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Abstract

With the advent of OMICs technologies, both individual
research groups and consortia have spear-headed the charac-
terization of human samples of multiple pathophysiologic
origins, resulting in thousands of archived genomes and tran-
scriptomes. Although a variety of web tools are now available
to extract information fromOMICs data, their utility has been
limited by the capacity of nonbioinformatician researchers to
exploit the information. To address this problem, we have
developed CANCERTOOL, a web-based interface that aims to
overcome the major limitations of public transcriptomics
dataset analysis for highly prevalent types of cancer (breast,
prostate, lung, and colorectal). CANCERTOOL provides rapid
and comprehensive visualization of gene expression data for
the gene(s) of interest in well-annotated cancer datasets.
This visualization is accompanied by generation of reports
customized to the interest of the researcher (e.g., editable
figures, detailed statistical analyses, and access to raw data

for reanalysis). It also carries out gene-to-gene correlations
in multiple datasets at the same time or using preset patient
groups. Finally, this new tool solves the time-consuming
task of performing functional enrichment analysis with gene
sets of interest using up to 11 different databases at the same
time. Collectively, CANCERTOOL represents a simple and
freely accessible interface to interrogate well-annotated
datasets and obtain publishable representations that can
contribute to refinement and guidance of cancer-related
investigations at all levels of hypotheses and design.

Significance: In order to facilitate access of research
groups without bioinformatics support to public transcrip-
tomics data, we have developed a free online tool with
an easy-to-use interface that allows researchers to obtain
quality information in a readily publishable format.
Cancer Res; 78(21); 6320–8. �2018 AACR.

Introduction
Cancer encompasses a large collection of diseases that exten-

sively vary in terms of mutation load, driver pathobiologic pro-
grams,metabolic needs, andmicroenvironmental constraints (1).
This heterogeneity is largely responsible for the current challenges
we face in terms of patient classification and effective treatments
(2). The mutational backpack of tumors has been the main focus
of research in recent years (3). However, current data indicate that

understanding of genome-wide transcriptional programs can also
provide important information for patient stratification, diagno-
sis, and the determination of possible therapeutic protocols. In
this context, normalized procedures have been established to
make transcriptomic data publicly available (4). However, the
utilization of these databases to extract information still repre-
sents an important limitation for research groups that do not have
adjacent bioinformatics support. To bypass this problem, various
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computational tools and portals have been created. For example,
the GEO database (https://www.ncbi.nlm.nih.gov/geo/; ref. 5)
has been developed by the NCBI to facilitate the public access to
functional genomics data (including gene expression data). The
tools available in this database allow the simple visualization of
data upon specific queries. However, specialized personnel are
still required to extract information on the cancer type of interest,
export the data obtained, perform clinical associations, or to
obtain publication-grade representations from the data generat-
ed. Some of the latter aspects are fulfilled by Oncomine (6), a
commercial platform that offers several tools for analyzing gene
expression inmultiple sets of data from independent studies at the
same time. It also allows searching information through various
filters (such as the type of cancer, sample types, names of specific
genes, etc.) and returns results frommultiple analyses carried out
using gene information according to the requirements set forth by
the user. A main problem of this tool is that it requires a costly
subscription to get access to all its capabilities. It is also far from
being user friendly for nonspecialists. More recently, cBioPortal
has become the most attractive portal for cancer OMICs analysis
(7, 8). This tool is free and enables the user to browse through
multiple datasets andquerymultiple genes. It alsoprovides auser-
friendly representation for data interpretation. However, reana-
lyses fromrawdata are frequently required for publication-quality
figures and the browsing for information regarding gene expres-
sion alterations in cancer is still time consuming owing to
the multiple options and datasets available. Whereas non-
bioinformatician cancer researchers could access all required
transcriptomics information for major cancer types with the
aforementioned tools, the process still requires considerable
training, over dozens of clicks, and additional time for prepar-
ing publication-quality figures.

In this article, we report CANCERTOOL (http://web.
bioinformatics.cicbiogune.es/CANCERTOOL), a new portal that
aims at solving the foregoing problems. This tool focuses on the
four major tumor types (breast, prostate, colorectal, and lung)
in its first version, although it is engineered to quickly incorporate
new studies fromeither theaforementioned tumorsorother cancer
types. Importantly, the datasets contained in CANCERTOOL have
been carefully curated to offer various types of clinical data related
to each cancer such as disease progression, pathologic, andmolec-
ular annotations. All these results are presented in a format that
allows the user to screen through tens of candidate genes within
minutes, as well as to perform customized analyses for retrieval of
high-quality representations, detailed statistics, and access to raw
data for reanalysis of the selected hits. CANCERTOOL offers the
opportunity of performing comparative gene expression analyses
among investigator-selected conditions (e.g., sample type, disease

stage, and pathologic and molecular features) and to estimate
the association of candidate gene expression to disease pro-
gression. To provide a complete toolbox in a stereotypic
OMICs cancer research project, CANCERTOOL includes a
functional enrichment package with access to 11 databases
that can be exploited with either in-house experimental- or
CANCERTOOL-derived gene sets. As such, CANCERTOOL
aims at providing access to transcriptomics cancer data select-
ed for rich clinical annotation not currently offered by the
tools discussed above. Ultimately, this tool focuses on free,
rapid, and comprehensive visualization analyses of transcrip-
tomics results that are ready to use for cancer researchers that
lack bioinformatics support.

Materials and Methods
Available datasets and its normalization

For the development of CANCERTOOL, data from the public
repository GEO (5), cBioPortal (for METABRIC, cbioportal.org),
and from the project The Cancer Genome Atlas (TCGA; https://
cancergenome.nih.gov/; ref. 4) were obtained. Specifically, gene
expression and phenotypic data from patients with breast, colo-
rectal, lung, or prostate cancer were retrieved. The datasets' iden-
tification and related cancer information can be found in Table 1
and in the Datasets section in CANCERTOOL. In addition, the
Datasets section also offers full access to all phenotypic informa-
tion included in every dataset for all patients. The raw gene
expression data available in the repositories, in the form of
fluorescence intensity or number of sequencing reads, were first
log2 transformed and quartile normalized (9).

Data coming from the GEO repository were downloaded as
series matrix, and were log2 transformed and quartile normalized
when needed.METABRIC data were downloaded from cBioPortal
as log2 transformed and normalized, while TCGA data were
downloaded as upper quartile normalized RSEM count, which
had been log2 transformed. Regarding data donated by colla-
borators, they have been treated as mentioned in Vallejo and
colleagues (10).

CANCERTOOL architecture
mRNA and long intergenic noncoding RNA (LINC) expression

levels and clinical data were indexed and queried via MySQL
relational database with a MyISAM engine, improving the speed
for the retrieval of results. CANCERTOOL is located on a Linux/
Apache server to enable both enhanced stability and security. Its
architecture is built around a three-tier model: the presentation,
the logic, and the database tiers. The presentation tier, implemen-
ted in PHP/CSS and JavaScript, handles user's requests and

Table 1. All the available cancer types and datasets considered in CANCERTOOL

Breast cancer Colorectal cancer Lung adenocarcinoma Prostate cancer

Ivshina et al. (20) Colonomics https://www.colonomics.org/ Chitale et al. (21) Glinksy et al. (22)
Lu et al. (23) Jorissen et al. (24) Okayama et al. (25) Grasso et al. (26)
METABRIC (27) Kemper et al. (28) Shedden et al. (29) Lapointe et al. (30)
Pawitan et al. (31) Laibe et al. (32) TCGA (RNA-seq) https://

cancergenome.nih.gov/
Taylor et al. (33)

TCGA (microarray) https://
cancergenome.nih.gov/

Marisa et al. (34) Wilkerson et al. (35) TCGA (RNA-seq) https://
cancergenome.nih.gov/

Wang et al. (36) Roepman et al. (37) Tomlins et al. (38)
TCGA (RNA-seq) https://cancergenome.nih.gov/ Varambally et al. (39)
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displays data results. The logic tier contains most of the functions
to handle data transfer between the presentation and the database
tier, being implemented using Perl and R scripting languages. The
database tier is where data are located and is responsible for
accessing them.

Statistical analysis
CANCERTOOL includes various statistical calculations to

compare the levels of expression of a gene among different
types of patients, to study the disease-free survival depending
on the expression levels of target genes, to make correlations
between pairs of genes, and to perform enrichment analysis of
gene sets.

For the comparison of mRNA and/or LINC expression levels
among different types of patient specimens, normality was
assessed and parametric tests were set to compare means among
groups. CANCERTOOL performs Student t test to interrogate the
differences between two groups. For comparisons among means
of more than two groups of specimens for a given gene, ANOVA
test is performed. In custom studies, a post hoc analysis is included
using Bonferroni and TukeyHSD (11, 12). In addition, when data
from more than two datasets are produced in a given analysis,
Edgington method is applied (the sum of P values; ref. 13) to
ascertain whether the integration of all datasets yield a significant
difference. Also in custom analyses, P values have been adjusted
using Benjamini–Hochberg method. In all the cases, P � 0.05 is
considered as significant. All the analyses were performed with R,
using stats (14) package for adjusting and post hoc analyses, metap
(https://rdrr.io/cran/metap/) package for the calculation of
Edgington method, and ggplot2 for the violin plots (15).

CANCERTOOL provides to distinct statistical analyses for the
Correlations section based on the criteria of the end-user. Pearson
and/or the Spearman correlation coefficient is calculated for every
pair of genes, and the statistical significance is provided. For
correlations that generate results in more than two datasets, a
"Coherence" value is also calculated. This parameter informs the
user about the consistent directional correlation present in the
analysis when integrating the results from all available datasets.
An accountable correlation is estimated when the P � 0.05, and
the correlation coefficient is greater than 0.2 (for direct correla-
tions) or lower than �0.2 (inverse correlations). Analyses that
present the accountable correlations with the same directionality
in more than 50% of the available datasets are flagged as "Coher-
ent". In custom analyses, P values have been adjusted using FDR
method. All the correlation analyses and graphs were performed
with R while correlation heatmaps were drawn using a custom
version of the heatmap.2 function from package gplots (https://
cran.r-project.org/web/packages/gplots/index.html).

For survival analyses, CANCERTOOLperforms aquartile-based
separation of patients on the basis of the expression of the gene of
interest. Next, the survival curves are represented using the
Kaplan–Meier estimator as quartile 1 (Q1, 25% of patient speci-
mens with the lowest expression), quartile 4 (Q4, 25% of patient
specimens with the highest expression), andQ2þQ3 (the 50% of
patient specimens with expression ranging between Q1 and Q4).
The statistical significance is provided by the Mantel–Cox (also
known as log-rank) test. This test was selected because it assumes
the randomness of the possible censorship (16). All the survival
analyses and graphs were performed with R (https://cran.
r-project.org/web/packages/survival/citation.html) and P � 0.05
was considered statistically significant.

Gene enrichment analysis employs a hypergeometric test and
FDR method to adjust P values. This methodology was chosen
because data come from a simple random sampling without
replacement. Please note that whereas previous analyses are
associated to datasets contained in CANCERTOOL, gene enrich-
ment can be performed using CANCERTOOL-derived informa-
tion (obtained in the complementary tools) or with user-defined
gene sets. Gene enrichment analysis can be performed in the
databases indicated in Supplementary Table S1. An adjusted P
(Padj) value �0.05 was considered statistically significant. All the
calculations have been performed with R.

Results
CANCERTOOL is a freely accessible web tool, which allows the

user to query a database formed by manually curated transcrip-
tomics cancer datasets for the most prevalent tumor types. The
tool is organized in three different sections: Basic Analyses,
Correlations, and Gene Enrichment. It also allows the user to
access the Manual, Datasets, information related to the devel-
opers, and contact information in the Datasets (Help, About Us,
Contact Us and Citation sections).

Basic analyses
This section has been designed to satisfy an important require-

ment for cancer researchers, namely browsing rapidly through the
results in the most prevalent tumor types. A summary PDF of
the results is provided with the aim of complying with a rapid
Go/No-Go decision–making strategy. The current output of
CANCERTOOL is compatiblewith the selectionof best candidates
in the tumor type of interest based on the mRNA and/or LINC
expression profile among dozens of queried genes in a matter of
minutes. The end-user receives visual representations related to:
(i) basic statistical analyses for the gene(s) of interest; (ii) com-
parisons of the relative expression of the gene(s) under analysis in
tumor versus healthy tissue, in different pathologic features (e.g.
stage, Gleason score, and location), molecular characteristics of
the tumors (e.g. ER status, KRAS, and EGFR mutation status),
molecular subtype (e.g. luminal, basal, and HER2þ in the case of
breast tumor samples), and disease progression (i.e., primary
tumor vs. metastasis, disease-free/metastasis-free/overall surviv-
al). The mRNA and/or LINC expression comparisons among
groups of specimens are provided as easily interpretable violin
plots that, in each case, provide additional information on sample
size estimation. Another advantage is that it avoids the limitations
usually observed when using other type of representations (e.g.,
dot plots) when the datasets encompass large sample size (17).
This representation is visually appealing and informative, and it is
a distinctive value when compared with other visualization tools
(Supplementary Fig. S1). Survival analysis is provided using a
Kaplan–Meier estimator that divides the sample set according
to the expression of the mRNA and/or LINC of interest in
quartiles. With this output, CANCERTOOL facilitates rapid deci-
sion-making by the user without any type of previous knowledge
on bioinformatics. Furthermore, it also enables further analyses
of the mRNA and/or LINC(s) that comply with preestablished
selection criteria according to the needs of the customer. In Fig. 1,
we depict an illuminating example of the analysis of a gene
identified as potential regulator of prostate cancer biology using
this type of Basic Analyses tool. This gene was subsequently
corroborated as an important player in this tumor type (18). The
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Figure 1.

A representative summary output of the Basic Analysis section in CANCERTOOL for the gene MITF in prostate cancer datasets. Violin plots depicting the
expression of the gene of interest between nontumoral (N, normal) and prostate cancer (PCa) specimens (A), among nontumoral (normal), primary tumor and
metastatic (prostate cancer) specimens (B), and among prostate cancer specimens of the indicated Gleason grade (GS, Gleason score; C) in the indicated datasets.
The y-axis represents the log2-normalized gene expression. D, Kaplan–Meier curves representing the disease-free survival (DFS) of patient groups selected
according to the quartile expression of the gene of interest. Statistical analysis: Student t test (A), ANOVA (B and C), and Mantel–Cox test (D).
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Figure 2.

Representative heatmap provided by CANCERTOOL for the correlation analyses of MITF against the indicated genes in multiple prostate cancer
datasets. The color code indicates the correlation status between the indicated gene pairs, being red toward 1 and blue toward �1. In case of not applicable
(NA), the cell is gray and with no data. Correlations are indicated with asterisks when they comply with the following significance criteria: P � 0.05 and
correlation coefficient greater than 0.2 for direct and lower than �0.2 for inverse correlations. On the left side, the coherence among datasets is
shown for each pair of genes (directional correlation in more than 50% of datasets, being P � 0.05 and correlation coefficient greater than 0.2 for direct
and lower than �0.2 for inverse correlations).
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Summary file provides rapid and visual information regarding the
downregulation of the Microphthalmia-associated transcription
factor (MITF) in three out of five prostate cancer datasets analyzed
(Fig. 1A). Furthermore, its shows that such a deregulation is
associated with the progression of the disease towards metastasis
in four out the five datasets analyzed using CANCERTOOL (Fig.
1B). These analyses alsomake apparent that the expression of this
gene does not have any statistically significant correlationwith the
Gleason score (Fig. 1C). It does predict disease-free survival of
prostate cancer when patients are stratified according to the first
quartile (Q1)ofMITF expression (Fig. 1D).However, a conclusive
resultwould require further customized analysis. Importantly, the
user can obtain publication-quality images for each of the fore-
going study (Fig. 1). It is also possible to conduct more detailed
statistical analyses and representations stemming from the raw
data in the Custom section. Thus, together with the quartile-based
analysis, this customstudy allowedus toobtain representations of
two groups ofMITF expression divided by themean expression of
this gene in the cohort of interest (Supplementary Fig. S2).
Additional personalized cutoffs can be established through the
access to raw data files provided in the custom analysis. Indeed,
the inverse association of MITF to disease-free survival was sig-
nificant in two out of three datasets analyzed when the patients
within the first quartile of gene expression were compared with
the rest of the cohort (18). Of note, in support of the possibility of
monitoring the expression of LINCs in CANCERTOOL, Supple-
mentary Fig. S3 depicts the expression of LINC00116 in a dataset
per tumor type.

Correlations
CANCERTOOL can calculate and plot gene-to-gene correla-

tions in the annotated tumor types and datasets. The output of
this tool has been designed for rapid Go/No-Go decisions. The

tool allows up to 5 (list 1) � 10 (list 2) gene comparison. From
the summary analysis, the user obtains two types of output
files: (i) a PDF with the correlation results visualized as a
heatmap representation per gene (from list 1) that is subject
to correlations against a gene set (list 2), in which significant
correlations (that reach a criteria of P � 0.05 and �0.2 �
R � 0.2) are indicated with an asterisk (Fig. 2); (ii) a PDF
depicting, for each gene-to-gene correlation, the study in var-
ious patient subgroups (e.g. nontumoral tissue, cancer speci-
mens, cancer subtypes, and progression stages; Supplementary
Fig. S4). The correlation analyses can be also customized to
select either the datasets or the patient subsets where to perform
the correlations and the type of statistics (Pearson and/or
Spearman). The results are finally presented in several outputs,
including high-resolution figures, raw data for reanalysis, and
tables including the calculated correlation coefficients and
P values (and Benjamini–Hochberg correction) for each of the
primary datasets utilized by the tool. The table also includes a
"coherence" calculation that estimates the robustness of gene-
to-gene association across all the datasets that have been
interrogated. Coherence estimates consistent correlations when
more than 50% of the datasets show a significant and unidi-
rectional correlation with correlation coefficient greater than
0.2 (for direct correlations) or lower than �0.2 (for inverse
correlations; Supplementary Table S2). The Correlations sec-
tion in CANCERTOOL can aid the researcher in the screening
and selection of the best potential gene associations to
uncover functional implications in cancer (18).

Gene enrichment
Cancer research studies often exploit OMICs-derived data to

decipher the molecular mechanisms associated with changes in
the expression of either a gene or pathway of interest. The

Figure 3.

Example of the output figure provided by the gene enrichment analysis. The results show a histogram from the Molecular Function database within Gene
Ontology. The 10 termswith the highest significance in adjusted FDR P value, ordered by this field, are included. The x-axis indicates the�log10(Padj value). The y-axis
includes information relative to the category, the ratio, and the Padj value.
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result of such analysis usually includes large lists of perturbed
genes, transcripts, and/or proteins. Whereas gene-by-gene
annotation can be useful to define individual candidate genes
at the core of a given molecular mechanism, bioinformatics
also offers the possibility of using more integrative analyses
from gene lists to unveil pathways and/or regulatory hubs that
would otherwise remain hidden. There are several databases
that perform complementary enrichments. However, they usu-
ally require complex and lengthy analytic steps that are not
usually easy to implement by nonspecialists. To tackle this
customer demand, CANCERTOOL includes an Additional
Analyses section where we offer researchers a simplified and
comprehensive access to additional aspects related to gene
regulation and functional integration. These tools enable the
researcher to round up OMICs-related cancer studies and,
following the overall philosophy of all the tools associated
with this platform, generate output data in publication-quality
images and with the potential of subsequent customer-driven
reanalyses. To this end, CANCERTOOL harbors 11 indepen-
dent enrichment databases, including the basic Gene Ontology
analysis [GO; biological process (GOBP), molecular function
(GOMF), and cell compartment (GOCC)], pathways and path-
ophysiologic processes (KEGG, Biocarta, Reactome, Biocarta,

Onco, DOSE, HIPC, and Connectivity Map), and the upstream
regulatory cue prediction tool (TFT, MIR). Results are presented
as a platform-generated spreadsheet per enrichment database
that highlights type of main enriched functions, the prevalence
of such functions within the gene list, and statistical signifi-
cance of the associations sieved according to the Benjamini–
Hochberg correction (Padj value). The output spreadsheets are
further complemented with a visual representation that depicts
the 10 most significant functions per database sorted according
to Padj value (Fig. 3).

Discussion
The exploitation of data from publicly available datasets has

become the bottleneck for researchers that do not have a strong
bioinformatics background or facilities. Various tools do offer
data browsing and analysis. However, the interpretation and
representation of these data is still complex and cumbersome
(see Introduction). This issue is particularly important in the
context of cancer research, where the availability of data is over-
whelming and grows exponentially every year. In this context, the
bioinformatics capability of a lab is a differentiating factor to
increase the efficacy, the productivity, and the biomedical impact
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Figure 4.

Example of a workflow integrating CANCERTOOL with empirical studies in cancer research. Step 1/10 , initial selection of genes to be queried in CANCERTOOL.
Genes can be studied in a single cancer type (to be selected in the interface) if it is predetermined (step 1), or sequential analysis can be performed to gather
information about all cancer types available (step 10). The results will aid the user in the identification of the best candidate genes for further analysis
and the most promising cancer type where the research question is to be developed. Step 2, The selection of candidate genes can be followed by experimental
approaches to shed light on the mechanism of action, often accompanied with OMICs strategies to provide a comprehensive view of the molecular alterations
associated with the candidate gene(s). Step 3, Once the researcher reaches the identification of potential effectors, upstream regulators or gene lists
perturbed upon manipulation of our gene(s) of interest, CANCERTOOL can aid in the identification of most interesting candidates (based on gene expression
alterations in patients with cancer, correlations analyses with the gene(s) driving the research project, or enrichment analysis) to identify molecular/
pathologic process and common regulatory cues predominant in the queried gene list. Step 4, these analyses can enable the user to further refine the
mechanistic hypotheses and to reach relevant conclusions.
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of the results. Public dataset exploitation can be instrumental for
the refinement of hypotheses, the selection of candidate genes
(thus reducing the time and cost of exploratory experiments), and
the validation of mechanistic studies.

CANCERTOOL has been specifically designed to fulfill this
need in cancer research and to complement the capabilities of
other existing tools and portals. Its main features include: (i) the
ability to provide to users a rapid evaluation of gene expression
data for the queried gene(s); (ii) ensuring full availability of the
raw data used in the analyses; (iii) providing high-quality and
further editable figures; and (iv) making possible functional
annotations to facilitate the association of the gene(s) of interest
with specific functional networks, hubs, and pathophysiologic
programs (Fig. 4). These features are given in an easy-to-use
platform thatwill enable cancer researchers to go froma candidate
gene list to the final publication-grade representation of their best
candidates in a short time frame. Furthermore, its ability to
provide basic gene expression comparisons among patient sub-
groups and correlations among genes of interest in various data-
sets enables cancer researchers tomaximize the invested time and
effort, and in turn to make significant advances in the postulated
research question. CANCERTOOL includes clinical and molecu-
lar features basedon the availability of the datasets of origin. Thus,
as more clinical data–rich studies are produced, the parameters of
analysis included in this tool will progressively increase.

This tool has been built using public transcriptomics data-
sets from four major tumor types. This strategy stems from the
importance of carefully selecting and curating datasets that are
rich in clinical, pathologic, and molecular data associated with
each sample. We have prioritized the inclusion of a selected
number of datasets to ensure that the interpretation of
the results is rapid and efficient without compromising the
robustness or translational potential of the results. However,
CANCERTOOL has been designed to allow its subsequent
expansion according to the needs of cancer researchers. Hence,
the pipeline for dataset inclusion in CANCERTOOL is ready to
progressively incorporate additional datasets and cancer types.
Further improvements can be done at the level of the statistics
used and the type of graphical outputs to enrich the summary
and custom analyses, always keeping in mind that they must
be generated in quick and easy manner (the Go/No-Go strategy)
to be understood and evaluated. Moreover, the support for
gene signatures (average signal of various genes within a
functional group) in the sections Basic Analyses and correla-
tions will expand the use of the interface. A similar strategy to
the transcriptomics analysis presented herein can be applied to
other OMICs layers. As an example, the inclusion of methyl-
ation studies could be an invaluable improvement for users, if
it were to be integrated with the transcriptomics studies.
However, to date there are still few datasets in which data
from the methylome and transcriptome for the same speci-
mens are available. The Additional Analyses section can be
also expanded to include additional tools that can aid the
researcher to gather valuable information about a gene(s) of
interest. Potential tools of interest include Touchstone (https://
clue.io/touchstone) and DEPMAP (https://depmap.org/portal/;
ref. 19).

Our capacity to accrue empirical data is no longer the bottle-
neck in cancer research. With the appropriate bioinformatics

expertise and access to public OMICs datasets, a hypothesis can
be tested, refined, and the molecular mechanism of candidate
genes can be predicted in silico. This strategy raises considerably
the success rate andbiomedical impact of cancer research projects.
CANCERTOOL brings unique visualization and representation
capabilities to cancer research teams that lack the personnel or the
expertise to perform bioinformatics analyses, thus complement-
ing and enriching the repertoire of available web tools.
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