data 
from microarrays and next generation sequencing from 
animal models and human studies, and cell-specific 
data from in situ hybridization and sensor constructs. 
The role of miRNAs in pathogenesis is well-documented 
and as such, their potential value as biomarkers or 
therapeutic targets is warranted. However, most 
miRNA modifications have a modest phenotypic effect, 
since miRNAs are unlikely to be the single key factor 
in chronic and multifactorial diseases such as liver 
steatosis[123]. Instead, most miRNAs act as fine-tuners 
in disease pathways and this characteristic, along with 
their lack of specificity must be considered before 
use in the clinic. To this end, we must improve our 
understanding of the interaction of different miRNAs in 
the development of advanced liver disease.
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